Curvature of the determinant line bundle for noncommutative tori

Masoud Khalkhali
Western University, Canada

Future directions for noncommutative geometry
Warm up: zeta regularized determinants

Given a sequence

\[0 < \lambda_1 \leq \lambda_2 \leq \cdots \to \infty \]

spec(\Delta)

How one defines

\[\prod_{\lambda_i} = \det \Delta? \]

Define the spectral zeta function:

\[\zeta_{\Delta}(s) = \sum_{1}^{\lambda_i s^i}, \quad \text{Re}(s) \gg 0 \]

Assume:

\[\zeta_{\Delta}(s) \text{ has meromorphic extension to } \mathbb{C} \]

and is regular at 0.

Zeta regularized determinant:

\[\prod_{\lambda_i} = e^{-\zeta'_{\Delta}(0)} = \det \Delta \]
Warm up: zeta regularized determinants

- Given a sequence

\[0 < \lambda_1 \leq \lambda_2 \leq \cdots \to \infty \quad \text{spec}(\Delta) \]

How one defines \(\prod \lambda_i = \det \Delta \)?

Define the spectral zeta function:

\[\zeta_{\Delta}(s) = \sum \lambda_i^{s} \], \(\Re(s) \gg 0 \)

Assume: \(\zeta_{\Delta}(s) \) has meromorphic extension to \(\mathbb{C} \) and is regular at 0.

Zeta regularized determinant:

\[\prod \lambda_i := e^{-\zeta'_{\Delta}(0)} = \det \Delta \]
Warm up: zeta regularized determinants

- Given a sequence

\[0 < \lambda_1 \leq \lambda_2 \leq \cdots \to \infty \quad \text{spec}(\Delta) \]

How one defines \(\prod \lambda_i = \det\Delta \)?

- Define the spectral zeta function:

\[\zeta_\Delta(s) = \sum \frac{1}{\lambda_i^s}, \quad Re(s) \gg 0 \]

Assume: \(\zeta_\Delta(s) \) has meromorphic extension to \(\mathbb{C} \) and is regular at 0.
Warm up: zeta regularized determinants

- Given a sequence
 \[0 < \lambda_1 \leq \lambda_2 \leq \cdots \to \infty \quad \text{spec}(\Delta) \]

 How one defines \(\prod \lambda_i = \det \Delta \)?

- Define the spectral zeta function:
 \[\zeta_{\Delta}(s) = \sum \frac{1}{\lambda_i^s}, \quad \text{Re}(s) \gg 0 \]

 Assume: \(\zeta_{\Delta}(s) \) has meromorphic extension to \(\mathbb{C} \) and is regular at 0.

- Zeta regularized determinant:
 \[\prod \lambda_i := e^{-\zeta_{\Delta}'(0)} = \det \Delta \]
Holomorphic determinants

▶ Example: For Riemann zeta function, $\zeta'(0) = -\log \sqrt{2\pi}$. Hence

$$1 \cdot 2 \cdot 3 \cdots = \sqrt{2\pi}.$$
Example: For Riemann zeta function, $\zeta'(0) = -\log \sqrt{2\pi}$. Hence

$$1 \cdot 2 \cdot 3 \cdots = \sqrt{2\pi}.$$

Usually $\Delta = D^* D$. The determinant map $D \mapsto \sqrt{\det D^* D}$ is not holomorphic. How to define a holomorphic regularized determinant? This is hard.
Holomorphic determinants

Example: For Riemann zeta function, $\zeta'(0) = -\log \sqrt{2\pi}$. Hence

$$1 \cdot 2 \cdot 3 \cdots = \sqrt{2\pi}.$$

Usually $\Delta = D^* D$. The determinant map $D \mapsto \sqrt{\det D^* D}$ is not holomorphic. How to define a holomorphic regularized determinant? This is hard.

