
A charge-sensing region in the stromal interaction molecule
1 luminal domain confers stabilization-mediated inhibition of
SOCE in response to S-nitrosylation
Received for publication, October 18, 2017, and in revised form, March 29, 2018 Published, Papers in Press, April 16, 2018, DOI 10.1074/jbc.RA117.000503

Jinhui Zhu, Xiangru Lu, Qingping Feng1, and Peter B. Stathopulos2

From the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada

Edited by Roger J. Colbran

Store-operated Ca2� entry (SOCE) is a major Ca2� signaling
pathway facilitating extracellular Ca2� influx in response to the
initial release of intracellular endo/sarcoplasmic reticulum (ER/
SR) Ca2� stores. Stromal interaction molecule 1 (STIM1) is the
Ca2� sensor that activates SOCE following ER/SR Ca2� deple-
tion. The EF-hand and the adjacent sterile �-motif (EFSAM)
domains of STIM1 are essential for detecting changes in luminal
Ca2� concentrations. Low ER Ca2� levels trigger STIM1 desta-
bilization and oligomerization, culminating in the opening of
Orai1-composed Ca2� channels on the plasma membrane. NO-
mediated S-nitrosylation of cysteine thiols regulates myriad
protein functions, but its effects on the structural mechanisms
that regulate SOCE are unclear. Here, we demonstrate that S-ni-
trosylation of Cys49 and Cys56 in STIM1 enhances the thermo-
dynamic stability of its luminal domain, resulting in suppressed
hydrophobic exposure and diminished Ca2� depletion– depen-
dent oligomerization. Using solution NMR spectroscopy, we
pinpointed a structural mechanism for STIM1 stabilization
driven by complementary charge interactions between an elec-
tropositive patch on the core EFSAM domain and the S-nitrosy-
lated nonconserved region of STIM1. Finally, using live cells, we
found that the enhanced luminal domain stability conferred by
either Cys49 and Cys56 S-nitrosylation or incorporation of neg-
atively charged residues into the EFSAM electropositive patch
in the full-length STIM1 context significantly suppresses SOCE.
Collectively, our results suggest that S-nitrosylation of STIM1
inhibits SOCE by interacting with an electropositive patch on
the EFSAM core, which modulates the thermodynamic stability
of the STIM1 luminal domain.

Ca2� ions are universal signaling entities regulating count-
less processes including programmed cell death, homeostasis,
gene transcription, and muscle contraction (1). To closely reg-
ulate these processes, Ca2� is compartmentalized with a low

cytosolic concentration (�0.0001 mM) compared with a high
extracellular concentration (�1 mM) when cells are at rest (2).
Moreover, intracellular organelles such as the endoplasmic
reticulum (ER)3 contain a relatively high Ca2� concentration
(�0.4 – 0.7 mM) that can be released into the cytosol in response
to electrical or chemical stimuli (3, 4). Remarkably, emptying of
ER Ca2� stores can mobilize Ca2� entry from the extracellular
space in a ubiquitous process termed store operated Ca2� entry
(SOCE) (5). Upon sarcoplasmic reticulum (SR) or ER Ca2�

depletion, stromal interaction molecule 1 (STIM1), which is
inserted in the ER/SR membrane becomes oligomerized, trans-
locates to ER–plasma membrane junctions and interacts with
Orai1 (6 –11), facilitating the formation and opening of Orai1-
composed Ca2� release–activated Ca2� (CRAC) channels (12–
16). Open CRAC channels enable Ca2� to move down the steep
concentration gradient from the extracellular space into the
cytosol. The movement of extracellular Ca2� into the cytosol
replenishes the depleted stores and drives myriad signaling pro-
cesses that require sustained cytosolic Ca2� elevation such as
the immune response (4).

The cytosolic domains of STIM proteins contain a series of
coiled-coil domains that contribute to oligomerization and are
required for coupling to and gating of Orai1 channels (17–22).
However, the luminal domains of STIM proteins contain the
essential ER/SR Ca2� sensing machinery, which initiate SOCE
after ER/SR Ca2� store depletion (10, 23, 24). The luminal
domain of STIMs are made up of highly conserved canonical
EF-hand (residues 63–96) and noncanonical EF-hand (residues
97–128) motifs adjacent to a similarly well conserved sterile
�-motif (SAM) domain (residues 132–200) that make up the
EFSAM core and mediate the Ca2� sensing function (Fig. 1A).
The noncanonical EF-hand is hydrogen-bonded with the
canonical EF-hand, forming a pocket for interactions with the
SAM domain in the presence of Ca2� (24). When the canonical
EF-hand loses Ca2�, the protein undergoes a partial unfolding-
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induced destabilization, coupled with oligomerization, which is
the initiation event for SOCE activation (10, 24, 25). Chimeric
STIM with the luminal domains replaced by FK506-binding
protein can induce SOCE in response to rapamycin treatment,
which pharmacologically oligomerizes FK506-binding protein,
totally independent of ER luminal Ca2� (23), reinforcing the
criticality of STIM1 luminal domain oligomerization to SOCE
initiation.

The short, nonconserved N-terminal regions of human
STIM1 and STIM2 can modulate the stability of the Ca2�-sens-
ing EFSAM core and the activation of SOCE (25, 26). Further,
there are two cysteine residues (i.e. Cys49 and Cys56 in STIM1)
that are conserved among vertebrate and some lower order
STIM homologues (Fig. 1B). STIM1 Cys56 can undergo S-glu-
tathionylation following oxidative stress, which results in con-

stitutively activated SOCE, independent of luminal Ca2� levels
(27). Given this susceptibility to oxidative stress and other pro-
teins found to be both S-glutathionylated and S-nitrosylated
(28, 29), these Cys residues are also candidate sites for S-ni-
trosylation. S-Nitrosylation is a readily reversible Cys modifica-
tion that may occur in the presence of an NO donor and an
electron acceptor. Specifically, S-nitrosylation involves the
addition of NO groups onto reduced Cys residues to form S-ni-
trosocysteines (Fig. 1C). S-Nitrosylation of Cys residues can
affect protein stability, activation, structure, localization, and
function (30).

