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Open PDE problem

Solve, on t >0,  ϴ(t) < S <  ∞
Vt + ½σ2S2VSS + rSVS – rV
With final condition
V(T,S) = max(K-S,0)
And boundary conditions

V(∞,t) = 0, 
V(ϴ(t),t) = K-ϴ(t);  VS(ϴ(t),t) = -1

Nonlinear problem with no closed form solution.



Exercise boundary (David Itkin)



Corn Ethanol S01 turn on, 
S10 turn off (Chris Maxwell)



Some goals

• What can financial math tell us about 
incentives?

• Give some insight about what is happening 
behind the headlines.

• I also want to “be discrete” and have some fun 
talking about nonlinear difference equations. 

• And give some intuition about the PDE we 
opened with.



Collaborators

• Lindsay Anderson: Cornell University

• Natasha Burke (Kirby):  Royal Bank Energy 
Trading – former AM PhD student

• Jill (Zhongwen) Hu, B.Sc. summer student, 
Western University Canada

• Mark Somppi, Goldcorp

• Yu Sun, M.Sc. – research assistant

• All data from IESO (economic/load), 
Environment Canada (weather)



The societal problem

• Renewables (Wind, Solar, small Hydro)  are 
the cornerstone of green power initiatives 
both in Ontario and worldwide. 

• Wind “penetration” has increased 
dramatically in recent years

• But wind and other renewables require 
expensive subsidies and do not result in 
dispatchable power.  



Two linked problems

• How to manage this new system?

• How to pay for it?



Wind:  increasing in Ontario
(www.windontario.ca)



Installed generation (Ontario)
(IESO, Dec 2017)

Resource 
Type

Capacity Annual Output

Nuclear 13,009 MW (35%) 91.7 TWh (61%)

Gas/Oil 10,277 MW (28%) 12.7 TWh (9%)

Hydro 8,480 MW (23%) 35.7 TWh (24%)

Wind 4,213 MW (11%) 9.3 TWh (6%)

Biofuel 495 MW (1%) 0.49 TWh (< 1%)

Solar 380 MW (1%) 0.46 TWh (< 1%)



Hourly Ontario wind production (MW):
May 5 – May 8 2011.  Source: IESO
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Market impact

• Greater price instability

• Frequent negative prices



Ontario Open Market Price: Old days (next to no 
renewables)



Ontario Electricity Price, $/MWh
Source IESO, 



How does the Ontario market work?

• Power is traded at each of 24 hours per day.

• Generators offer power;  users bid for power.

• Bids/Offers are prepared by 11PM the previous night for 
each hour but can be revised up until 4 hours ahead of 
the beginning of each hour.

• Each participant submits one or more ordered pairs into 
the market for that hour – (amount bid, price bid)  or 
(amount offered, price offered).

Market Price
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Bid/Ask strategy

• If you “have to have it” you bid a very high 
amount. 

• If you “have to sell it” you bid a very low, often 
a negative, amount.  For instance Nuclear 
Power Plant.

• Wind/Solar guaranteed  sell, and also bid low. 

• Price is set by the flexible people.



Is the solution storage?

• Is energy storage the solution?

• Storage could buffer uncertainties.

• But storage is expensive! 

• In current Ontario market, impossible to bill.

• Look at market rules to incent storage



Impact of regulation on storage

• Economic incentives to avoid excessive 
offering of power  illustrated by simple model 
of a storage facility with just 4 parameters:  

– the value of a unit of power  (M),  

– the fractional loss in storing the power (γ)

– the probability of generating the power (p),  

– and the penalty from bidding power into 
the market that isn’t delivered (x).



The model

• The model generates a nonlinear system of 
difference equations that can be solved in 
closed form allowing many insights. 

• Details in “Optimal Management of Wind 
Energy with Storage: Structural Implications 
for Policy and Market Design”, Lindsay 
Anderson, Natasha Burke,  Matt Davison, 
Journal of Energy Engineering (2014)



Our model: Wind meteorology

• A wind producer produces $M  of electricity if 
it is windy,  otherwise nothing.