Quillen’s approach: based on determinant line bundle and its curvature, aka holomorphic anomaly.
Curved noncommutative tori A_{θ}

$$A_{\theta} = C(\mathbb{T}^2_{\theta}) = \text{universal } C^*\text{-algebra generated by unitaries } U \text{ and } V$$

$$VU = e^{2\pi i \theta} UV.$$
Differential operators $\delta_1, \delta_2 : A_\theta^\infty \to A_\theta^\infty$

\[
\delta_1(U) = U, \quad \delta_1(V) = 0
\]
\[
\delta_2(U) = 0, \quad \delta_2(V) = V
\]

Integration $\varphi_0 : A_\theta \to \mathbb{C}$ on smooth elements:

\[
\varphi_0\left(\sum_{m,n \in \mathbb{Z}} a_{m,n} U^m V^n\right) = a_{0,0}.
\]

Complex structures: Fix $\tau = \tau_1 + i\tau_2$, $\tau_2 > 0$. Dolbeault operators

\[
\partial := \delta_1 + \tau \delta_2, \quad \partial^* := \delta_1 + \bar{\tau} \delta_2.
\]
Conformal perturbation of the metric (Connes-Tretkoff)

- Fix \(h = h^* \in A^\infty_\theta \). Replace the volume form \(\varphi_0 \) by \(\varphi : A_\theta \to \mathbb{C} \),
 \[
 \varphi(a) := \varphi_0(ae^{-h}).
 \]

- It is a twisted trace (KMS state):
 \[
 \varphi(ab) = \varphi(b\Delta(a)),
 \]
 where
 \[
 \Delta(x) = e^{-h}xe^h.
 \]
Perturbed Dolbeault operator

- Hilbert space $\mathcal{H}_\varphi = L^2(A_\theta, \varphi)$, GNS construction.

- Let $\partial \varphi = \delta_1 + \tau \delta_2 : \mathcal{H}_\varphi \to \mathcal{H}^{(1,0)}$,

$$\partial^* : \mathcal{H}^{(1,0)} \to \mathcal{H}_\varphi.$$

and $\Delta = \partial^* \partial \varphi$, perturbed non-flat Laplacian.
Scalar curvature for A_θ

- Gilkey-De Witt-Seeley formulae in spectral geometry motivates the following definition:

The scalar curvature of the curved nc torus (A_θ, τ, h) is the unique element $R \in A_\theta^\infty$ satisfying

$$\text{Trace} \left(a \triangle^{-s} \right)_{s=0} + \text{Trace} \left(aP \right) = \varphi_0 \left(aR \right), \quad \forall a \in A_\theta^\infty,$$

where P is the projection onto the kernel of \triangle.

In practice this is done by finding an asymptotic expansion for the kernel of the operator $e^{-t \triangle}$, using Connes' pseudodifferential calculus for nc tori.
Scalar curvature for A_θ

- Gilkey-De Witt-Seeley formulae in spectral geometry motivates the following definition:

The scalar curvature of the curved nc torus (A_θ, τ, h) is the unique element $R \in A^\infty_\theta$ satisfying

$$\text{Trace} \left(a \triangle^{-s} \right) |_{s=0} + \text{Trace} (aP) = \varphi_0 (aR), \quad \forall a \in A^\infty_\theta,$$

where P is the projection onto the kernel of \triangle.

- In practice this is done by finding an asymptotic expansion for the kernel of the operator $e^{-t\triangle}$, using Connes’ pseudodifferential calculus for nc tori.
Final formula for the scalar curvature (Connes-Moscovici; Fathizadeh-K)

Theorem: The scalar curvature of \((A_\theta, \tau, k)\), up to an overall factor of \(-\frac{\pi}{\tau_2}\), is equal to

\[
R_1(\log \Delta)(\triangle_0(\log k)) + \\
R_2(\log \Delta_{(1)}, \log \Delta_{(2)})\left(\delta_1(\log k)^2 + |\tau|^2 \delta_2(\log k)^2 + \tau_1 \{\delta_1(\log k), \delta_2(\log k)\}\right) + \\
iW(\log \Delta_{(1)}, \log \Delta_{(2)})\left(\tau_2 [\delta_1(\log k), \delta_2(\log k)]\right)
\]
where

\[R_1(x) = -\frac{1}{2} \frac{x \sinh(x/2)}{\sinh^2(x/4)}, \]

\[R_2(s, t) = (1 + \cosh((s + t)/2)) \times \]