Here, we used high excess NO donor availability to study the
effects of STIM1 S-nitrosylation on the Ca2�-sensing mecha-
nism and Orai1 activation. Using biophysical and biochemical
approaches, we found that S-nitrosylation of Cys49 and Cys56

Figure 1. Domain architecture and primary sequence alignment of STIMs. A, STIM1 domain architecture. The locations of the signal peptide (SP, yellow),
two luminal Cys residues (red spheres), canonical EF-hand (cEF, light green), noncanonical EF-hand (nEF, green), SAM domain (cyan), transmembrane domain
(TMD, dark green), three coiled-coil segments (CC1, blue; CC2, purple; CC3, violet), inhibitory domain (ID, magenta), serine/proline-rich region (PS, pink), and
lysine-rich region (K, red) are shown relative to the N and C termini. Residue ranges are shown below each domain. B, alignment of luminal STIM primary
sequences. Homosapiens STIM1 (H.STIM1, NCBI accession NP_003147.2), Homosapiens STIM2 (H.STIM2, NCBI accession NP_065911.3), Rattus norvegicus STIM1
(R.STIM1, NCBI accession NP_001101966.2), Gallus gallus STIM1 (G.STIM1, NCBI accession XP_420749.5), Drosophila melanogaster STIM (D.STIM, NCBI accession
NP_523357.2), and Caenorhabditis elegans STIM (C.STIM, NCBI accession CCD73857.1) sequences were aligned in Clustal Omega (70). Fully conserved (*), highly
conserved (:), and partially conserved (.) positions are shown below the respective residue. The conserved Cys49 and Cys56 positions are shaded red. C, depiction
of the mechanism through which cysteine residues are S-nitrosylated. The atoms directly modified via S-nitrosylation are highlighted in red.

S-Nitrosylation inhibits STIM1 via charge sensing by EFSAM
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enhances the thermodynamic stability, suppresses the surface-
exposed hydrophobicity, and deoligomerizes the STIM1 lumi-
nal domain. Further, we identified an electropositive interac-
tion site on the core EFSAM domain by solution NMR
spectroscopy, which mediates stabilization through interac-
tions with the Cys-containing nonconserved region. Remark-
ably, incorporation of negative charges into this patch by muta-
tion increases the thermodynamic stability, independent of NO
availability. Finally, we demonstrate in live HEK293 cells co-ex-
pressing full-length STIM1 and Orai1 that stabilization of the
STIM1 luminal domain using NO donors or via mutation of the
electropositive patch suppresses SOCE. Collectively, our exper-
iments uncover a charge-sensing region in the core EFSAM
domain that confers stabilization in response to S-nitrosylation
and endows STIM1 with an additional layer of regulation.

Results

S-Nitrosylation induces thermodynamic stabilization of STIM1
23–213

SOCE is initiated after Ca2�-depletion– dependent destabi-
lization of the EFSAM core leads to oligomerization and STIM1
puncta formation (10, 11, 31, 32). The nonconserved, N-termi-
nal region of STIM1 contains two Cys residues and plays a role
in modulating the stability of the EFSAM core (25). Given the
importance of EFSAM stability to SOCE activation, we per-
formed a precise quantification of the thermodynamic stability
of the entire STIM1 luminal domain (i.e. residues 23–213)
using equilibrium chemical denaturation curves in the pres-
ence and absence of Ca2� and S-nitrosoglutathione (GSNO).
The urea denaturation process was completely reversible and,
thus, amenable to two-state equilibrium unfolding analysis.
The Gibbs free energy of unfolding in water (�GH2O), denatur-
ant dependence of the unfolding transition (m value), and the
midpoint of urea denaturation (Cmid) were extracted from the
urea denaturation curves using the linear extrapolation method
(33). The Ca2�-loaded STIM1 luminal domain revealed a
�GH2O of 5.9 kcal mol�1 in the presence of 1 mM DTT (i.e.
reduced state). After S-nitrosylation of the Ca2�-loaded protein
by ultrafiltration into a buffer containing 1 mM GSNO and no
reducing agent, we observed an increase in the �GH2O by �2.0
kcal mol�1 (Fig. 2, A and B, and Table S1). We observed a
similar GSNO-dependent enhancement of �GH2O by �1.5 kcal
mol�1 under the Ca2�-depleted conditions (Fig. 2, C and D, and
Table S1).

To probe whether the sensitivity to the presence of GSNO
was facilitated by the Cys49 and Cys56 residues, we generated
C49S/C56S to prevent S-nitrosylation at these sites. We
focused on Ca2�-depleted equilibrium denaturation because
this state is the SOCE initiation– competent state. The Ca2�-
depleted C49S/C56S protein exhibited a similar �GH2O as the
WT; however, whereas GSNO robustly enhanced the stability
of the WT form, the double Cys mutant showed no enhance-
ment of stability in the presence of the NO donor (Fig. 2, E and
F, and Table S1). Thus, GSNO thermodynamically stabilizes
the STIM1 luminal domain in a Cys49- and Cys56-specific
manner.

S-Nitrosylation decreases the level of solvent-exposed STIM1
23–213 hydrophobicity

The Ca2�-depletion-induced oligomerization of STIM1
EFSAM is associated with increased solvent-accessible hydro-
phobicity (10). Thus, we next sought to evaluate the level of
exposed STIM1 23–213 hydrophobicity in the presence and
absence of the NO donor using the extrinsic fluorescence probe
8-anilinonaphthalene-1-sulfonic acid (ANS), which becomes
hyperfluorescent when bound to exposed hydrophobic patches
of proteins (34). The fluorescence emission of ANS was
enhanced �2-fold in the presence of the Ca2�-depleted WT
STIM1 23–213; however, the addition of excess CaCl2 mark-
edly decreased the ANS fluorescence indicative of Ca2�-bind-
ing induced folding (Fig. 3A). In contrast, the ANS fluorescence
was only marginally increased when incubated with Ca2�-de-
pleted WT STIM1 23–213 in the presence of 1 mM GSNO com-
pared with the buffer alone; further, the addition of excess
CaCl2 resulted in only a minimal change in the ANS fluores-
cence intensity (Fig. 3B). To confirm that the differences in

Figure 2. Equilibrium chemical denaturation curves of STIM1 23–213. A,
representative urea denaturation curves of Ca2�-loaded WT STIM1 23–213. B,
�GH2O comparison of the Ca2�-loaded WT STIM1 23–213 in the presence of 1
mM DTT or 1 mM GSNO. C, representative urea denaturation curves of Ca2�-
depleted WT STIM1 23–213. D, �GH2O comparison of Ca2�-depleted WT
STIM1 23–213 in the presence of 1 mM DTT or 1 mM GSNO. E, representative
urea denaturation curves of Ca2�-depleted C49S/C56S STIM1 23–213. F,
�GH2O comparison of Ca2�-depleted C49S/C56S STIM1 23–213 in the pres-
ence of 1 mM DTT or 1 mM GSNO. In A, C, and E, the solid blue and red lines
represent the two-state unfolding model fit to the data for the DTT- and
GSNO-treated samples, respectively, In B, D, and F, the data are means � S.E.
of n � 3 separate experiments. *, p 	 0.05; ***, p 	 0.0001.

