Dr. Roberta Flemming


Roberta Flemming

Ph.D. Queen's University, 1997
Office: BGS 0172
Labs: BGS 1062, 1063
Phone: (519) 661-3143
Fax: (519) 661-3198
Lab Website

Research Interests

Professor Roberta Flemming and her research group study a variety of mineralogical and geological problems using a combination of crystallography, mineral chemistry and spectroscopy. Observations made from synthetic minerals produced at high temperatures and pressures in the laboratory, and from natural minerals found in Earth and planetary materials, are used to understand changes in mineral structure, chemistry, cation distribution, solid-solubility, and phase transition behaviour in response to changes in pressure, temperature, and composition (P-T-X), on Earth and other planetary bodies.

Flemming employs a variety of techniques, including X-ray diffraction and micro-X-ray diffraction, Rietveld refinement of diffraction data, electron probe microanalysis (EPMA), and a variety of spectroscopic techniques, including solid-state nuclear magnetic resonance (NMR) spectroscopy. Flemming’s current research objectives are outlined below:

  1. Fundamental understanding and quantification of mineral behavior as a function of pressure (P), temperature (T) and composition (X) by synthesizing minerals at various P-T-X, and studying their crystal structure (X-ray diffraction/Rietveld refinement), crystal chemistry (EPMA), and cation order-disorder (MAS and MQ MAS NMR spectroscopy: e.g. 29Si, 27Al, 17O, 23Na, 45Sc, etc.), to derive thermodynamic parameters. 
  2. Systematic mineralogical investigation of meteorites. In situ µXRD provides rapid mineral ID for meteorite classification and clues to thermal and shock history. In situµXRD also provides shock stage quantification, as a function of strain-related mosaicity (streaking or asterism along Debye rings, measured as FWHMc).  Rietveld refinement of powder XRD data provides modal mineral abundances, and enables crystal structural study of selected phases.
  3. Systematic investigation of Kimberlite Indicator Minerals (KIM) (e.g. garnet, chromite, ilmenite). Variation in unit cell parameters (µXRD) is correlated to geochemical data (EPMA) with the aim of developing µXRD as a tool for diamond exploration. Inclusions and strain related mosaicity in minerals give additional clues to origin.
  4. Development of micro X-ray diffraction (µXRD) as a tool for geologists. µXRD provides a unique opportunity to correlate crystal structural information with other microanalytical data on the microscopic scale (100-300 µm).  In situ examination of minerals preserves orientational information. Anticipated projects include development of µXRD-related exsolution geothermometry (e.g. two pyroxenes), and quantification of strain-related mosaicity (FWHMc) in minerals in meteorites, impact structures, and tectonically deformed rocks, with the aim of developing µXRD strain indices.

Selected Publications

  • Flemming’s Research Group:

