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Rac1 activation induces tumour necrosis factor-a expression
and cardiac dysfunction in endotoxemia
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Abstract

Induction of tumour necrosis factor-a (TNF-a) expression leads to myocardial depression during sepsis. However, the underlying
molecular mechanisms are not fully understood. The aim of this study was to investigate the role of Rac1 in TNF-« expression and car-
diac dysfunction during endotoxemia and to determine the involvement of phosphoinositide-3 kinase (PI3K) in lipopolysaccharide
(LPS)-induced Rac1 activation. Our results showed that LPS-induced Rac1 activation and TNF-« expression in cultured neonatal mouse
cardiomyocytes. The response was inhibited in Rac1 deficient cardiomyocytes or by a dominant-negative Rac1 (Rac1N17). To deter-
mine whether PI3K regulates Rac1 activation, cardiomyocytes were treated with LY294002, a PI3K selective inhibitor. Treatment with
LY294002 decreased Rac1 activity as well as TNF-« expression stimulated by LPS. Furthermore, inhibition of PI3K and Rac1 activity
decreased LPS-induced superoxide generation which was associated with a significant reduction in ERK1/2 phosphorylation. To inves-
tigate the role of Rac1 in myocardial depression during endotoxemia in vivo, wild-type and cardiomyocyte-specific Rac1 deficient mice
were treated with LPS (2 mg/kg, i.p.). Deficiency in Rac1 significantly decreased myocardial TNF-« expression and improved cardiac
function during endotoxemia. We conclude that PI3K-mediated Rac1 activation is required for induction of TNF-« expression in car-
diomyocytes and cardiac dysfunction during endotoxemia. The effect of Rac1 on TNF-« expression seems to be mediated by increased
NADPH oxidase activity and ERK1/2 phosphorylation.
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Introduction

Sepsis is a major consequence of infectious diseases and one of
the leading causes of death in the intensive care unit [1].
Myocardial dysfunction induced by endotoxins or lipopolysaccha-
rides (LPS) of Gram-negative bacteria is a common complication
of septic shock and renders septic patients at high risk of devel-
oping multi-organ failure, which is associated with high mortality
[2, 3]. The inhibitory effect of LPS on cardiac function is mediated
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through the production of pro-inflammatory cytokines [4].
Tumour necrosis factor-a (TNF-at) is @ major cytokine responsible
for cardiac dysfunction during sepsis [5—11]. However, the molec-
ular mechanisms underlying myocardial TNF-« production during
sepsis are not fully understood.

Rac GTPases are a subfamily of Ras-homologous (Rho)
GTPases and act as molecular switches, cycling between active
guanosine 5'-triphosphate (GTP)-bound and inactive guanosine
5’-diphosphate (GDP)-bound states [12, 13]. The switch is acti-
vated when an upstream signal activates a guanine nucleotide
exchange factor (GEF), which then acts to facilitate the release of
GDP from the Rac GTPase and the subsequent binding of GTP.
Rac activity is terminated by hydrolysis of GTP to GDP, a process
which is accelerated by GTPase-activating proteins (GAPS). Rac is
an intracellular transducer of signalling and can interact with

doi:10.1111/j.1582-4934.2010.01095.x

Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd



specific effectors that regulate diverse cellular functions, such as
cytoskeletal remodelling, microtubule stability, gene transcription
and superoxide (O2) production [12, 13].

There are three different Rac proteins: the ubiquitously
expressed Rac1, the haematopoietic cell-specific Rac2 and Rac3
that is expressed in the brain, liver, lung and pancreas [14].
Previous studies have shown that LPS increases Rac1 activity in
phagocytes; however, the effect of Rac1 on TNF-a expression in
these cells remains controversial [15-17]. Rac1 is the predomi-
nant Rac proteins in cardiomyocytes [18, 19]. Furthermore, Rac1
is activated during LPS stimulation and contributes to myocardial
TNF-o expression [20]. However, regulation of Rac1 activation
during LPS stimulation is not fully understood. Phosphoinositide-
3 kinases (PI3K) are a family of evolutionary conserved signalling
molecules that mediate many cellular responses. The production
of phosphatidylinositol (3,4,5)-triphosphate (PtdIns(3,4,5)P3)
from PI3K activates Rac via a Ptdins(3,4,5)Ps-sensitive GEF.
However, Rac can also be activated by PI3K-independent mecha-
nisms [21]. Whether Rac activation in cardiomyocytes during LPS
stimulation is mediated by PI3K remains to be determined.