S-Nitrosylation inhibits STIM1 via charge sensing by EFSAM
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ANS binding were caused by alterations in protein folding, we
monitored the relative change in intrinsic fluorescence upon
Ca2� binding in the presence and absence of GSNO. Indeed, we
observed a 	2% compared with �20% maximal change in
intrinsic fluorescence during Ca2� titration experiments in the
presence and absence of 1 mM GSNO, respectively (Fig. S1),
indicating that the NO donor induces a conformation with sup-
pressed Ca2�-binding–induced structural allostery.

Next, we repeated the ANS-binding experiments using the
C49S/C56S STIM1 23–213 protein to probe the role of the Cys
residues in the GSNO responses. The C49S/C56S protein
showed a �2-fold increase in the ANS fluorescence that was
markedly suppressed by the addition of excess CaCl2 (Fig. 3C).
Importantly, the C49S/C56S STIM1 23–213 protein exhibited
a similar �2-fold increase in ANS fluorescence even in the
presence of 1 mM GSNO; moreover, the addition of 5 mM CaCl2
suppressed this ANS fluorescence, consistent with the Ca2�-
binding induced folding (Fig. 3D). Collectively, the ANS data
demonstrate that Ca2� binding or GSNO treatment suppresses
solvent exposed hydrophobicity of STIM1 23–213 and that the

effect of the NO donor depends on the presence of the Cys49

and Cys56 thiols.

STIM1 23–213 undergoes S-nitrosylation-mediated
deoligomerization

To test whether the effects of S-nitrosylation on stability,
hydrophobicity, and structure correlate with oligomerization
propensity, we next assessed hydrodynamic size of STIM1
23–213 by dynamic light scattering (DLS). Because the Ca2�-
loaded state of STIM1 23–213 is a monomer (10, 24, 25), we
focused on the oligomerized Ca2�-depleted protein. Regular-
ization deconvolution of the size distributions from the auto-
correlation functions showed that exchange of Ca2�-depleted
STIM1 23–213 from DTT-containing buffer to 1 mM GSNO-
containing buffer systematically decreased the smallest distri-
bution of hydrodynamic radii (Fig. 3E). Although the change in
hydrodynamic size distribution appears modest, the difference
is, in fact, marked given that light scattering intensity scales
with particle size to the sixth power (35). Thus, the hydrody-
namic sizes 	7 nm contribute �95% of the light scattering
signal in the GSNO-treated sample. On the other hand, the
STIM1 23–213 C49S/C56S double mutant protein did not
undergo deoligomerization after being exchanged into the
GSNO (Fig. 3F). Taken together, the DLS observations demon-
strate that GSNO deoligomerizes luminal STIM1 in a Cys49-
and Cys56-dependent manner, consistent with the suppressed
hydrophobicity and the enhanced stability observed for the
S-nitrosylated and Ca2�-depleted protein.

The nonconserved STIM1 24 –57 region interacts with EFSAM
Trp121 and Lys122

Although the atomic-resolution structure of the STIM1
EFSAM core has been solved by solution NMR spectroscopy
(24), the structure of the full STIM1 23–213 luminal domain
remains unresolved. Thus, to probe where the Cys49 and Cys56

residues may interact with EFSAM, we applied a solution NMR
spectroscopy approach. Titration of unlabeled STIM1 24 –57
peptide both in the presence and absence of GSNO into a solu-
tion of uniformly 15N-labeled STIM1 EFSAM did not affect the
1H-15N HSQC EFSAM spectrum, indicating that interactions
(if any) between these regions are relatively weak. To further
probe the possibility of weak/transient interactions, we tagged
the STIM1 24 –57 peptide with a nitroxide spin label via the
Cys49 and Cys56 thiols. Interactions between the nitroxide spin-
labeled Cys49 and/or Cys56 residues and the 15N-labeled STIM1
EFSAM would cause paramagnetic relaxation enhancement
(PRE) of atom resonances within �10 Å of the tags (36), causing
peak broadening and reduced peak intensity. Because the
nitroxide tagging is mediated by an 1-oxyl-2,2,5,5-tetramethyl-
�3-pyrroline-3-methyl methanethiosulfonate (MTSL) func-
tional group, reducing agents such as DTT can remove the
covalent disulfide linkage and provide a baseline spectrum with
no PRE effects for comparison. First, we checked the efficiency
of our PRE protocol by nitroxide tagging the Cys residues in
uniformly 15N-labeled STIM1 24 –57 and acquiring a 1H-15N
HSQC spectrum. Most of the cross-peaks in the 1H-15N corre-
lation spectrum of the peptide were severely broadened, con-
sistent with efficient labeling of the peptide; moreover, addition

Figure 3. Surface hydrophobicity levels and oligomerization assessment
of STIM1 23–213. A, relative change in ANS fluorescence intensity of WT
STIM1 23–213 in DTT buffer. B, relative change in ANS fluorescence intensity
of WT STIM1 23–213 in GSNO buffer. C, relative change in ANS fluorescence
intensity of C49S/C56S STIM1 23–213 in DTT buffer. D, relative change in ANS
fluorescence intensity of C49S/C56S STIM1 23–213 in GSNO buffer. In A–D,
ANS fluorescence emission spectra are shown for buffer (black), buffer plus
Ca2� (yellow), protein (blue), and protein plus Ca2� (red) samples. E, regular-
ization deconvolution of the distribution of hydrodynamic radii from the
autocorrelation functions of Ca2�-depleted WT STIM1 23–213 in the presence
of DTT (blue traces) and GSNO (red traces). F, regularization deconvolution of
the distribution of hydrodynamic radii from the autocorrelation functions of
Ca2�-depleted C49S/C56S STIM1 23–213 in the presence of DTT (blue traces)
and GSNO (red traces). The data in A–F are means � S.E. of n � 3 separate
experiments.

S-Nitrosylation inhibits STIM1 via charge sensing by EFSAM
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of 15 mM DTT to the sample restored the intensity of all the
cross-peaks, confirming our modification and reversal proce-
dure (Fig. S2).

Next, we mixed unlabeled, but nitroxide-tagged STIM1
24 –57 with uniformly 15N-labeled EFSAM and acquired a
1H-15N HSQC spectrum in the absence and presence of 15 mM

DTT. The vast majority of EFSAM cross-peaks were unaffected
by the 24 –57 peptide (Fig. 4A); however, the side chain Trp121

indole N(H) and backbone amide Lys122 N(H) cross-peaks were
reproducibly broadened compared with the same cross-peaks
in spectra obtained after the addition of 15 mM DTT (Fig. 4, B
and C). Consistently, the average intensity ratio (i.e. absence/
presence of DTT) of all N(H) cross-peaks for the protein mix-
ture was close to 1, whereas the broadening effect caused by the
nitroxide spin labels resulted in a significantly lower intensity
ratio for the EFSAM Trp121 and Lys122 signals (Fig. 4D).