\[-t(s + t) \cosh s + s(s + t) \cosh t - (s - t)(s + t + \sinh s + \sinh t - \sinh(s + t)) \]

\[\frac{st(s + t) \sinh(s/2) \sinh(t/2) \sinh^2((s + t)/2)}{st(s + t) \sinh(s/2) \sinh(t/2) \sinh((s + t)/2)} , \]

\[W(s, t) = -\frac{(-s - t + t \cosh s + s \cosh t + \sinh s + \sinh t - \sinh(s + t))}{st \sinh(s/2) \sinh(t/2) \sinh((s + t)/2)} . \]
What remains to be done

- Define new curved NC spaces and extend these spectral computations to them.

- Other curvature related work: Marcolli-Buhyan, Dabrowski-Sitarz, Lesch, Rosenberg, and Arnlind. Recently Fathizadeh has simplified the four dimensional calculations and its Einstein-Hilbert action.
Holomorphic determinants

- **Logdet is not a holomorphic function.** How to define a holomorphic determinant $\det : \mathcal{A} \to \mathbb{C}$.
Holomorphic determinants

- Logdet is not a holomorphic function. How to define a holomorphic determinant \(\text{det} : \mathcal{A} \rightarrow \mathbb{C} \).

- Quillen’s approach: based on determinant line bundle and its curvature, aka holomorphic anomaly.
Holomorphic determinants

- Logdet is not a holomorphic function. How to define a holomorphic determinant $\det : \mathcal{A} \to \mathbb{C}$.

- Quillen’s approach: based on determinant line bundle and its curvature, aka holomorphic anomaly.

- Recall: Space of Fredholm operators:

 $$ F = \text{Fred}(H_0, H_1) = \{ T : H_0 \to H_1; \ T \text{ is Fredholm} \} $$

 $$ K_0(X) = [X, F], \quad \text{classifying space for K-theory} $$
The determinant line bundle

- Let $\lambda = \wedge^{max}$ denote the top exterior power functor.
The determinant line bundle

- Let $\lambda = \wedge^{\text{max}}$ denote the top exterior power functor.

- **Theorem (Quillen)** 1) There is a holomorphic line bundle $\text{DET} \to F$ s.t.

$$ (\text{DET})_T = \lambda(\text{Ker} T)^* \otimes \lambda(\text{Ker} T^*) $$
The determinant line bundle

- Let $\lambda = \wedge^{max}$ denote the top exterior power functor.

Theorem (Quillen) 1) There is a holomorphic line bundle $DET \to F$ s.t.

$$(DET)_T = \lambda(KerT)^* \otimes \lambda(KerT^*)$$

2) There map $\sigma : F_0 \to DET$

$$\sigma(T) = \begin{cases}
1 & T \text{ invertible} \\
0 & \text{otherwise}
\end{cases}$$

is a holomorphic section of DET over F_0.
Families of spectral triples

\[\mathcal{A}_\theta, \quad \mathcal{H}_0 \oplus \mathcal{H}^{0,1}, \quad \begin{pmatrix} 0 & \bar{\partial}^* + \alpha^* \\ \bar{\partial} + \alpha & 0 \end{pmatrix}, \]

with \(\alpha \in \mathcal{A}_\theta \), \(\bar{\partial} = \delta_1 + \tau \delta_2 \).

Let \(\mathcal{A} = \) space of elliptic operators \(D = \bar{\partial} + \alpha \).
Cauchy-Riemann operators on \mathcal{A}_θ

- Families of spectral triples

$$\mathcal{A}_\theta, \quad \mathcal{H}_0 \oplus \mathcal{H}^{0,1}, \quad \begin{pmatrix} 0 & \bar{\partial}^* + \alpha^* \\ \bar{\partial} + \alpha & 0 \end{pmatrix},$$

with $\alpha \in \mathcal{A}_\theta$, $\bar{\partial} = \delta_1 + \tau \delta_2$.

- Let \mathcal{A} = space of elliptic operators $D = \bar{\partial} + \alpha$.