NADPH oxidase is an enzyme system that catalyses the
NADPH-dependent reduction of oxygen to O2  and consists of
multi-subunits including Nox2 (gp91P"®), p22P"%% pagPhox,
p47°"% n67°" and Rac. It has been shown that NADPH oxidase
is a major source of Q2 in cardiomyocytes under pathophysio-
logical conditions and activation of Rac is essential for NADPH
oxidase activation [22]. We have demonstrated that Nox2-contain-
ing NADPH oxidase plays a pivotal role in LPS-induced cardiac
TNF-« production [23]. However, the role of Rac1 in cardiac dys-
function during sepsis remains unknown.

In the present study, we hypothesized that Rac1 was necessary
for LPS-induced TNF-o expression and myocardial dysfunction
via NADPH oxidase activation. To test this hypothesis, a cardiac-
specific Rac1-deficient mouse was generated. Our results demon-
strated that LPS-induced Rac1 activation in cardiomyocytes is
PI3K dependent. Rac1 deficiency blocked cardiomyocyte TNF-«
expression and decreased LPS-induced Q2  generation.
Furthermore, cardiac-specific deficiency of Rac1 improved
myocardial function in endotoxemia.

Materials and methods

Animals and preparation of neonatal
mouse cardiomyocytes

The investigation conforms with the Guide for the Care and Use of
Laboratory Animals published by the US National Institute of Health (NIH
Publication #85-23, revised 1996) and experimental protocols were
approved by Animal Use Subcommittee at the University of Western
Ontario. C57BL/6 wild-type (WT) and Rac1 floxed (Rac1”) mice [24] were
purchased from the Jackson Laboratory (Bar Harbor, ME, USA). In Rac1”"
mice, LoxP sites were inserted at both sides of exon 1 of the Rac1 gene.
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Cre transgenic mice (CreTG”) with overexpression of Cre recombinase
under the control of a-myosin heavy-chain promoter were provided by Dr.
E. Dale Abel (University of Utah, UT, USA). This Cre recombinase can
excise the region between the loxP sites and is specifically expressed in
cardiomyocytes because is it under the control of the a-myosin heavy-
chain promoter. The generation of cardiomyocyte-specific Rac1 knockout
mice (Rac1'/') was achieved by breeding Rac1™ mice with Cre"®" mice as
we have recently described [25]. Neonatal cardiomyocytes were prepared
and cultured according to methods we have previously described [26].
Cells were treated with LPS (1 pg/ml; Sigma-Aldrich, Oakville, Ontario,
Canada), apocynin (400 wM; Sigma-Aldrich), LY294002 (10 wM; Sigma-
Aldrich) and U0126 (10 M; Sigma-Aldrich) or infected with adenoviruses.

Adenoviral infection of neonatal cardiomyocytes

Cardiomyocytes were infected with adenoviruses carrying a dominant-
negative form of Rac1 (Ad-Rac1N17, Vector Biolabs, Philadelphia, PA,
USA), Cre recombinase (Ad-Cre, Vector Biolabs) or green fluorescence
protein (Ad-GFP, a gift from Dr. J. Lipp, Medical University of Vienna,
Austria) as a control, at a multiplicity of infection of 10 plaque forming
units/cell. Adenovirus-mediated gene transfer was implemented as previ-
ously described [5]. All experiments were performed after 24 hrs of aden-
oviral infection.

Rac1 activity assay

Rac1 activity was measured using the EZ-Detect Rac1 activation kit
(Pierce, Rockford, IL, USA) according to the manufacturer’s protocol.
Briefly, cell or tissue lysates (1 mg protein) were incubated with 20 g of
glutathione S-transferase (GST)-human Pak1-p21 binding domain at 4°C
for 1 hr. The beads were washed three times to remove the unbound mate-
rial and were then boiled in 2 SDS sample buffer for 5 min. to elute Rac1-
GTP. Rac1-GTP and total Rac1 protein levels were detected by Western blot
analysis using an anti-Rac1 antibody included in the kit.