Mapping these residue positions on the three-dimensional
solution structure of the Ca2�-loaded STIM1 EFSAM core
shows that these two residues are located in the EF-hand
domain, spatially near the N-terminal end of EFSAM where the
unresolved STIM1 24 –57 region would hypothetically extend
(Fig. 4E). Plotting the electrostatic potential on the surface of
EFSAM reveals that these residues contribute to the formation
of a distinctly electropositive surface patch on EFSAM (Fig. 4F),

which is complementary to the electronegative potential of
S-nitrosylated Cys49 and Cys56 (37). Taken together, our solu-
tion NMR data suggest that the Cys49 and/or Cys56 of the
STIM1 24 –57 region complementarily interact(s) with the
EFSAM core at a distinctly electropositive patch on the surface
of the EF-hand domain.

W121E/K122E-mediated electrostatic surface charge reversal
enhances the stability and supersedes the structural effects of
GSNO on STIM1 23–213

To probe the role of the identified electropositive region in
interceding the structure and stability sensitivity to S-nitrosy-
lation, we generated a W121E/K122E double mutant in the
STIM1 23–213 context. We expected that either (i) this mutant
would inhibit the S-nitrosylation-mediated effects by charge
repulsion or (ii) the mutant would mimic the effect S-nitrosy-
lation by disruption of the electropositive continuity on the
EFSAM surface (Fig. S3). We first assessed the thermodynamic
stability of Ca2�-depleted W121E/K122E STIM1 23–213 in the
presence and absence of GSNO using urea denaturation exper-
iments. Remarkably, the �GH2O of the W121E/K122E pro-
tein was �2.2 kcal mol�1 higher than the WT protein, even
in the absence of the NO donor; moreover, GSNO increased
the �GH2O by �0.4 kcal mol�1, much less than the �1.5 kcal

Figure 4. NMR assessment of interactions between STIM1 24 –57 and EFSAM. A, representative 1H-15N HSQC spectra of STIM1 EFSAM mixed with nitroxide
spin-labeled STIM1 24 –57 before (magenta) and after the addition of 15 mM DTT (blue). Dashed boxes bound regions where cross-peaks underwent a
reproducible intensity broadening. B, zoomed view of the Lys122 amide N(H) cross-peak showing a loss in peak intensity. C, zoomed view of the Trp121 side chain
N(H) cross-peak showing a loss in peak intensity. Residue assignments in B and C are shown beside the respective cross-peak with the Trp121 and Lys122 labels
indicated in red and orange, respectively. D, average intensity ratio of all cross-peaks relative to the Trp121 side chain and Lys122 backbone N(H) ratios. E, ribbon
representation of the Ca2�-loaded STIM1 EFSAM structure. The EF-hand (light green) and SAM domain (dark green) are connected by a short linker region (gray).
The interaction site between the STIM1 24 –57 peptide and the EF-hand domain is localized near the W121N�1 (red spacefill) and Lys122 (orange spacefill)
residues. The Ca2� atom is shown as a yellow sphere. F, electrostatic surface potential of Ca2�-loaded STIM1 EFSAM. The surface potential is shown as a gradient
between �2 and �2 kT/e determined using the APBS and PDB2PQR tools (71, 72). The locations of the Trp121 and Lys122 residues relative to the distinct
electropositive patch are shown. The data in C are means � S.E. of n � 3 separate experiments. The structure images in E and F were rendered in PyMOL (PyMOL
Molecular Graphics System, version 1.7; Schrödinger). *, p 	 0.05; ***, p 	 0.0001.

S-Nitrosylation inhibits STIM1 via charge sensing by EFSAM
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mol�1 observed with the WT protein (Fig. 5, A and B, and
Table S1). Next, we evaluated the ability of GSNO to deoli-
gomerize W121E/K122E STIM1 23–213 by DLS. The distri-
bution of hydrodynamic radii was unaffected by the addition
of GSNO (Fig. 5C), in contrast to the WT protein, which
underwent a distinct shift in the distribution to smaller
hydrodynamic radii in the presence of the NO donor (Fig.
3E). Finally, we investigated how the surface hydrophobicity
of W121E/K122E STIM1 23–213 responded to Ca2� and
GSNO using ANS-binding experiments. In the absence of
GSNO, W121E/K122E STIM1 23–213 enhanced the ANS
fluorescence by �3-fold, indicating considerable surface-ex-
posed hydrophobicity; however, upon addition of excess
Ca2�, the ANS fluorescence remained high, suggesting a
minimal structural change upon Ca2� binding (Fig. 5D). The
presence of the GSNO donor only minimally affected these
ANS spectra, which showed an �3-fold increase in fluores-
cence both with and without excess Ca2� (Fig. 5E). Collec-
tively, these data demonstrate that incorporation of negative
charges into the electropositive EFSAM patch by mutation
thermodynamically stabilizes STIM1 23–213 and desensi-
tizes both oligomerization and changes in surface hydropho-
bic exposure (with and without Ca2�) to GSNO treatment.

S-Nitrosylation of Cys49 and Cys56 or W121E/K122E inhibits
STIM1-mediated SOCE in live cells

Having observed a Cys49- and Cys56-dependent thermody-
namic stabilization of the isolated STIM1 luminal domain in
response to GSNO treatment concomitant with deoligomeri-
zation and suppressed exposed hydrophobicity, we investigated
whether this structure and stability sensitivity is linked to the
regulation of full-length STIM1 function in live mammalian

cells. We used Fura-2 ratiometric Ca2� fluorimetry to probe
SOCE in HEK293 cells stably expressing YFP-Orai1 and over-
expressing monomeric cherry-tagged STIM1 (mChSTIM1).
SOCE was induced in these cells after thapsigargin (TG) block-
ade of the sarco/endoplasmic reticulum Ca2� ATPase pumps
passively depleted the ER Ca2� stores, and 2 mM net CaCl2 was
added back to the extracellular medium. As expected, the cells
transfected with WT mChSTIM1 showed significantly higher
levels of SOCE gauged from the maximal change in the Fura-2
fluorescence ratio following Ca2� addback compared with
empty mCherry vector transfected or untransfected controls;
moreover, overnight incubation of the WT mChSTIM1-ex-
pressing cells with GSNO significantly decreased the maximal
level of Ca2� uptake after the Ca2� addition (Fig. 6, A and B). To
test whether the suppressed SOCE caused by the GSNO was
driven by the STIM1 Cys49 and Cys56 residues of the noncon-
served domain, we expressed the full-length C49S/C56S
mChSTIM1 protein in the HEK293 cells and reassessed SOCE.
Indeed, the maximal level of Ca2� uptake in cells expressing
this double Cys mutant version of mChSTIM1 was similar to
the WT protein in the absence of GSNO and was unaffected by
GSNO incubation (Fig. 6, A and B).