• Each period it is windy with probability p and 
calm with probability 1-p, 0 ≤ p ≤ 1. 

• No access to informative forecasts



Market Rules

• The wind producer must decide in advance 
whether to offer power into the market.

• If power is offered and it is windy,  producer 
gets $M.

• If power is not offered it cannot be sold, 
whether or not it is windy.  



Penalties

• If the producer offers power and can’t deliver 
she must pay a penalty of –xM;  x ≥ 0 

• Ontario market:  x = 0; 

• New York market:  x > 0.



The storage

• The wind producer has access to a storage 
facility sized to store a single unit of wind 
energy.  This storage can be filled or 
withdrawn in a single hour.

• Storage is “lossy”  and we assess the cost of 
this loss at withdrawal.  If a unit of energy is 
withdrawn it earns (1-γ)M,  0 ≤ γ ≤ 1. 



Storage contracts

• Storage facilities are leased for N periods.   

• At the end of the lease, storage is returned to 
its owner.   

• If full, facility gets a cash refund of (1-γ)M,  

• Return empty facility: get nothing. 



V(F,k) and V(E,k)

• The value of a full storage facility, assuming 
optimal operation,  with k periods left before 
the end of the lease is denoted by V(F,k)

• The value of an empty storage facility, 
assuming optimal operation,  with k periods 
left before the end of the lease is V(E,k)



V(F,B,k) and V(F,N,k)

• With k periods remaining we must decide 
whether to offer power or not.  

• The value of a full facility with k periods 
remaining given we offer is V(F,B,k)

• If we don’t offer power the value of the full 
facility with k periods remaining is V(F,N,k).

• V(F,k) = max[V(F,B,k),V(F,N,k)]



V(E,B,k) and V(E,N,k)

• The value of an empty facility with k periods 
remaining given that we offer is V(E,B,k)

• If we don’t offer power the value of the full 
facility with k periods remaining is V(E,N,k).

• V(E,k) = max[V(E,B,k),V(E,N,k)]



The recursion relation: empty

• We use dynamic programming to solve this.  

• We’ve already ‘turned around’ time by 
describing everything in terms of time 
remaining.

• V(E,B,k) = p[M+V(E,k-1)] + (1-p)[-xM+V(E,k-1)]

• V(E,N,k) = pV(F,k-1) + (1-p)V(E,k-1)

• Since if you don’t bid and it’s empty, you 
might as well fill the facility to sell later.  



The recursion relation: full

• V(F,N,k) = pV(F,k-1) + (1-p)V(F,k-1) = V(F,k-1).

• V(F,B,k):   if we bid and it’s not windy we can 
choose whether to pay the penalty or empty 
the storage.   Hence:  

• V(F,B,k) = p[M + V(F,k-1)] 

+(1-p)max[-xM+V(F,k-1), (1-γ)M+V(E,k-1)] 



A note on expectations

• It probably makes sense to optimize the 
expected value of the cash flows as done 
above since the procedure will be repeated 
many times.

• If you want to add risk aversion,  that will only 
have the effect of distorting the probability, so 
replace p by q and the structure of the 
equations remains. 



System 0

V(F,B,k) = p[M+V(F,k-1)]
+(1-p)max[-xM+V(F,k-1), (1-γ)M+V(E,k-1)]

V(F,N,k) = V(F,k-1)

V(F,k) = max[V(F,B,k),V(F,N,k)]

V(E,B,k) = p[M+V(E,k-1)] + (1-p)[-xM+V(E,k-1)]

V(E,N,k) = pV(F,k-1) + (1-p)V(E,k-1)

V(E,k) = max[V(E,B,k),V(E,N,k)]

V(F,0) = (1-γ)M,  V(E,0) = 0. 



Solving this

• Solution of this system requires at each time:

• Optimal bidding rules, when empty and when 
full,  before we know if the wind will blow or 
not.

• The optimal decision about whether to pay 
the penalty or empty the storage in the 
full,bid,no wind case.

• Expressions for V(F,k) and V(E,k). 