PI3K activity assay

PI3K activity in cultured cardiomyocytes or myocardial tissue lysates was
determined using a competitive ELISA kit (Echelon Biosciences, Salt Lake
City, UT, USA) according to the manufacture’s protocol with modifications
[27]. Briefly, cell or tissue lysates (25 g protein) were incubated with
phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] substrate (100 pmol)
in 100 wl kinase reaction buffer. The reaction products were incubated with
a PI(3,4,5)P3 detector protein, and then added to the PI(3,4,5)P3-coated
microplate for competitive binding. A peroxidase-linked secondary detec-
tion reagent and colorimetric detection at 450 nm was used to detect
PI1(3,4,5)P3 detector protein binding to the plate.

Measurement of TNF-« mRNA

Total RNA was extracted from cardiomyocytes using the Trizol Reagent
(Invitrogen, Burlington, ON, Canada) as per manufacturer’s instructions.
TNF-oe mRNA levels were determined by real-time RT-PCR using the same
primer as in our previous report [5].
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Measurement of TNF-« protein

TNF-o protein levels were measured using a mouse TNF-a ELISA kit
(eBioscience, San Diego, CA, USA), according to the manufacturer’s
instructions. The measurements were standardized with cell numbers or
expressed as TNF-a levels to total proteins.

Western blot analysis

Thirty micrograms of protein lysates were subjected to separation on a
10% SDS-PAGE gel, followed by electrotransfer to nitrocellulose mem-
branes. Blots were probed with specific antibodies against ERK1/2 and
phospho-ERK1/2, p38 and phospho-p38 (Cell Signaling Technology,
Danvers, MA, USA), respectively, as previously reported [5]. Signals were
detected by the chemiluminescence detection method and quantified by
densitometry.

Lucigenin assay

NADPH-dependent superoxide (O2 ) generation was measured in cell
lysates by lucigenin-enhanced chemiluminescence (40 g of protein, 100
wM B-NADH, 5 pM lucigenin; Sigma-Aldrich). The chemiluminescence
was detected by a mutilabel counter (SpectraMax M5; Molecular Devices,
Sunnyvale, CA, USA). Replicates were incubated in the presence of the
flavoprotein inhibitor (diphenyleneiodonium, 10 wM) to ensure 02~ was
generated from NADPH oxidase, as previously described [23]. The light
signal was monitored for 1.5 sec. and counts per second were presented
as NADPH oxidase activity that was diphenyleneiodonium inhibitable.

Isolated mouse heart preparations

Adult Rac1” and Rac1™~ (male, 3 months old) mice were treated with
LPS (2mg/kg, i.p.) or saline. After 2 hrs, mouse hearts were isolated and
perfused in a Langendorff-system with Krebs-Henseleit buffer at
3 ml/min. constant flow. The perfusion buffer was kept at 37°C and
consistently bubbled with a mixture of 95% 02 and 5% CO2. Myocardial
function was assessed as previously described with modifications [23].
Briefly, a 6-0 silk suture was passed through the apex of the left ventricle
and threaded through a light-weight rigid coupling rod, which was
connected to a force-displacement transducer (FT03) to record tension
and heart rate. The heart work was calculated by multiplying the force (g)
by the heart rate (bpm). Maximal and minimal first derivatives of force
(+dF/dtmax and —dF/dtmin) Which represent the rate of contraction and
relaxation, respectively, were analysed by PowerLab Chart program
(AD Instruments, Colorado Springs, CO, USA).