Given that the W121E/K122E STIM1 23–213 luminal
domain protein showed an enhanced thermodynamic stability
and a much lesser stabilization after GSNO treatment com-
pared with WT, we anticipated that cells expressing this
W121E/K122E mutant would exhibit suppressed SOCE even in
the absence of the NO donor. As expected, we found that cells
expressing full-length W121E/K122E STIM1 showed a signifi-
cantly reduced maximal Ca2� uptake compared with the WT
protein. Overnight treatment of the W121E/K122E-expressing

Figure 5. Biophysical characterization of W121E/W122E STIM1 23–213. A, representative urea denaturation curves of Ca2�-depleted W121E/W122E STIM1
23–213. The solid blue and red lines represent the two-state unfolding model fit to the data for the DTT and GSNO-treated protein, respectively. B, �GH2O
comparison of the Ca2�-depleted W121E/W122E STIM1 23–213 in the presence of 1 mM DTT or 1 mM GSNO. C, regularization deconvolution of the distribution
of hydrodynamic radii from the autocorrelation functions of Ca2�-depleted W121E/W122E STIM1 23–213 in the presence of DTT (blue traces) and GSNO (red
traces). D, relative change in ANS fluorescence intensity of W121E/W122E STIM1 23–213 in DTT buffer. E, relative change in ANS fluorescence intensity of
W121E/W122E STIM1 23–213 in GSNO buffer. In D and E, ANS fluorescence emission spectra are shown for buffer (black), buffer plus Ca2� (yellow), protein
(blue), and protein plus Ca2� (red) samples. The data in A–E are means � S.E. of n � 3 separate experiments. **, p 	 0.001.
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cells with GSNO did not affect the level of SOCE any further
(Fig. 6, A and B).

To ensure that GSNO incubation did not alter protein
expression levels or membrane potential of our HEK293 cells
and to confirm that GSNO affects STIM1 activation, we per-
formed Western blotting, bis-(1,3-dibutylbaribituric acid)-
trimethine oxonol (DiBAC4(3)) fluorimetry, and live cell total

internal reflective fluorescence (TIRF) imaging, respectively.
Our Western blots showed no significant differences in mCh-
STIM1 WT or mutant protein expression levels in our HEK293
cells with or without GSNO, consistent with total mChSTIM1
and YFP-Orai1 fluorescence assessments (Fig. S4). Further, the
depolarization-induced DiBAC4(3) fluorescence changes were
not affected by GSNO in these cells (Fig. S5). Consistent with
our Fura-2 data, TIRF imaging of HeLa cells demonstrated a
suppressed ability of WT mChSTIM1 to form TG-induced
puncta when treated with GSNO, whereas the C49S/C56S
mChSTIM1 readily formed TG-induced puncta even in the
presence of GSNO, and the W121E/K122E mChSTIM1 protein
exhibited constitutively inhibited puncta formation (Fig. S6).

Collectively, these live cell experiments show that GSNO
suppresses STIM1-mediated STIM1 activation and SOCE in a
Cys49- and Cys56-dependent manner, consistent with the ther-
modynamic stabilization of the isolated luminal domain caused
by the NO donor; moreover, incorporation of negative charges
into the electropositive EFSAM surface patch, which interacts
with the Cys49 and/or Cys56 residues inhibits SOCE, indepen-
dent of GSNO treatment. We likely did not observe a GSNO-
mediated effect in untransfected and empty mCherry vector-
transfected cells because SOCE was already repressed by the
stable overexpression of YFP-Orai1 (38).

Discussion

We found that incubation of STIM1 23–213 with excess
GSNO thermodynamically stabilizes this domain via a mecha-
nism which involves enhanced folding mediated through inter-
actions between Cys49 and/or Cys56 located in the noncon-
served 24 –57 region and an electropositive surface patch on
EFSAM. The structural change facilitated by this interaction
suppresses both surface-exposed hydrophobicity and oligomer-
ization, which drive STIM1 initiation of SOCE (10, 23, 24). Sev-
eral lines of evidence suggest that S-nitrosylation of Cys49 and
Cys56 is the principal modification in our experiments. First,
numerous studies have demonstrated S-nitrosylation of pro-
teins using an excess NO donor treatment strategy (39 –42).
Second, S-glutathionylation, a possible modification with the
use of GSNO, destabilizes the STIM1 luminal domain and pro-
motes STIM1-mediated activation of SOCE, an effect opposite
to the S-nitrosylation-mediated inhibition of SOCE observed
herein (see below) (27). Third, incubation with weak NO
donors such as S-nitroso-N-acetyl-DL-penicillamine or low
concentrations of sodium nitroprusside does not alter STIM1
23–213 stability. Finally, the C� of both Cys49 and Cys56 are
markedly shifted downfield in NMR spectra, consistent with
modification at the S� atom.

S-Nitrosyl groups can be readily transferred from GSNO to
free thiols in a process termed trans-nitrosylation (43–45).
Trans-glutathionylation is a much slower reaction, commonly
observed after oxidative bursts (46). Indeed, Hawkins et al. (27)
utilized hydrogen peroxide to induce STIM1 S-glutathionyla-
tion. We did not include a similar oxidative burst in our incu-
bation, thereby favoring S-nitrosylation. Nevertheless, S-ni-
trosyl groups can be exchanged for GSH (44, 46). Ultimately,
the preference for each modification is determined by the local
solvent environment, local protein structure, and stability asso-

Figure 6. GSNO sensitivity of SOCE in live HEK293 cells expressing full-
length Orai1 and STIM1. A, representative Fura-2 ratiometric fluorescence
traces reporting on relative changes in cytosolic Ca2� levels. The cells were
initially bathed in Ca2�-free buffer. The relative change in Fura-2 fluorescence
was monitored after 2 �M TG and subsequently 2 mM Ca2� additions to the
external medium. B, maximal relative change in Fura-2 signal after the 2 mM

Ca2� addition indicative of level of SOCE. In A and B, WT STIM1 data are col-
ored blue and red, W121E/K122E STIM1 data are colored green and orange,
and C49S/C56S STIM1 data are colored brown and purple for cells incubated in
the absence and presence of GSNO, respectively. In B, the data are means �
S.E. of n � 3– 4 separate experiments. ***, p 	 0.001; **, p 	 0.01 versus empty
mCherry. C, relative stability scheme of the luminal Ca2� sensing region of
STIM1. The scheme depicts the relative energies of the active and inactive
conformation highlighting the relatively smaller threshold required to inhibit
STIM1 activation upon S-nitrosylation compared with the stabilization which
occurs upon Ca2� binding.
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ciated with the modification. Because S-nitrosylation stabilizes
the STIM1 23–213, whereas S-glutathionylation destabilizes
the domain via reduced Ca2�-binding affinity (10, 27), we now
know that the S-nitrosylated conformation is thermodynami-
cally favored in our system of GSNO incubation.