- Pull back DET to a holomorphic line bundle $\mathcal{L} \rightarrow \mathcal{A}$ with

$$\mathcal{L}_D = \lambda(\text{Ker}D)^* \otimes \lambda(\text{Ker}D^*).$$
From det section to det function

- If \mathcal{L} admits a canonical global holomorphic frame s, then

\[\sigma(D) = \det(D)s \]

defines a holomorphic determinant function $\det(D)$. A canonical frame is defined once we have a canonical flat holomorphic connection.
Quillen’s metric on \mathcal{L}

- Define a metric on \mathcal{L}, using regularized determinants. Over operators with $\text{Index}(D) = 0$, let

$$||\sigma||^2 = \exp(-\zeta'_\Delta(0)) = \det\Delta, \quad \Delta = D^* D.$$

- Prop: This defines a smooth Hermitian metric on \mathcal{L}.

A Hermitian metric on a holomorphic line bundle has a unique compatible connection. Its curvature can be computed from $\bar{\partial}\partial \log ||s||^2$, where s is any local holomorphic frame.
Quillen’s metric on \mathcal{L}

- Define a metric on \mathcal{L}, using regularized determinants. Over operators with $\text{Index}(D) = 0$, let

$$||\sigma||^2 = \exp(-\zeta'(0)) = \det\Delta, \quad \Delta = D^*D.$$

- Prop: This defines a smooth Hermitian metric on \mathcal{L}.

- A Hermitian metric on a holomorphic line bundle has a unique compatible connection. Its curvature can be computed from

$$\bar{\partial}\partial \log ||s||^2,$$

where s is any local holomorphic frame.
Connes’ pseudodifferential calculus

- To compute this curvature term we need a powerful pseudodifferential calculus, including logarithmic pseudos.

- Symbols of order m: smooth maps $\sigma : \mathbb{R}^2 \to A^{\infty}_{\theta}$ with

$$\|\delta^{(i_1,i_2)} \partial^{(j_1,j_2)} \sigma(\xi)\| \leq c(1 + |\xi|)^{m-j_1-j_2}.$$

The space of symbols of order m is denoted by $S^m(A_{\theta})$.
Connes’ pseudodifferential calculus

To compute this curvature term we need a powerful pseudodifferential calculus, including logarithmic pseudos.

Symbols of order \(m \): smooth maps \(\sigma : \mathbb{R}^2 \to A^\infty_{\theta} \) with

\[
||\delta^{(i_1,i_2)} \partial^{(j_1,j_2)} \sigma(\xi)|| \leq c(1 + |\xi|)^{m-j_1-j_2}.
\]

The space of symbols of order \(m \) is denoted by \(S^m(A_{\theta}) \).

To a symbol \(\sigma \) of order \(m \), one associates an operator

\[
P_{\sigma}(a) = \int \int e^{-is\cdot\xi} \sigma(\xi) \alpha_s(a) \, ds \, d\xi.
\]

The operator \(P_{\sigma} : A_{\theta} \to A_{\theta} \) is said to be a pseudodifferential operator of order \(m \).
Classical symbols

- Classical symbol of order $\alpha \in \mathbb{C}$:

$$\sigma \sim \sum_{j=0}^{\infty} \sigma_{\alpha-j} \quad \text{ord } \sigma_{\alpha-j} = \alpha - j.$$

$$\sigma(\xi) = \sum_{j=0}^{N} \chi(\xi)\sigma_{\alpha-j}(\xi) + \sigma^N(\xi) \quad \xi \in \mathbb{R}^2.$$

- We denote the set of classical symbols of order α by $\mathcal{S}_{\text{cl}}^{\alpha}(\mathcal{A}_\theta)$ and the associated classical pseudodifferential operators by $\Psi_{\text{cl}}^{\alpha}(\mathcal{A}_\theta)$.
A cutoff integral

- Any pseudo P_σ of order <-2 is trace-class with

$$\text{Tr}(P_\sigma) = \varphi_0 \left(\int_{\mathbb{R}^2} \sigma(\xi) d\xi \right).$$
A cutoff integral

- Any pseudo P_σ of order < -2 is trace-class with

\[
\text{Tr}(P_\sigma) = \varphi_0 \left(\int_{\mathbb{R}^2} \sigma(\xi) d\xi \right).
\]