Statistical analysis

Results are presented as mean = S.E.M. from at least three independent
experiments. Differences between two groups were analysed by a standard
Student t-test. For multigroup comparisons, one or two-way ANOVA fol-
lowed by Student-Newman—Keuls or Bonferroni post-test was performed.
P < 0.05 was considered statistically significant.
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Results

Myocardial Rac1 activation by LPS

To examine the effect of LPS on Rac1 activity, neonatal cardiomy-
ocytes isolated from C57BL/6 mice were treated with LPS
(1 wg/ml) for 5, 15, 30 and 60 min. As shown in Figure 1A, Rac1
activity in these cells peaked at 15 min. and declined to about con-
trol levels by 60 min. after LPS stimulation. To verify the in vitro
results, Rac1” mice were treated with LPS (2 mg/kg, i.p.) or saline
for 30 min. and myocardial Rac1 activity was measured. In
response to LPS, myocardial Rac1 activity was significantly
increased (P < 0.05, Fig. 1B). These data show that LPS activates
Rac1 in cardiomyocytes in vitro and in the myocardium in vivo.

Rac1 activation and cardiomyocyte TNF-«
expression during LPS stimulation

To elucidate the role of Rac1 in LPS-induced TNF-« expression,
neonatal cardiomyocytes isolated from WT mice were infected
with an adenovirus carrying a dominant-negative form of the Rac1
gene (Ad-Rac1N17), which selectively inhibits Rac1 activity. As
shown in Figure 2A and B, overexpression of Rac1N17 signifi-
cantly decreased LPS-induced TNF-oo mRNA and protein levels by
60% and 56%, respectively (P < 0.01). This result was further
confirmed using Rac1 deficient cardiomyocytes. Cultured neona-
tal cardiomyocytes from Rac1” mice were infected with Ad-Cre.
Expression of Cre recombinase in Rac1” cells decreased Rac1
protein levels by 70% (Fig. 2C). LPS-induced TNF-o mRNA
and protein expression were reduced by 67% and 41% in
Ad-Cre infected Rac1" cells, respectively (P < 0.05, Fig. 2D and E).
These data show that LPS-induced TNF-o expression requires
Rac1 activity.

Involvement of PI3K in Rac1 activation in
cardiomyocytes during LPS stimulation

To investigate the involvement of PI3K in Rac1 activation in
cardiomyocytes during LPS stimulation, PI3K activity was deter-
mined. In response to LPS (1 wg/ml), PI3K activity was significantly
increased in cultured neonatal cardiomyocytes (P < 0.05,
Fig. 3A). In vivo treatment of LPS (2 mg/kg, i.p.) also activated
PI3K in the myocardium in the adult mice (P < 0.05, Fig. 3B). To
further study the contribution of PI3K in LPS-induced Rac1 acti-
vation, cardiomyocytes were treated with LY294002, a selective
inhibitor of PI3K. Our data showed that LY294002 decreased LPS-
induced Rac1-GTP by 41% in cardiomyocytes (Fig. 3C). Similarly,
LPS-stimulated Rac1-GTP levels in the myocardium were also
blocked by 71% after LY294002 treatment (Fig. 3D). In addition,
LY294002 significantly decreased LPS-induced TNF-ae mRNA and
protein levels (P < 0.05, Fig. 3E and F). These results indicate that

111

Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd



A Contral 5 15 30 60 (min)

Racl-GTP |~ #hielh s G g &
Total Hac‘] — P ——— — —
0.4+ i
& o3 L -
B - 7
‘E‘. 0.24 N /
g \ /
E 0.14 \ %
WL INE 7
Control 5 15 30 60 (min)
LPS (1 ug/ml)
B
Control LPS
1.29

Rac‘:GTPL Total Rac1
_|

7

/ /) *

LPS

Fig. 1 Effects of LPS on Rac1 activity in neonatal cardiomyocytes and in
the adult myocardium. (A) Cardiomyocytes were isolated from WT mice,
cultured for 48 hrs, and then treated with vehicle or LPS (1 p.g/ml) for 5,
15, 30 and 60 min. Rac1 activity was measured using the EZ-Detect Rac1
activation kit. (B) Adult male Rac1”" mice were treated with LPS (2 mg/kg,
i.p.) for 30 min. Rac1 activity in the left ventricular myocardium was
measured as described above. Data are means = S.E.M. from three to four
mice or independent experiments. P < 0.05 versus control.