S-Nitrosylated proteins often affect the structure and func-
tion of downstream binding partners, thereby transducing reg-
ulatory effects relatively distant from the modification site (30,
47, 48). Dysregulated S-nitrosylation or denitrosylation can
result in serious pathological conditions. For instance, the met-
abolic enzyme GSNO reductase can selectively reduce the S-ni-
trosyl group from GSNO or cellular proteins and is tightly reg-
ulated to maintain physiological homeostasis and prevent
nitrosative stress-induced damage (49).

The region of STIM proteins N-terminal to the core EFSAM
domain can greatly influence EFSAM stability and the activa-
tion kinetics of Orai1 channels (25, 26). Although these far
N-terminal regions are highly variable among species, the two
Cys residues (i.e. Cys49 and Cys56 in human STIM1) are con-
served among vertebrates and many lower order eukaryotic
STIM proteins. This evolutionary conservation is evidence for
the important role of these Cys residues in SOCE regulation.
Indeed, it has been shown that oxidative stress can lead to
S-glutathionylation of Cys56; moreover, this reversible modifi-
cation decreases the Ca2� binding to the EF-hand domain and
induces STIM1 oligomerization and constitutive Ca2� entry
(27). Although S-glutathionylation and S-nitrosylation have
competing effects on SOCE (i.e. activating versus inhibiting,
respectively), it is remarkable that the structural mechanism
converges on a common target: the EF-hand domain. In the
case of S-glutathionylation, the EF-hand domain unbinds Ca2�

in a structural mechanism that has yet to be elucidated, whereas
in the case of S-nitrosylation, interactions with the electropos-
itive patch on the EF-hand domain stabilizes EFSAM and inhib-
its activation. Disulfide formation of Cys49 and Cys56 has also
been suggested to effect STIM1 activation, where the ER oxi-
doreductase ERp57 interacts with Cys49 and Cys56 in the ER
lumen and inhibits SOCE (50). Thus, the Cys residues in the
nonconserved luminal region of STIM proteins function as
both oxidative and nitrosative sensors that regulate the func-
tion of STIM proteins dependent on the local environment in
the ER lumen.

Other studies have described both protein stabilizing (51–
55) and destabilizing effects (56 –58) of S-nitrosylation; hence,
the role of this post-translational modification in folding and
stability appears to be protein specific. For example, S-nitrosy-
lation of ubiquitin C-terminal hydrolase L1 at residues Cys90,
Cys152, and Cys220 decreases its structural stability, promotes
aggregation, and catalyzes the oligomerization of �-synuclein
which forms Lewy bodies in Parkinson’s patients (56). On the
other hand, S-nitrosylation of surfactant protein-D promotes
the formation of smaller species in lieu of the dodecamers or
higher order multimers (59). More recently, S-nitrosylation of
the rhodanese domain from the Escherichia coli YgaP protein
at Cys63 was found to enhance the stability of the �4 helix and
concomitantly cause a structural alteration in the active site
(60), congruent with the similar stabilization/structural
changes we observed herein for STIM1. Nevertheless, here we

have quantified the thermodynamic stability changes (i.e.
�GH2O) associated with S-nitrosylation, providing the first
insights, to our knowledge, on how the folded to unfolded equi-
librium of proteins can be regulated by NO.

The ER luminal region of STIM1 becomes activated under
Ca2�-depleted conditions after adopting a destabilized confor-
mation that triggers self-association (10); moreover, this oligo-
merization is the initiation event that drives transmembrane
domain reorientation (61), followed by cytosolic coiled-coil
domain extension (19, 62), higher order homotypic coiled-coil
assembly (18, 22), and the coupling with Orai1 subunits (17, 20,
21) that opens the CRAC channels. We discovered that an elec-
tropositive patch on the EFSAM domain senses the S-nitrosy-
lation and promotes stabilization of the luminal domain,
thereby preventing this series of events. Remarkably, adding
negative charges into the positive patch stabilizes the domain,
independent of GSNO. Intriguingly, although the oligomeriza-
tion of W121E/K122E STIM1 23–213 is insensitive to GSNO
treatment, the distribution of hydrodynamic radii are persis-
tently high rather than low as would be expected by enhanced
stability (63). Thus, the stabilized conformation adopted by the
W121E/K122E protein must be distinct from the Ca2�-loaded
conformation of the WT protein. Consistent with this notion,
Ca2� binding to the W121E/K122E protein does not reduce the
exposed hydrophobicity as observed for the WT protein. We
speculate that the stabilized W121E/K122E conformation rep-
resents an intermediate inactive state between the active and
inactive conformations.

In conclusion, our data reveal that S-nitrosylation-mediated
thermodynamic stabilization of the luminal STIM1 23–213
region by �1.5 kcal mol�1 is sufficient to inhibit SOCE activa-
tion even in the absence of Ca2�; moreover, this stabilization is
associated with a suppression of exposed hydrophobicity,
which leads to deoligomerization of the luminal protein (Fig.
6C). The stabilization is driven by complementary interactions
between electronegative Cys-NO groups and an electropositive
patch on the core EFSAM domain, an effect that can be mim-
icked by mutational introduction of negative charges in the
same region. Given that Ca2�-binding–induced stabilization of
the luminal domain is �4.3 kcal mol�1, the S-nitrosylation-
mediated �1.5 kcal mol�1 increase represents a lower stabili-
zation threshold to SOCE inhibition. Hence, other luminal
domain modifications or even biomolecular interaction events
that more moderately modulate protein stability than Ca2�

binding will have the potential to regulate SOCE.

Materials and methods

Generation and recombinant expression of STIM1 constructs

The luminal region of Homosapiens STIM1 (NCBI accession
NP_003147.2) corresponding to residues 23–213 was cloned
into a pET-28a vector (Novagen) using NheI and XhoI restric-
tion sites and expressed with an N-terminal His6 tag. The H.
sapiens STIM1 residues 24 –57 was subcloned into the pGEX-
4T1 (GE Healthcare) vector using BamHI and EcoRI restriction
sites and expressed as a GSH-S-transferase fusion. A Tyr resi-
due was introduced by site-directed mutagenesis immediately
N-terminal to residue 24 to enhance protein detection via Coo-
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massie staining and facilitate UV at 280 nm protein concentra-
tion measurements. This Tyr mutant and the C49S/C56S and
W121E/K122E mutants were introduced into the respective
vectors using the QuikChange PCR-based protocol (Agilent).