Solving for V(F,k)-V(E,k)

System is really just one dimensional:
Set:  V(F,k)-V(E,k) = (1- γ)M + Mm(k)

Then 

m(k) = m(k-1) + min[x(1-p), γp-pm(k-1)]

- min[p,x(1-p),(1-p)m(k-1)]

It’s easy to check that, m(k) = min[γp,x(1-pk)]

V(F,k)-V(E,k)  = (1- γ)M + min[pγM, (1-pk)xM]



Optimal control

• If x ≥ γ*max[1,p/(1-p)] then the optimal 
control is to bid when full and not bid when 
empty.  

• x ≤ pγ:   small penalties you always bid 
whether you are full or empty 

• Sufficiently huge penalties are never collected, 
and small penalties don’t change behaviour, 
although may raise “tax like” revenue.  



Empty bid rules: medium penalties

• k* <  ln[1-γp/x]/ln(p) –bid when empty, o

• So you don’t bid  (sufficiently far from maturity)  
and then bid (sufficiently close to maturity)

• Can also compute facility values.



Facility values

• When x ≥ γ*max[1,p/(1-p)] 

• V(E,k) = kp[1-γ(1-p)]M  (k ≥ 0).  

• V(F,k) = (kp+1)[1-γ(1-p)]M (k ≥ 1).\

MEDIUM – depends on k* again.

• When x ≤ pγ

• Or V(E,k) = k[p-x(1-p)]M

• V(F,k) = k[p-x(1-p)]M + (1-γ)M + x(1-pk)M.



To find value of storage

• Need to compare V(E,k) with W(k),  is the value of 
this turbine (no storage) with k periods 
remaining.

• W(k) follows the difference equation: 

• W(k) = max[W(B,k), W(N,k)]

• W(B,k) = p[M + W(k-1)] + (1-p)[-xM + W(k-1)]

• W(N,K)= pW(k-1) + (1-p)W(k-1) = W(k-1)

• So W(k)=W(k-1)+max[p-x(1-p),0]*M; W(0) = 0.

• So W(k) = kM*max[p-x(1-p),0].    



Conclusions

• A simple model can be exactly solved and shows 
some interesting intuition.

• Model has many operational and economic policy 
insights, but for today point is that the 
valuation/operation problem yields a nonlinear 
equation.

• Weather forecasts destroy value of storage.
• Interesting “Value of information” literature
• See also Zhao & Davison, J. Hydrology, in an 

energy finance setting (hydrological inflow 
forecasts, hydro dam operation).  



Problem 2: How do we pay for it?

• Current NSERC Engage  project with Goldcorp



Recall Renewables got high prices

• Solar power generators are guaranteed 
$443/MWh for all power they sell;  wind and 
special green microhydro $140/MWh. 

• But they are* must-dispatch and always bid.  

• Meshing these guarantees with the market 
rules has “broken” the market.  

• Cost of this must  be absorbed somehow.

• That is called global adjustment





The Goldcorp game

• That’s an attempt to shift the cost of global 
adjustment from the consumers to big 
producers.

• An outcome might be to flatten load shape, 
but this is not likely.

• Goldcorp can shut the mine/mill, but is also 
investigating energy storage. (better than 
diesel which is expensive in a fly in setting). 



Bizzarre Market Rule

• Large Industrial  Power Users (> 5MW) are 
billed, at the end of the year, for how much 
power they used on the top 5 power demand 
hours (for the entire province);  each demand 
hour coming on a different day.

• Cost is substantial.



A strange game

• Draw N random variables in succession:
xN, xN-1,….x2,x1. (numbered in reverse order). 

• After each variable is drawn the player can 
decide whether to buy it for 1 unit.  Can buy > 
1 variable but only immediately after seeing it.

• After all N (=365?) variables are drawn,  the 
top k (=5) values drawn are determined.  

• The player pays a penalty of M for each of 
these k draws they did not purchase. 



Where did this game come from?

• GoldCorp plays this game.

• They play with N = 365 and k = 5.

• They’d rather not play but must.

• The random variable is the peak load for each 
of 365 days** (simplified)

• Goldcorp pays substantial penalty for the 
power they generate on the (retrospective) 
top 5 days. 