- For $\text{ord}(P) \geq -2$ the integral is divergent, but, assuming P is classical, and of non-integral order, one has an asymptotic expansion as $R \to \infty$

\[
\int_{B(R)} \sigma(\xi) d\xi \sim \sum_{j=0, \alpha-j+2 \neq 0}^\infty \alpha_j(\sigma) R^{\alpha-j+2} + \beta(\sigma) \log R + c(\sigma),
\]

where $\beta(\sigma) = \int_{|\xi|=1} \sigma_{-2}(\xi) d\xi = \text{Wodzicki residue of } P$ (Fathizadeh).
The Kontsevich-Vishik trace

- The cut-off integral of a symbol $\sigma \in \mathcal{S}_c^\alpha(A_\theta)$ is defined to be the constant term in the above asymptotic expansion, and we denote it by $\int \sigma(\xi) d\xi$.

NC residue in terms of TR:

$$\text{Res}_{z=0} \text{TR}(A_\theta - z) = 1.$$
The Kontsevich-Vishik trace

- The cut-off integral of a symbol $\sigma \in S^\alpha_{cl}(A_\theta)$ is defined to be the constant term in the above asymptotic expansion, and we denote it by $\int \sigma(\xi) d\xi$.

- The canonical trace of a classical pseudo $P \in \Psi^\alpha_{cl}(A_\theta)$ of non-integral order α is defined as

$$\text{TR}(P) := \varphi_0 \left(\int \sigma_P(\xi) d\xi \right).$$
The Kontsevich-Vishik trace

- The cut-off integral of a symbol $\sigma \in S^\alpha_{\cl}(A_\theta)$ is defined to be the constant term in the above asymptotic expansion, and we denote it by $\int \sigma(\xi) d\xi$.

- The canonical trace of a classical pseudo $P \in \psi^\alpha_{\cl}(A_\theta)$ of non-integral order α is defined as
 \[TR(P) := \varphi_0 \left(\int \sigma_P(\xi) d\xi \right). \]

- NC residue in terms of TR:
 \[\text{Res}_{z=0} TR(AQ^{-z}) = \frac{1}{q} \text{Res}(A). \]
Logarithmic symbols

- Derivatives of a classical holomorphic family of symbols like $\sigma(AQ^{-z})$ is not classical anymore. So we introduce the Log-polyhomogeneous symbols:

$$\sigma(\xi) \sim \sum_{j \geq 0} \sum_{l=0}^{\infty} \sigma_{\alpha-j,l}(\xi) \log^l |\xi| \quad |\xi| > 0,$$

with $\sigma_{\alpha-j,l}$ positively homogeneous in ξ of degree $\alpha - j$.

Example: $\log Q$ where $Q \in \Psi^q_{\text{cl}}(A\theta)$ is a positive elliptic pseudodifferential operator of order $q > 0$.

Wodzicki residue: $\text{Res}(A) = \phi_0(\text{res}(A))$, $\text{res}(A) = \int_{|\xi|=1} \sigma^{-2}_{0,0}(\xi) d\xi$.
Logarithmic symbols

- Derivatives of a classical holomorphic family of symbols like $\sigma(AQ^{-z})$ is not classical anymore. So we introduce the **Log-polyhomogeneous symbols**:

$$
\sigma(\xi) \sim \sum_{j \geq 0} \sum_{l=0}^{\infty} \sigma_{\alpha-j,l}(\xi) \log^l |\xi| \quad |\xi| > 0,
$$

with $\sigma_{\alpha-j,l}$ positively homogeneous in ξ of degree $\alpha - j$.

- Example: $\log Q$ where $Q \in \Psi^{q}_{cl}(A_\theta)$ is a positive elliptic pseudodifferential operator of order $q > 0$.

Logarithmic symbols

- Derivatives of a classical holomorphic family of symbols like \(\sigma(AQ^{-z}) \) is not classical anymore. So we introduce the Log-polyhomogeneous symbols:

\[
\sigma(\xi) \sim \sum_{j \geq 0} \sum_{l=0}^{\infty} \sigma_{\alpha-j,l}(\xi) \log^l |\xi| \quad |\xi| > 0,
\]

with \(\sigma_{\alpha-j,l} \) positively homogeneous in \(\xi \) of degree \(\alpha - j \).