Control

Rac1 activation in cardiomyocytes is mediated by PI3K during
LPS stimulation.

Role of PI3K and Rac1 in NADPH oxidase
activation during LPS stimulation

Our lab has recently demonstrated that Nox2-containing NADPH
oxidase contributes to LPS-induced TNF-o expression in
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cardiomyocytes [23]. Consistent with this notion, the present
study demonstrated that LPS increased NADPH oxidase-mediated
02 generation (P < 0.05, Fig. 4A), which was blocked by apoc-
ynin, a selective NADPH oxidase inhibitor. Moreover, apocynin,
significantly reduced TNF-ae mRNA levels by 46% and protein lev-
els by 43% in response to LPS (P < 0.01, Fig. 4D and E). To detect
if PI3K activation mediates LPS-induced NADPH oxidase activity,
cardiomyocytes were treated with LY294002. Figure 4A showed
that 02 production stimulated by LPS was significantly blocked
by LY294002. To determine whether Rac1 is involved in regulating
NADPH oxidase activity, cardiomyocytes were treated with Ad-
Rac1N17 to specifically block Rac1 activation. Our data showed
that LPS-induced 02 generation in these cells was significantly
inhibited by Ad-Rac1N17 (P < 0.05, Fig. 4B). Similarly, 02" pro-
duction was also significantly reduced in Rac1 deficient cardiomy-
ocytes (P < 0.05, Fig. 4C). These results suggest that PI3K and
Rac1 are critical for NADPH oxidase activation in cardiomyocytes
during LPS stimulation.

Role of PI3K and Rac1 in ERK1/2 and p38
activation during LPS stimulation

We have previously shown that activation of ERK1/2 and p38
MAPK was essential for NADPH oxidase signalling and LPS-
induced TNF-« expression in cardiomyocytes [23]. The effects of
LPS on ERK1/2 activation were also determined in the present
study. As shown in Figure 5A, LPS rapidly increased phosphoryla-
tion of ERK1/2 which peaked at 30 min. and returned to control
levels after 2 hrs. LPS-induced ERK1/2 phosphorylation was com-
pletely blocked by a PI3K inhibitor, LY294002 (Fig. 5B), suggest-
ing that LPS regulated ERK1/2 activity via PI3K. To examine
whether Rac1 activity leads to ERK1/2 phosphorylation, ERK1/2
activation was measured in Ad-Rac1N17 infected cardiomyocytes.
Overexpression of Rac1N17 significantly decreased LPS-induced
phosphorylation of ERK1/2 compared with Ad-GFP infected group
(Fig. 5C). Furthermore, U0126, a selective ERK1/2 inhibitor,
decreased LPS-stimulated TNF-o mRNA and protein levels by
46% and 69%, respectively (Fig. 5D and E). Conversely, inhibition
of Rac1 activation by Ad-Rac1N17 had no effect on p38 phospho-
rylation induced by LPS (Fig. 6). Taken together, these results sug-
gest that the effects of PI3K and Rac1 on cardiomyocytes are
mediated by ERK1/2 but not by p38 MAPK signalling.

Role of Rac1 in myocardial dysfunction
during endotoxemia

To study the role of Rac1 in myocardial depression during endo-
toxemia in vivo, we generated cardiac-specific Rac1 knockout
mice using Cre-loxP recombination as described in the methods.
Our data showed that the Rac1 protein was selectively knocked
down in the heart but not in the skeletal muscle and lungs in
Rac1™" mice (Fig. 7A). Rac1™" and Rac1”" mice were treated with
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Fig. 2 Rac1 enhances LPS-induced TNF-« expression in neonatal
cardiomyocytes. WT cardiomyocytes were infected with Ad-GFP or
Ad-Rac1N17 for 24 hrs. Cardiomyocytes were treated with LPS
(1 pg/ml) for 3 or 5 hrs. TNF-a mRNA (A) and TNF-« protein in
culture medium (B) were measured by real-time RT-PCR and
ELISA, respectively. Neonatal cardiomyocytes from Rac1” mice
were infected with Ad-GFP and Ad-Cre for 24 hrs. Rac1 protein was
measured by Western blot analysis (C). Rac1” cells, infected with
Ad-GFP or Ad-Cre, were treated with LPS for 3 or 5 hrs. TNF-a
mRNA (D) and TNF-« protein in culture medium (E) were
measured as described above. Data are means * S.E.M. from
three to seven independent experiments. P < 0.01 versus
Ad-GFP; TP < 0.05, TP < 0.01 versus Ad-GFP+LPS.