    • Li, Y., McCausland, P.J.A. and Flemming, R.L. (2021) Quantitative shock measurement of olivine in ureilite meteorites. Meteoritics & Planetary Science, 56 (7): 1422-1439. doi.org/10.1111/maps.13706
    • Li, Y., McCausland, P.J.A. and Flemming, R.L. (2020) Best Fit for Complex Peaks (BFCP) in Matlab® for Quantitative Analysis of in situ 2D X-Ray Diffraction Data and Raman Spectra. Computers & Geosciences, 144, 104572.
    • McNeil, A.G., Linnen, R.L., Flemming, R.L. (2020a) Solubility of wodginite, titanowodginite, microlite, pyrochlore, columbite-(Mn) and tantalite-(Mn) in flux-rich haplogranitic melts between 700°-850 °C and 200 MPa. Lithos, 352-353: 105239. DOI: 10.1016/j.lithos.2019.105239
    • McNeil, A.G., Linnen, R.L., Flemming, R.L. and Fayek, M. (2020b) An experimental approach to examine fluid-melt interaction and mineralization in rare-metal pegmatites. American Mineralogist, 105, 1078–1087.
    • Rupert, A.N., McCausland, P.J.A. and Flemming, R.L. (2020) Ordinary Chondrite Shock Stage Quantification using in situ 2-D X-Ray Diffraction of Olivine. Meteoritics and Planetary Science, 55(10), 2224–2240. doi: 10.1111/maps.13572 (https://doi.org/10.1111/maps.13572)
    • Edey, D.R., Pollmann, S.I. Lorusso, D., Drangova, M., Flemming, R.L., Holdsworth, D.W. (2019) Extending the dynamic range of biomedical micro-computed tomography for application to geomaterials. Journal of X-Ray Science and Technology, 27 (5): 919-934. DOI: 10.3233/XST-190511.
    • Izawa, M.R.M., Banerjee, N.R., Shervais, J.W., Flemming, R.L., Hetherington, C.J., Muehlenbachs, K., Schultz, C., Das, D. and Hanan, B.B. (2019) Titanite mineralization of Microbial Bioalteration textures in Jurassic Volcanic Glass, Coast Range Ophiolite, California. Frontiers in Earth Science, 7, Article 315. DOI: 10.3389/feart.2019.00315
    • Jenkins, L.E., Flemming, R.L. and McCausland, P.J.A. (2019) Quantitative in situ XRD measurement of shock metamorphism in martian meteorites using lattice strain and strain-related mosaicity in olivine. Meteoritics & Planetary Science, 54 (4): 902-918. DOI: 10.1111/maps.13245
    • Berger, J.A., Schmidt, M.E., Gellert, R., Boyd, N.I., Desouza, E., Flemming, R.L., Izawa, M.R.M, Ming, D.W., Perrett, G.M., Rampe, E., Thompson, L.M., VanBommel, S.J.V., and Yen, A.S. (2017) Zinc and Germanium in sedimentary rocks in Gale Crater on Mars indicate hydrothermal enrichment followed by diagenetic fractionation. Journal of Geophysical Research - Planets. DOI: 10.1002/2017JE005290
    • Craig, M.A., Osinski, G.R., Cloutis, E.A., Flemming, R. L., Izawa, M.R.M., Reddy, V., Fieber-Beyer, S.K., Pompilio, L., van der Meer, F., Berger, J.A., Bramble, M.S., and Applin, D.M. (2017) Fitting the curve in Excel®: Systematic curve fitting of laboratory and remotely sensed planetary spectra. Computers and Geosciences, 100: 103–114.
    • Bramble, M.S., Flemming, R.L., and McCausland, P.J.A. (2015) Grain size measurement from two-dimensional micro-X-ray diffraction: Laboratory application of a radial integration technique. American Mineralogist, 100 (8-9): 1899-1911.
    • Flemming, R.L., Terskikh, V. and Ye, E. (2015) Aluminum environments in synthetic Ca-Tschermak clinopyroxene (CaAlAlSiO6) from Rietveld refinement, 27Al NMR and first principles calculations. American Mineralogist, 100 (10): 2219-2230.
    • McNeil, A.G., Linnen, R.L., and Flemming, R.L. (2015) A method for hydrothermal synthesis of columbite-(Mn), tantalite-(Mn), hafnon and zircon at 800°-850°C and 200 MPa. Canadian Mineralogist, 53, 1073-1081. DOI: 10.3749/canmin.1400077
    • Pickersgill, A.E., Flemming, R.L. and Osinski, G.R. (2015) Toward quantification of strain-related mosaicity in shocked lunar and terrestrial plagioclase by in situ micro-X-ray diffraction. Meteoritics & Planetary Science, 50 (11): 1851-1862.
    • Bramble, M.S., Flemming, R.L., Hutter, J.L., Battler, M.M., Osinski, G.R., and Banerjee, N.R. (2014) A temperature-controlled sample stage for in situ micro-X-ray diffraction: Application to Mars analogue mirabilite-bearing perennial cold spring precipitate mineralogy. American Mineralogist, 99: 943-947.
    • Libbey, R.B., Longstaffe, F.J. and Flemming, R.L. (2013) Clay mineralogy, oxygen isotope geochemistry and water/rock estimates, Te Mihi area, Wairakei Geothermal Field, New Zealand. Clays and Clay Minerals, 61 (3): 204-217.
    • McCausland, P.J.A., Flemming, R.L., Wilson, G.C., Renaud, J., Dillon, D. and Holdsworth, D.W. (2013) The Wood Lake, Ontario H4 ordinary chondrite, a new Canadian meteorite. Canadian Journal of Earth Sciences, 50(1): 32-43.
    • Izawa, M.R.M., Flemming, R.L., Banerjee, N.R. and McCausland, P.J.A. (2011) Micro X-ray diffraction (μXRD) assessment of shock stage in enstatite chondrites. Meteoritics & Planetary Science, 46: 638-651.
    • Vinet, N., Flemming, R.L. and Higgins, M.D. (2011) Crystal structure, mosaicity and strain analysis of Hawaiian olivines using in situ X-ray diffraction. American Mineralogist, 96: 486-497.
    • Smith, E., Helmstaedt, H.H. and Flemming, R.L. (2010) Survival of brown colour in diamond during storage in the subcontinental lithospheric mantle. Canadian Mineralogist, 48: 571-582.