The Musselwhite Mine
Photo: Goldcorp



• Musselwhite is a  fly-in/out underground mine 
located 500 km north of Thunder Bay. Owned by 
Goldcorp.

• Musselwhite has produced over 4 million ounces 
of gold since April 1997. Gold recoveries are 96%.

• Goldcorp is executing on a roadmap to increase 
production and decrease costs at its Musselwhite 

Mine.

• This is where we come in!! 





Lots of questions here

• How to play this?

• Does a naïve strategy work? 

• Or do we need modelling and analysis?

• From a completely different angle

• WHY is the market run this way? Does it make 
sense? Could it be run better? 



Can we predict this?



Peak Hours

Month/
Time

May June Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr

12 2

13 1

14 1 3 4

15 1 2 3

16 1 7 11 7

17 1 10 4 3

18 1 1 1 1 3

19 5 1

20 1



Much better if use typical peak 
hours



Historical Data Analysis



Obvious Naïve Algorithm

• Use the 5th highest 
realized load from the 
previous year as a 
threshold for the next 
year.

• This strategy is terrible.

• We need more analysis

Yr 03-
04

04-
05

05-
06

06-
07

07-
08

08-
09

09-
10

# 2 23 4 5 0 1 24

Yr 10-
11

11-
12

12-
13

13-
14

14-
15

15-
16

10-
11

# 9 8 4 0 10 10 9



Simplified game

• In succession, draw N random variables:
xN, xN-1,….x2,x1.  

• After each variable is drawn the player can 
decide whether to buy it for 1 unit.

• You can buy multiple tickets.

• After all N variables are drawn,  the maximum 
value drawn is determined.  If the player did 
not buy it they pay a penalty of M. 



Observations

• If we played until we took a draw and then 
stopped, and were trying to maximize the 
expected value of the draw we took, that 
would be the “secretary game” or the 
“marriage game” which is well studied.

• In continuous time this is a bit related to 
something called  a “Lookback option”

• The game is only interesting if M < 1. 



More assumptions

• To fix ideas we’ll begin with a setting in which 
all the r.v.s are drawn independently  

• From identical U(0,1) r.v.s 

• And we can’t predict anything 

• What is the best way to play this game so as to 
minimize the expected outlay?  

• And what is the expected cost of the game?



Solution Strategy

• Straight dynamic programming not possible

• This one is complicated by needing to keep 
track of the maximum.

• Still, start backwards with a simple preliminary 
result



Case I:  N  = 2

• Suppose we are at the last two stages of the 
game and have not yet drawn x2 or x1.    

• We have not yet purchased any draws.

• However, the largest value that has been 
drawn so far is known to be y.



Structure of solution

• Clearly at the 2nd last draw you  won’t keep x2

unless it is at least as large as y. 

• Depending on how low y is,  you might not 
even keep some x2 > y

• Optimal solution should be of form:  

• Buy the draw if it is larger than some 
threshold ϴ, otherwise wait until the last 
draw.



Three alternatives

• 0 ≤ x2 ≤ y :  Don’t buy. At final draw you buy if  
x1 ≥ y,  otherwise you pay a penalty M.    
Expected cost to go: yM + (1-y) = 1 + (M-1)y.

• y ≤ x2 ≤ ϴ:   Don’t buy. At  final draw you buy if  
x1 ≥ x2,  otherwise pay penalty M.    
Cost to go: x2M + (1-x2) = 1 + (M-1)x2.

• ϴ ≤ x2 ≤ 1.    Buy. At final draw  do nothing if x1

≤ x2, but buy again if x1 > x2.  No penalty here 
as peak captured.  Cost to go: 1 + (1-x2)   



Overall cost

• ∫0
y [1 + (M-1)y]dx + ∫y

ϴ [1 + (M-1)x]dx 
+ ∫ϴ

1 [2- x] dx = ½(M-1)y2 + ½Mϴ2 + 3/2 - ϴ 

• Checking critical point ϴ = 1/M against 
endpoints:

• If y ≤ 1/M ≤ 1  then the optimal policy is to 
pick ϴ = 1/M.