heart rate and heart work were significantly reduced in both
Rac1”" and Rac1™ mice after endotoxemia (P < 0.05, Fig. 8).
However, compared with Rac1" mice, heart work and rate of con-
traction (+dF/dtmax) were significantly increased in Rac1™™ mice
(P < 0.05, Fig. 8).
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Discussion

The present study demonstrated for the first time that Rac1-medi-
ated TNF-a expression following LPS stimulation occurs down-
stream of PI3K signalling in cardiomyocytes. Rac1 activation
increased O2  generation, and ERK1/2 MAPK phosphorylation
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(400 M) and LY294002 (10 wM). 02~ production was measured by
the lucigenin assay. (B) Effects of Ad-Rac1N17 on 02 production.
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were treated with LPS (1 wg/ml) in the presence or absence of
400 pM apocynin for 3 and 5 hrs. TNF-a mRNA (D) and TNF-«
protein in culture medium (E) were measured by real-time PCR analysis
and ELISA, respectively. Dgta are means = S.E.M. from three to five
independent experiments. P < 0.05, P < 0.01 versus control and
Ad-GFP; TP < 0.05, TP < 0.01 versus LPS and Ad-GFP+LPS.

leading to increased TNF-« expression in cardiomyocytes. More
importantly, our study provided evidence that cardiac-specific
Rac1 deficiency improved cardiac function during endotoxemia.
PI3K-mediated activation of Rac1 represents a novel signalling
pathway by which LPS induces cardiomyocyte TNF-« expression
and cardiac dysfunction (Fig. 9).

1115

Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd



A LPS B
30min 1h _2h

Contral LPS LPS+LY

P-ERK1/2 —— N —

P-ERK1/2 |
—
Total ERK1/2 s = =
3 + 1.2 ’
o o
< 1 T 1.0 i
ﬁ 2 -R g 0.3+ 1
. NE % 1,
INEO®m i
x
& \ % £ o]
* W % o
0 T ¥ et T e 0.0
Control 15 min 30min  1h 2h Control LPS LPS+LY
Cc LPS D
Ad-GFP Ad-GFP Ad-RaclIN17 N
0.1001
'é’ 0.075- -
£ 0.0504
o 1.2 * !'5
= u
g 10 B TR Z 0025
— 0.8 - |__=l
5 agd —= \S 0.000 T T T &
E : \ Control  UD126 LPS LPS+UD126
g 0.4
G 024
. 0.0 T S — §- Fig. 5 Effects of PI3K and Rac1 on LPS-induced ERK1/2 phos-
Ad-GFP Ad-GFP  Ad-RaciN17

phorylation in neonatal cardiomyocytes. (A) WT cardiomyocytes

LPS were treated with vehicle or LPS (1 pg/ml) for 15 min., 30 min.,

E 1and 2 hrs. ERK1/2 phosphorylation in these cells was measured

by Western blot analysis. (B) WT cardiomyocytes were treated

3501 n with LPS (1 pg/ml) for 30 min. with or without LY294002.

ERK1/2 phosphorylation in these cells was measured. (C)

Neonatal cardiomyocytes were infected with Ad-GFP or Ad-

Rac1N17 for 24 hrs. Cardiomyocytes were treated with LPS

(1 pg/ml) for 30 min. ERK1/2 phosphorylation was measured as

described above. (D) and (E) Cardiomyocytes were treated with

LPS with or without the ERK1/2 inhibitor U0126 (10 wM) for 3

140+ Tt and 5 hrs. TNF-a mRNA (D) and protein in culture medium (E)

1 were measured by real-time RT-PCR and ELISA, respectively.