The His6-STIM1 23–213 WT, C49S/C56S, and W121E/
K122E mutant proteins were expressed in BL21(DE3) codon
plus E. coli cells and purified under denaturing conditions as
described in the nickel-nitrilotriacetic acid agarose beads man-
ufacturer protocol (HisPur; Thermo Fisher Scientific). Refold-
ing was performed by overnight dialysis in �65 volumes of 20
mM Tris-HCl, 300 mM NaCl, 1 mM DTT, 5 mM CaCl2, pH 8. The
His6 tags were removed by overnight incubation with �2 units
of bovine thrombin (Calbiochem) per mg of protein. Size-ex-
clusion chromatography through a Superdex 200 10/300 GL
(GE Healthcare) was performed as the final purification step.
The His6-STIM1 EFSAM domain was expressed and purified as
previously described (10, 64). The pGEX-4T1 STIM1 Y-24 –57
was expressed in BL21(DE3) codon plus E. coli cells and puri-
fied according to GSH-S-transferase–Sepharose beads manu-
facturer protocol (Genscript). The STIM1 Y-24 –57 peptide
was liberated from the beads by overnight thrombin digestion
(�5 units/mg of protein) in 20 mM Tris-HCl, 150 mM NaCl, 1
mM DTT, pH 7.5. Size-exclusion chromatography through the
Superdex 200 10/300 GL column was performed as the final
purification step.

The protein concentrations of STIM1 Y-24 –57, STIM
23–213, STIM1 C49S/C56S-23–213, STIM1 W121E/K122E-
23–213, and STIM1-EFSAM were estimated using �280 nm �
0.3296, 1.2418, 1.2436, 0.9909, and 1.6062 (mg ml�1)�1 cm�1

extinction coefficients.

Ca2� depletion and S-nitrosylation of STIM1

Ca2�-depleted STIM1 proteins were prepared by overnight
incubation in 50 mM EDTA followed by 20 
 20 
 20-fold
exchange by ultrafiltration into nominally Ca2�-free buffer.
GSNO was prepared as previously described (65). The concen-
tration of GSNO was estimated using �335 nm � 0.92 mM�1

cm�1 (43). Proteins were exchanged into a buffer containing
high excess NO donor (i.e. 1 mM GSNO) by ultrafiltration using
a 20 
 20 
 20-fold total buffer exchange.

Urea equilibrium denaturation curves

Protein samples diluted to 5 �M were incubated overnight at
25 °C in the presence of 0 –5 M urea. Intrinsic fluorescence mea-
surements were taken for each sample using an excitation
wavelength (�ex) � 280 nm and emission wavelength (�em) �
339 or 337 nm for the Ca2�-loaded and Ca2�-depleted condi-
tions, respectively, on a temperature-equilibrated Cary Eclipse
spectrofluorimeter (Varian/Agilent). Thermodynamic stability
parameters (i.e. Gibbs free energy of unfolding in the absence of
denaturant (�GH2O), denaturant dependence of �G (m value)
and the Cmid) were extracted from the chemical denaturation
curves according to a two-state unfolding model using the lin-
ear extrapolation method (33).

ANS fluorescence

Extrinsic ANS (Sigma) fluorescence was assessed on the Cary
Eclipse spectrofluorimeter using 0.14 mg ml�1 protein and 0.05

mM ANS for each experiment. The extrinsic ANS-induced fluo-
rescence emission spectrum was acquired from 400 to 600 nm
using a �ex � 372 nm at 37 °C.

Ca2� binding affinity

Changes in intrinsic fluorescence at 37 °C as a function of
increasing Ca2� concentration were used to indirectly estimate
Ca2�-binding affinity. Fluorescence emission spectra between
300 and 450 nm were acquired on a Cary Eclipse spectrofluo-
rimeter using 0.1 mg ml�1 protein and �ex � 280 nm. The
equilibrium dissociation constant (Kd) was estimated using a
one site-binding model, which takes into account protein
concentration.

DLS analysis

DLS measurements were made on a DynaPro Nanostar
(Wyatt) at 37 °C. Protein samples at 0.46 mg ml�1 were centri-
fuged at 12,000 
 g for 10 min before a 5-�l aliquot of the
supernatant was loaded into a JC501 microcuvette (Wyatt).
The sample was equilibrated for 5 min before 10 consecutive
acquisitions were recorded with each acquisition averaged for
5 s. The autocorrelation function was deconvoluted with the
regularization algorithm in the accompanying Dynamics soft-
ware (Wyatt) to extract the distribution of hydrodynamic radii
for each sample.

NMR spectroscopy

For nitroxide spin-labeling, the STIM1 Y-24 –57 protein was
exchanged into 20 mM MOPS, 50 mM NaCl, and 0.1 mM tris(2-
carboxyethyl)phosphine1-HCl, pH 8.3. Subsequently, MTSL
was added to the peptide solution at a final concentration of 4
mM, and the sample was incubated in the dark at ambient tem-
perature for 2 h. Finally, the nitroxide spin-labeled peptide was
dialyzed into 20 mM Tris-HCl, 50 mM NaCl, and 5 mM CaCl2,
pH 7.4.

1H-15N HSQC spectra (66, 67) were acquired on a 600 MHz
Inova NMR spectrometer (Varian/Agilent) using a 5,000 Hz 1H
sweep width, 1,700 Hz 15N sweep width, 16 transients, and 64
increments in the 15N dimension for the STIM1 Y-24 –57 pep-
tide and 8,000 Hz 1H sweep width, 1,800 Hz 15N sweep width,
32 transients, and 64 increments in the 15N dimension for
EFSAM. All NMR samples contained 60 �M 4,4-dimethyl-4-
silapentane-1-sulfonic acid and 10% D2O (v/v) for referencing,
shimming, and phasing.

Cell culture

HEK293 cells stably expressing YFP-Orai1 were a generous
gift from Dr. Monica Vig (Washington University, St. Louis,
MO) (68). Cells were cultured in Dulbecco’s modified Eagle’s
medium containing 10% (v/v) fetal bovine serum (Wisent), 100
�g/ml penicillin–streptomycin, and 0.4 mg/ml G418 disulfate
(Thermo Fisher Scientific) and maintained at 37 °C in a 5%
CO2, 95% air humidified incubator. pCMV6 vectors containing
mChSTIM1 (31, 69), and variants were transfected into cells at
�70 – 80% confluency using PolyJetTM transfection reagent
(SignaGen Laboratories) as per the manufacturer’s protocol. 4 h
after transfection, GSNO was added to a final concentration of
250 �M and incubated overnight. HeLa cells were cultured and
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transfected in a similar manner as the HEK cells, in the absence
of G418.