    Flemming with Collaborators:

    • Caudill, C.M., Osinski, G.R., Greenberger, R.N., Tornabene, L.L., Longstaffe, F.J., Flemming, R. L., Ehlmann, B.L. (2021) Origin of the degassing pipes at the Ries impact structure and implications for impact-induced alteration on Mars and other planetary bodies. Meteoritics and Planetary Science, 56 (2): 404–422. doi: 10.1111/maps.13600
    • Neish, C.D., Cannon, K.M., Tornabene, L.L., Flemming, R.L., Zanetti, M., Pilles, E. (2021) Spectral properties of lunar impact melt deposits from Moon Mineralogy Mapper (M3) data. Icarus, 361 (E6): 114392-1134121. DOI: 10.1016/j.icarus.2021.114392
    • Milojevic, T., Kölbl, D., Ferrière, L., Albu, M., Kish, A., Flemming, R.L., Köberl, C., Blazevic, A., Zebec, Z., Rittmann, S.K.-M.R., Schleper, C., Pignitter, M., Somoza, V., Schimak, M.P., and Rupert, A.N. (2019) Exploring the microbial biotransformation of extraterrestrial material on nanometer scale. Nature Scientific Reports, 9, 18028. DOI: 10.1038/s41598-019-54482-7
    • Brzozowski, M.J., Samson, I.M., Gagnon, J.E., Linnen, R.L, Good, D.J., Ames, D.E. and Flemming, R.L. (2018) Controls on the chemistry of minerals in late-stage veins and implications for exploration vectoring tools for mineral deposits: An example from the Marathon Cu-Pd deposit, Ontario, Canada. Journal of Geochemical Exploration, 190: 109-129. DOI: 10.1016/j.gexplo.2018.02.015
    • Hui, H., Guan, Y., Chen, Y., Peslier, A.H., Zhang, Y., Liu, Y., Flemming, R.L., Rossman, G.R., Eiler, J.M., Neal, C.R., Osinski, G.R. (2017) A heterogeneous lunar interior for hydrogen isotopes as revealed by the lunar highlands samples. Earth and Planetary Science Letters, 473: 14-23, DOI: 10.1016/j.epsl.2017.05.029
    • Sapers, H.M., Osinski, G.R., Flemming, R.L., Buitenhuis, E., Tornabene, L.L., Hainge, J. and Blain S. (2017) Evidence for a spatially extensive hydrothermal system at the Ries impact structure, Germany. Meteoritics & Planetary Science, 52 (2): 351-371. DOI: 10.1111/maps.12796
    • Shuster, J.P., Reith, F., Izawa, M.R.M., Flemming, R.L., Banerjee, N.R., and Southam, G. (2017) Biogeochemical cycling of silver in acidic, weathering environments. Minerals, 7 (11): 218-235. DOI: 10.3390/min7110218
    • Nikitczuk, M.P.C., Schmidt, M.E. and Flemming, R.L. (2016) Microbial ichnofossils in continental basaltic tuffs: Expanding the record of endolithic microborings. S.A. Bulletin. 128 (7-8): 1270-1285. DOI: 10.1130/B31380.1.
    • Sapers, H.M., Osinski, G.R., Flemming, R.L., Buitenhuis, E., Tornabene, L.L., Hainge, J. and Blain S. (2016) Hydrothermal activity preserved in ejecta at the Ries impact structure, Germany. Meteoritics & Planetary Science, 52 (2): 351-371. DOI: 10.1111/maps.12796
    • Tomori, W.B., Yanful, E.K., Flemming, R.L., Amoo, I.A., Aiyesanmi, A.F. and Adekoya, J.A. (2016) Mineralogy and Geochemistry of Soil in Ondo State Bitumen Environment, Nigeria. Earth, 5 (6): 123-134.
    • Blamey, N., Parnell, J., McMahon, S., Mark, D., Tomkinson, T., Lee, M., Shivak, J., Izawa, M., Banerjee, N., and Flemming, R. (2015) Evidence for methane in Martian meteorites. Nature Communications. 6, Article number: 7399. doi:10.1038/ncomms8399. June 2015.
    • Greenberger, R.N., Mustard, J.F., Cloutis, E.A., Mann, P., Wilson, J.H., Flemming, R.L., Robertson, K.M., Salvatore, M.R., and Edwards, C.S. (2015) Hydrothermal alteration and diagenesis of terrestrial lacustrine pillow basalts: coordination of hyperspectral imaging with laboratory measurements. Geochemica et Cosmochemica Acta, 171: 174-200.
    • Osinski, G.R., Bunch, T.E., Buitenhuis, E., Flemming, R.L. and Wittke, J.H. (2015) Impact melt- and projectile-bearing ejecta at Barringer Crater, Arizona. Earth and Planetary Science Letters, 432, 283-292.
    • Schulze, D.J., Flemming, R.L., Shepherd, P.H.M., Helmstaedt, H. (2014) Mantle-derived guyanaite in a Cr-omphacitite xenolith from Moses Rock diatreme, Utah. American Mineralogist, 99: 1277-1283.
    • Ronholm, J., Schumann, D., Sapers, H.M., Izawa, M., Applin, D., Berg, B., Mann, P., Vali, H., Flemming, R.L., Cloutis, E.A., and Whyte, L.G. (2014) A mineralogical characterization of biogenic calcium carbonates precipitated by heterotrophic bacteria isolated from cryophilic polar regions. Geobiology, 12 (6): 542-556.
    • Tervahauta, T., van der Weijden, R.D., Flemming, R.L., Hernández Leal, L., Zeeman, G., Buisman, C.J.N. (2013) Calcium phosphate granulation in anaerobic treatment of black water: a new approach to phosphorus recovery. Water Research. Online October 30, 2013.
    • de Bruyn, J.R., Goiko, M., Mozaffari, M., Bator, D., Dauphinee, R.L., Liao, Y., Flemming, R.L., Bramble, M.S., Hunter, G.K., Goldberg, H.A. (2013) Dynamic Light Scattering Study of Inhibition of Nucleation and Growth of Hydroxyapatite Crystals by Osteopontin. PLoS ONE, 8 (2): e56764.
    • Osinski, G.R., Tornabene, L.L., Banerjee, N.R., Cockell, C.S., Flemming, R.L., Izawa, M.R.M., McCutcheon, J., Parnell, J. Pickersgill, A., Pontefract, A., Sapers, H.M., and Southam, G. (2012) Impact-generated hydrothermal systems on Earth and Mars. Icarus, 224(2): 347-363.