\\: Data are means = S.E.M. from three to five independent experi-

k ments. P < 0.05, P < 0.01 versus control; TP < 0.05, TP <
T T —— Ly 0.01 versus Ad-GFP+LPS and LPS.

Control  U0126 LPS LPS+U0126

2804

2104

=)
o
1

TNF-g. protein (pg/5x10° cells)

1116 © 2011 The Authors
Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd



A LPS
c 0.5 1 2 4 (h)
P-p38
Total-p38
2.0+ :I:
g T B0
B N /
WL INE 7
Contral 05 1 2 4 (h)
B LPS

1.5 x :_
@ 121 = N
s 09 — \
3 \
g 067 \
e \
L] L] &I
Ad-GFP Ad-GFP  Ad-Racii17
LPS

Fig. 6 Effect of Rac inhibition on LPS-induced p38 phosphorylation in neona-
tal cardiomyocytes. Phosphorylation of p38 was measured by Western blot
analysis. (A) WT cardiomyocytes were treated with vehicle or LPS (1 wg/ml)
for 0.5, 1, 2 and 4 hrs. (B) Cardiomyocytes were infected with Ad-GFP or the
dominant-negative Rac, Ad-Rac1N17 for 24 hrs at which point the cells were
treated with LPS for 2 hrs Data are means = S.E.M. from four to five inde-
pendent experiments. ‘P<o. 05, "P < 0.01 versus control.

Rho GTPases are a large family of proteins that include the Rac
proteins (Rac1, 2 and 3) as well as RhoA and Cdc42. The role of
Rho GTPases on TNF-a production during LPS stimulation has

© 2011 The Authors
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Fig. 7 TNF-« expression in Rac1™ and Rac1™ adult mouse myocardium
during endotoxemia. (A) Rac1 protein expression in heart, skeletal muscle
and lungs in Rac1" and Rac1™ mice as determined by Western blot analy-
sis. TNF-o mRNA (B) and protein (C) levels in Rac1”" and Rac1™" heart
tissues were measured after 2 and 4 hrs of LPS treatment (2 mg/kg, i.p.).
Data are means + S.E.M., n = 3 to 10 per group. **P < 0.01 versus sham
Rac1” TP < 0.01 versus LPS Rac1™.

been studied, but the results differ depending on cell types and
experimental conditions [15-17, 28]. For example, inhibition of
Rho GTPase including Rac, RhoA and Cdc42 increased LPS-stim-
ulated TNF-a production in macrophages [17]. In resting neu-
trophils, RhoA suppresses TNF-« production by inhibiting NF-xB
activity [28]. Upon LPS stimulation, RhoA is activated and
increases TNF-a expression, suggesting a dual role of RhoA in
TNF-a production in human neutrophils [28]. Additionally, studies
have shown that Rac1 activation promoted LPS-induced TNF-a
expression in macrophages and Kupffer cells [15, 16].
Furthermore, Rac1 mediates myocardial TNF-« expression during
LPS stimulation [20]. However, the role of Rac1 in cardiac dys-
function during endotoxemia remains unknown. In the present
study, we demonstrated that Rac1 is rapidly and transiently acti-
vated by LPS in cultured neonatal cardiomyocytes and in the adult
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myocardium. Rac1 inhibition or deficiency blocked LPS-induced
TNF-a production. Furthermore, myocardial TNF-o expression
was decreased and cardiac function was significantly improved in
cardiac-specific Rac1™~ mice during endotoxemia. Thus, both in
vitro and in vivo evidence from our study demonstrated that LPS
activates Rac1 and promotes cardiomyocyte TNF-a expression
leading to cardiac dysfunction.

Rac GTPases are regulated by GEFs that promote the exchange
of GDP for GTP, and GAPs that accelerate the hydrolysis of GTP.
Available evidence suggests that Rac activation depends mainly on
the activation of GEFs [21]. In this regard, Rac-activating GEFs
such as Vav, Sos, PAK-interacting exchange factor (PIX), Switch-
associated protein (SWAP)-70 and P-Rex, can be activated
directly by PtdIns(3,4,5)P3, a lipid product of PI3K [21]. In the
present study, PI3K activity, as determined by the production of
PtdIns(3,4,5)Ps, was significantly increased in cultured cardiomy-
ocytes in vitro and in the myocardium in vivo during LPS stimula-
tion. Inhibition of PI3K activity by a selective inhibitor, LY294006,
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significantly decreased Rac1-GTP levels and resulted in a con-
comitant decrease in TNF-« expression stimulated by LPS. These
results indicate that PI3K is required for Rac1 activation in car-
diomyocytes during LPS stimulation.

