Coherence via Well-Foundedness

- Taming Set-Quotients in Homotopy Type Theory

HoTTEST Fall 2020

Jakob von Raumer¹, j.w.w. Nicolai Kraus^{1,2} | September 25, 2020

¹ University of Nottingham, ² University of Birmingham

A Graph Theoretic Problem

Noetherian Cycle Induction

Application to Coherence

Noetherian Cycle Induction

Application to Coherence

September 25, 2020

General Problem

Consider paths in a graph.

If we want to prove a property...

- for all paths: Induction!
- for all closed paths: how???

Noetherian Cycle Induction

Application to Coherence

3/20

Problem: Prove a property for every *closed zig-zag* (from now on *cycle*) in a graph.

Assumptions: The graph is

Noetherian Cycle Induction

Application to Coherence

September 25, 2020

Problem: Prove a property for every *closed zig-zag* (from now on *cycle*) in a graph.

Assumptions: The graph is

locally confluent, and

Noetherian Cycle Induction

Application to Coherence

September 25, 2020

Problem: Prove a property for every *closed zig-zag* (from now on *cycle*) in a graph.

Assumptions: The graph is

locally confluent, and

Noetherian Cycle Induction

Application to Coherence

September 25, 2020

Problem: Prove a property for every *closed zig-zag* (from now on *cycle*) in a graph.

Assumptions: The graph is

- locally confluent, and
- Noetherian (co-wellfounded).

Noetherian Cycle Induction

Application to Coherence

4/20

Example: Reductions in Free Groups

Reduction steps on words in a free group on a set *M* form such a graph on List(M + M).

Noetherian Cycle Induction

Application to Coherence

Our proposed solution consists of the following four steps:

- 1. Given a relation \rightsquigarrow on a set *A*, we define a new relation \rightsquigarrow° on cycles on *A*.
- 2. If \rightsquigarrow is Noetherian, then so is \rightsquigarrow° .
- If → further is locally confluent, then any cycle can be split into a →^o-smaller cycle and a confluence cycle
- 4. Consequence: We can show a property *for all cycles* inductively by showing it *for empty cycles, confluence cycles, and merged cycles.*

Step 1: List Extension

Definition

The *list extension* of a relation \rightsquigarrow on A is a relation \rightsquigarrow^{L} on List(A) generated by

$$[\vec{a_1}, \vec{a}, \vec{a_2}] \rightsquigarrow^L [\vec{a_1}, x_0, x_1, \dots, x_k, \vec{a_2}]$$

where all x_i are such that $a \rightsquigarrow x_i$.

7/20

Step 1: List Extension

Definition

The *list extension* of a relation \rightsquigarrow on A is a relation \rightsquigarrow^{L} on List(A) generated by

$$[\vec{a_1}, \vec{a}, \vec{a_2}] \rightsquigarrow^L [\vec{a_1}, x_0, x_1, \dots, x_k, \vec{a_2}]$$

where all x_i are such that $a \rightsquigarrow x_i$.

Lemma

If \rightsquigarrow is Noetherian, so is \rightsquigarrow^{L} .

This is similar to the well-founded *multiset extension* by Tobias Nipkow.

A Graph Theoretic Problem 000 J. von Raumer – Coherence via Well-Foundedness Noetherian Cycle Induction

Application to Coherence

September 25, 2020

Step 2: A Relation on Cycles

Definition

For γ a cycle, write $\varphi(\gamma)$ for the *vertex sequence* of γ . Write $\gamma \rightsquigarrow^{\circ} \delta$ if there is a rotation δ' of δ such that $\varphi(\gamma) \rightsquigarrow^{L} \varphi(\delta')$.

Noetherian Cycle Induction

Application to Coherence

8/20

Step 2: A Relation on Cycles

Definition

For γ a cycle, write $\varphi(\gamma)$ for the *vertex sequence* of γ . Write $\gamma \rightsquigarrow^{\circ} \delta$ if there is a rotation δ' of δ such that $\varphi(\gamma) \rightsquigarrow^{L} \varphi(\delta')$.

Lemma

If \rightsquigarrow is Noetherian, so is \rightsquigarrow° (and thus also $\rightsquigarrow^{+\circ+}$).

A Graph Theoretic Problem

Noetherian Cycle Induction

Application to Coherence

8/20

Step 3: Dissecting Cycles

Lemma

If a relation is Noetherian, then any of its cycles is empty or contains a span.