  • Earth Sciences 2206A: Mineral Systems, Crystallography and Optics
  • Earth Sciences 3310B: Structure and Chemistry of Minerals and Materials 
  • Earth Sciences 3312B: Genesis of Meteorites and Planetary Materials 
  • Geology 9516B: Advanced Mineralogy and Crystallography

Future Students

Available projects include:

  • Crystal structure, cation ordering and configurational entropy in aluminous minerals, using NMR spectroscopy and diffraction methods (e.g. Solar system spinel, Al-diopside (‘fassaite’), melilite).
  • Systematic determination of unit cell parameters in KIM minerals (e.g. chromite, ilmenite, Cr-diopside) and investigation of crystal structural – crystal chemical correlations.
  • Mineralogical investigation of meteorites: Crystal chemical clues to formation, thermal and shock metamorphism, aqueous processing, and weathering. Meteorites of interest include ordinary chondrites, carbonaceous chondrites, achondrites (e.g. 4 Vesta HEDs), martians, and lunars.
  • Systematic determination of unit cell parameters for major minerals in meteorites (e.g. clinopyroxene and olivine) and correlation to mineral chemistry and planetary origin.
  • Quantification of strain-related mosaicity and lattice strain in minerals in meteorites, impact structures, and tectonically deformed rocks, with an aim toward development of a µXRD strain index, and calibration using existing strain indices. (e.g. olivine, pyroxene, plagioclase, quartz, KIMs)
  • Development of µXRD for exsolution geothermometry. (e.g. two pyroxenes). GADDS image provides simultaneous unit cell information (related to composition) for both phases, as well as their T-dependent orientational relationship.