Activated Rac1 interacts with specific effectors that regulate
diverse physiological functions. One of these effectors is p67°";
a subunit of NADPH oxidase [29]. A critical step for NADPH oxi-
dase assembly and activation is the hetero-dimerization of Nox2
with p67P"% [30]. Interestingly, the interaction between p67°"™
and Rac1 results in increased affinity of p67°"™ for Nox2 [31]. In
addition, recent studies involving p67°"®-Rac1 chimeras have
reported that Rac1 induced an ‘activating’ conformational change
in p67°"% [32, 33]. Thus, Rac proteins are required for NADPH
oxidase activation and superoxide production. NADPH oxidase is
an important source of reactive oxygen species in the heart and
activation of NADPH oxidase has been shown to contribute to the
pathogenesis of cardiovascular diseases including: cardiac hyper-
trophy [34], hypertension [35], atherosclerosis [36] and heart

© 2011 The Authors
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Fig. 9 Schematic Rac1 signalling path-
way leading to cardiomyocyte TNF-a
expression and cardiac dysfunction dur-
ing LPS stimulation. LPS activates Rac1
via  TLR4/PI3K/PtdIns(3,4,5)P3/GEF
signalling. Activation of Rac1 activates
NADPH oxidase leading to production of

Ptdins(3,4,5)P,
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failure after myocardial infarction [37, 38]. We have recently
demonstrated that NADPH oxidase is activated in cardiomyocytes
which results in myocardial TNF-a expression and cardiac dys-
function during endotoxemia [23]. In agreement with these data,
the present study demonstrated that LPS increases O2  genera-
tion. Inhibition of NADPH oxidase activity significantly decreased
LPS-induced TNF-« expression in cardiomyocytes. Furthermore,
we showed that inhibition of PI3K activity decreased LPS-induced
02" production. Similarly, deficiency in Rac1 or overexpression of
dominant-negative Rac1 significantly suppressed 02~ generation
and TNF-a expression in response to LPS stimulation. These
results suggest that PI3K-mediated Rac1 activity promotes neona-
tal cardiomyocyte TNF-« expression induced by LPS via activation
of NADPH oxidase.

MAPKs (p38, ERK1/2 and JNKs) are key signalling molecules
involved in the regulation of many biological processes including
inflammatory responses and the expression of pro-inflammatory
cytokines. Indeed, activation of ERK1/2 and p38 MAPK regulates
the expression of TNF-« in phagocytes during sepsis [15, 28, 39].
We have recently demonstrated that ERK1/2 and p38 MAPKSs are
downstream of NADPH oxidase signalling in LPS-induced TNF-«
expression [23]. In the present study, we showed that LPS
increased the phosphorylation of ERK1/2 and p38 in cultured
neonatal cardiomyocytes. Inhibition of PI3K and Rac1 activity
blocked LPS-stimulated ERK1/2 phosphorylation but had no effect
on p38 activity. Moreover, inhibition of ERK1/2 activity decreased
LPS-induced TNF-« production. Thus, PI3K-mediated Rac1

© 2011 The Authors
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Cardiac Dysfunction

activity regulates LPS-induced TNF-« expression in cardiomy-
ocytes via ERK1/2 activation.

In summary, the present study provides strong evidence that
Rac1 activation is required for cardiomyocyte TNF-« expression
and cardiac dysfunction during endotoxemia. Activation of Rac1
through PI3K increases NADPH oxidase and ERK1/2 activity, lead-
ing to increased myocardial TNF-« expression during LPS stimu-
lation (Fig. 9). Our study suggests that Rac1 may represent a
novel therapeutic target for TNF-« expression and myocardial dys-
function in sepsis.
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