- Example: \(\log Q \) where \(Q \in \Psi^q_{cl}(A_\theta) \) is a positive elliptic pseudodifferential operator of order \(q > 0 \).

- Wodzicki residue: \(\text{Res}(A) = \varphi_0(\text{res}(A)) \),

\[
\text{res}(A) = \int_{|\xi|=1} \sigma_{-2,0}(\xi) d\xi.
\]
Variations of LogDet and the curvature form

- Recall: for our canonical holomorphic section σ,

$$\|\sigma\|^2 = e^{-\zeta'_{\Delta,0}}$$
Variations of LogDet and the curvature form

- Recall: for our canonical holomorphic section σ,

$$\|\sigma\|^2 = e^{-\zeta_{\Delta}(0)}$$

- Consider a holomorphic family of Cauchy-Riemann operators $D_w = \bar{\partial} + \alpha_w$. Want to compute

$$\bar{\partial}\partial \log \|\sigma\|^2 = \delta_w \delta_w \zeta'_{\Delta}(0) = \delta_w \delta_w \frac{d}{dz} \text{TR}(\Delta^{-z})|_{z=0}. $$
The second variation of logDet

- **Prop 1**: For a holomorphic family of Cauchy-Riemann operators D_w, the second variation of $\zeta'(0)$ is given by:

$$
\delta \bar{w} \delta w \zeta'(0) = \frac{1}{2} \varphi_0 \left(\delta w D \delta \bar{w} \text{res}(\log \Delta D^{-1}) \right).
$$
The second variation of logDet

▶ Prop 1: For a holomorphic family of Cauchy-Riemann operators D_w, the second variation of $\zeta'(0)$ is given by:

$$\delta \bar{w} \delta w \zeta'(0) = \frac{1}{2} \varphi_0 \left(\delta w D \delta \bar{w} \text{res}(\log \Delta D^{-1}) \right).$$

▶ Prop 2: The residue density of $\log \Delta D^{-1}$:

$$\sigma_{-2,0}(\log \Delta D^{-1}) = \frac{(\alpha + \alpha^*)\xi_1 + (\bar{\tau} \alpha + \tau \alpha^*)\xi_2}{(\xi_1^2 + 2\Re(\tau)\xi_1\xi_2 + |\tau|^2\xi_2^2)(\xi_1 + \tau \xi_2)} \cdot$$

$$- \log \left(\frac{\xi_1^2 + 2\Re(\tau)\xi_1\xi_2 + |\tau|^2\xi_2^2}{|\xi|^2} \right) \frac{\alpha}{\xi_1 + \tau \xi_2},$$

and

$$\delta \bar{w} \text{res}(\log(\Delta)D^{-1}) = \frac{1}{2\pi \Im(\tau)} (\delta w D)^*.$$
Curvature of the determinant line bundle

- **Theorem** (A. Fathi, A. Ghorbanpour, MK.): The curvature of the determinant line bundle for the noncommutative two torus is given by

\[\delta \bar{w} \delta w \zeta'(0) = \frac{1}{4\pi \Im(\tau)} \varphi_0 (\delta w D (\delta w D)^*) \cdot \]

- **Remark**: For \(\theta = 0 \) this reduces to Quillen’s theorem (for elliptic curves).
A holomorphic determinant a la Quillen

Modify the metric to get a flat connection:

\[||s||^2_f = e^{||D-D_0||^2} ||s||^2 \]
A holomorphic determinant a la Quillen

- Modify the metric to get a flat connection:

 \[\|s\|_f^2 = e^{\|D - D_0\|^2} \|s\|^2 \]

- Get a flat holomorphic global section. This gives a holomorphic determinant function

 \[\det(D, D_0) : \mathcal{A} \to \mathbb{C} \]

 It satisfies

 \[|\det(D, D_0)|^2 = e^{\|D - D_0\|^2} \det_\zeta(D^*D) \]