Fura-2 fluorimetry

HEK293 cells were lifted off 10-cm plates by gentle pipetting
and incubated with 3 �M Fura-2-AM (Alfa Aesar) in the dark at
37 °C for 45 min. The cells (� 5 
 106) were subsequently
washed with HEPES-buffered saline solution (HBSS; 140 mM

NaCl, 4.7 mM KCl, 1.13 mM MgCl, 10 mM glucose, and 10 mM

HEPES) and resuspended in 1.2 ml of HBSS buffer. Following
the addition of 0.5 mM EGTA and an incubation period of 3 min
at 22.5 °C, fluorescence using �ex � 340 and 380 nm and �em �
510 nm was measured for 900 s using a Cary Eclipse spectro-
fluorimeter (Varian/Agilent). Approximately 1 �M TG and 2.5
mM CaCl2 were added to the external medium at 100 and 600 s,
respectively. The data were plotted as a normalized F/F0 ratio,
where F is the emission intensity ratio from 340-nm/380-nm
excitation wavelengths, and F0 is the average F of the first 10
data points before the addition of TG.

DiBAC4 fluorimetry

HEK293 cells were lifted off 10-cm plates by gentle pipetting
and incubated with 1 �M DiBAC4(3) (Biotium) in the dark at
37 °C for 30 min. The cells (� 5 
 106) were subsequently
washed with HBSS and resuspended in 1.2 ml of HBSS supple-
mented with 2 mM CaCl2. After a 3-min equilibration period at
22.5 °C, fluorescence at �ex � 490 and �em � 520 nm was mea-
sured using the Cary Eclipse spectrofluorimeter. The data were
plotted as F/F0 after a straight baseline subtraction was applied,
where F is the emission intensity, and F0 is the average intensity
prior to the addition of 2 �M gramicidin.

TIRF imaging

TIRF microscopy was performed on live HeLa cells that were
plated on 35-mm Matsunami glass bottom (#1.5) dishes. Trans-
fected cells were washed with HBSS supplemented with 1.5 mM

CaCl2. Imaging was performed at ambient temperature using a
Leica DMI 6000B inverted microscope equipped with an HCX
Plan-Apo 63
 TIRF objective (NA 1.47), a 561-nm solid-state
laser and C9100 Hamamatsu CCD camera. A 300-s time series
was acquired on cells exhibiting low to moderate levels of
mCherry fluorescence through a DsRed filter cube (excitation:
BP 555/25; emission: BP 620/60) at a TIRF penetration depth of
110 nm. After 30 s of basal acquisition, 2 �M TG and 2 mM

EGTA were added to the dish, and the time series was contin-
ued for an additional 270 s.

Western blotting

HEK293 cells were lysed using radioimmunoprecipitation
assay buffer (10 mM Tris, 1 mM EDTA, 1% (v/v) Triton X-100,
0.1% (w/v) SDS, 0.1% (w/v) SDS, 140 mM NaCl, 1 mM phenyl-
methane sulfonyl fluoride, pH 8). 12-�g aliquots of protein
were separated on a 10% (w/v) SDS-polyacrylamide gel and
transferred to a nitrocellulose membrane (Bio-Rad). Specific
proteins were detected using 1:1,000 rabbit anti-STIM1 (C-ter-
minal) antibody (Sigma) and 1:2,000 rabbit anti-GAPDH anti-
body (Cell Signaling), followed by 1:2,000 goat anti-rabbit IR

fluorescent antibody (IRDye 680LT) (Thermo Fisher). Band
densitometry was performed using ImageJ (v1.51).

Statistical analysis

Statistical analyses were performed using an unpaired t test
when comparing between two independent groups, whereas
one-way analysis of variance followed by Tukey’s post hoc test
was used to compare more than two treatment groups.

Author contributions—J. Z., Q. F., and P. B. S. conceptualization;
J. Z. and P. B. S. formal analysis; J. Z., X. L., and P. B. S. investigation;
J. Z., X. L., and P. B. S. methodology; J. Z. and P. B. S. writing-original
draft; J. Z. and Q. F. writing-review and editing; Q. F. and P. B. S.
resources; Q. F. and P. B. S. supervision; Q. F. and P. B. S. funding
acquisition; Q. F. and P. B. S. project administration; P. B. S. valida-
tion; P. B. S. visualization.

Note Added in Proof—Physiologically, recent work showed that neu-
ronal nitric oxide synthase mediates STIM1 S-nitrosylation in pri-
mary mouse cardiomyocytes (73).
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Supplementary Table 1. Thermodynamic stability parameters for STIM1 23-213 variants with and without GSNO. 
 -GSNOa +GSNOb  

STIM1 23-213 
protein 

GH2O
c 

(kcal mol-1) 
Cmid

d
 (M) 

m-valuee 
(kcal mol-1 M-1)

GH2O
c 

(kcal mol-1)
Cmid

d
 (M) 

m-valuee 
(kcal mol-1 M-1) 

Gf 
(kcal mol-1)

Ca2+-loaded  
WT 5.91 ± 0.03 3.09 ± 0.02 1.91 ± 0.07 7.87 ± 0.15 3.29 ± 0.06 2.39 ± 0.06 +1.96 

Ca2+-depleted  
WT 1.73 ± 0.01 1.33 ± 0.01 1.30 ± 0.04 3.23 ± 0.06 1.76 ± 0.03 1.83 ± 0.06 +1.50 

C49S/C56S 1.75 ± 0.03 1.12 ± 0.02 1.55 ± 0.11 1.45 ± 0.06 1.15 ± 0.05 1.28 ± 0.07 -0.30 
W121E/K122E 3.88 ± 0.02 2.33 ± 0.01 1.67 ± 0.09 4.25 ± 0.06 2.87 ± 0.03 1.54 ± 0.18 +0.37 

aData acquired in the presence of 1 mM DTT (i.e. absence of GSNO). 
bData acquired in the presence of 1 mM GSNO. 
cGibbs free energy of unfolding; data fit to a two-state equilibrium unfolding model; globally fit to n=3 separate denaturation 
curves. 
dMidpoint of chemical denaturation; calculated as GH2O/m. 
eDenaturant dependence of the unfolding; globally fit to n=3 separate denaturation curves. 
fGH2O(+GSNO)-GH2O(-GSNO). 
Errors (±) in GH2O and Cmid are SEM, while errors (±) in m-value are standard errors outputted from the global fits of n=3 
separate denaturation curves for each group. 
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