• If y > 1/M  the optimal policy is  to pick ϴ = y.



Corresponding costs to go:

• Case 1:  (small max) 0≤  y ≤ 1/M:  
V(2 stages left) = ½ (M-1)y2 + 3/2 – (1/2M).

• Case 2:  (big max) 1/M < y ≤ 1:     
V(2 stages left) =   ½ (M-1)y2 + ½ My2 + 3/2 – y

• This obeys “smooth pasting” (continuous, first 
derivative continuous) at join.    Just like 
American option problem.

• Also note dV/dy > 0



Case 2

• Suppose we are at the last two stages of the 
game and have not yet drawn x2 or x1.   

• We have already purchased a draw of z.   

• For now, assume that there was no previous 
draw > z, nor any subsequent draw of > z that 
was not purchased.    



Structure of Solution

• At  2nd last draw you  won’t keep x2 unless it is 
at least as large as z.   

• Depending on how low z is,  you might not 
even keep it then.  

• It seems reasonable that an optimal strategy 
will continue, as earlier, to be of the form:  
buy the draw if it is larger than ϴ, otherwise 
wait until the final draw. 



Optimal Control/Cost to Go

• ϴ = z + 1/M    provided z ≤ (M-1)/M
ϴ = 1 provided  (M-1)/M < z ≤ 1.

• Corresponding (2 stage costs to go) are:

• F(z) =  ½ (1-z) (3+z) – 1/(2M) z ≤ (M-1)/M

• F(z) =  ½ (1-z) [1 + z + M(1-z)] 1 – 1/M ≤ z ≤ 1.

• Smooth pasting still, and dF/dz < 0

• Also dF/dM > 0, d2F/dM2 < 0 



Can put together for 3 stage game

• Here we buy if x3 > φ  and don’t buy if x3 < φ.

• In the case when we buy we are in the “z 
case” and if we don’t buy we are in the “y 
case”.

• Can assume φ > 1/M = ϴ  



Three stages

• Y case – not bought  , but have seen draw of y

• VA(y) =  ½ (M-1)y2 + 3/2 – (1/2M); 0 ≤ y ≤ 1/M:  
VB(y) =   ½ (M-1)y2 + ½ My2 + 3/2 – y; 1/M < y ≤ 1:     

• Z case – bought a draw of z, biggest  yet seen:

• FA(z) =  ½ (1-z) (3+z) – 1/(2M);  z ≤ (M-1)/M
FB(z) =  ½ (1-z) [1 + z + M(1-z)];  (M-1)/M ≤ z ≤ 1.

• Φ = sqrt(2M-1)/M  (if 1 – 1/M < 1, i.e. M-1 < M



Conclusions for larger game

• Optimal threshold will need to depend on 
y1,y2,y3,y4,y5; z1,z2,z3,z4,z5.

• Proceed with Least Squares Monte Carlo on 
this 10 dimensional space?

• Nonstationarity a bigger issue.



A nice heuristic

• At each date t, 1 < t < 365,  make a “year”  
based on  C1,C2,…Ct,Lt+1,…L365 where  Ck is the 
highest load realized on day k of the current 
year and Lj the highest load realized on day j of 
the previous year.

• Use this year to backtest a threshold, and use 
min(this thresh, fifth lowest load shuttered)

• This appears to work rather well.   



Conclusions

• Some nice math problems arise in industry

• The Ontario electricity market is really messed 
up

• Financial math works because it is easy to get 
the data and you can trust it.

• It doesn’t work because the rules keep 
changing.



Thank you!!



Musselwhite Mine (Source: 
GoldCorp Annual Report, 2016)

Category Detail

Location Opapamiskan Lake, Ontario

Type of Mine Underground

Processing Method Carbon in pulp recovery

Milling/Processing capacity 4500 tonnes per day

Power Demand: Mine 18MW

Power Demand:  Mill 7MW

Employees/Contractors 749

Production (2017 guidance) 265,000 oz

AISC (2017 guidance) $715 per oz

Gold Reserves (measured) 310,000 oz

Gold Resources (inferred) 1.17 million oz