Noetherian Cycle Induction

Application to Coherence

9/20

Step 3: Dissecting Cycles

Lemma

If a relation is Noetherian, then any of its cycles is empty or contains a span.

Theorem

If \rightsquigarrow is Noetherian and locally confluent, then any cycle can be written as the "merge" of a $\rightsquigarrow^{+\circ+}$ -smaller cycle and a confluence diamond.

Noetherian Cycle Induction

Application to Coherence

9/20

Step 3: Dissecting Cycles

Lemma

If a relation is Noetherian, then any of its cycles is empty or contains a span.

Theorem

If \rightsquigarrow is Noetherian and locally confluent, then any cycle can be written as the "merge" of a $\rightsquigarrow^{+\circ+}$ -smaller cycle and a confluence diamond.

Noetherian Cycle Induction

Application to Coherence

9/20

Given a Noetherian and locally confluent relation \rightsquigarrow on a set A and a property P on its cycles, such that

10/20

Given a Noetherian and locally confluent relation \rightsquigarrow on a set A and a property P on its cycles, such that

• P is stable under rotating of cycles: $P(\alpha \gamma) \rightarrow P(\gamma \alpha)$,

Noetherian Cycle Induction

Application to Coherence

10/20

Given a Noetherian and locally confluent relation \rightsquigarrow on a set A and a property P on its cycles, such that

- P is stable under rotating of cycles: $P(\alpha \gamma) \rightarrow P(\gamma \alpha)$,
- *P* is stable under "merging" of cycles: $P(\alpha\gamma) \rightarrow P(\gamma^{-1}\beta) \rightarrow P(\alpha\beta)$,

10/20

Given a Noetherian and locally confluent relation \rightsquigarrow on a set A and a property P on its cycles, such that

- *P* is stable under rotating of cycles: $P(\alpha \gamma) \rightarrow P(\gamma \alpha)$,
- *P* is stable under "merging" of cycles: $P(\alpha\gamma) \rightarrow P(\gamma^{-1}\beta) \rightarrow P(\alpha\beta)$,
- P holds for the empty cycle, and

Given a Noetherian and locally confluent relation \rightsquigarrow on a set A and a property P on its cycles, such that

- *P* is stable under rotating of cycles: $P(\alpha \gamma) \rightarrow P(\gamma \alpha)$,
- *P* is stable under "merging" of cycles: $P(\alpha\gamma) \rightarrow P(\gamma^{-1}\beta) \rightarrow P(\alpha\beta)$,
- P holds for the empty cycle, and
- P holds for confluence diamonds.

Given a Noetherian and locally confluent relation \rightsquigarrow on a set A and a property P on its cycles, such that

- *P* is stable under rotating of cycles: $P(\alpha \gamma) \rightarrow P(\gamma \alpha)$,
- *P* is stable under "merging" of cycles: $P(\alpha\gamma) \rightarrow P(\gamma^{-1}\beta) \rightarrow P(\alpha\beta)$,
- P holds for the empty cycle, and
- P holds for confluence diamonds.

Then, $P(\gamma)$ holds for any cycle γ .

Given a type A: Type and a Noetherian and locally confluent relation $\rightsquigarrow: A \rightarrow A \rightarrow$ Type. Let P: (cycles of \rightsquigarrow) \rightarrow Type be such that

- P is stable under rotating of cycles: $P(\alpha\gamma) \rightarrow P(\gamma\alpha)$,
- *P* is stable under "merging" of cycles: $P(\alpha\gamma) \rightarrow P(\gamma^{-1}\beta) \rightarrow P(\alpha\beta)$,
- P holds for the empty cycle, and
- P holds for confluence diamonds.

Then, $P(\gamma)$ holds for any cycle γ .

Maps into a 1-Type

Theorem

Let A be a type, $\rightsquigarrow: A \to A \to \text{Type}$ be Noetherian and locally confluent (with confluence "diamonds" \mathfrak{L}), and X be a 1-type. Then, the type $A/\!\!\!\!\!\to X$ is equivalent to the type of tuples (f, h, d_1, d_2) , where

$$f: A \rightarrow X,$$

 $h: \Pi\{a, b: A\}.(a \rightsquigarrow b) \rightarrow f(a) = f(b),$
 $d_1: \Pi\{a: A\}.\Pi(p: a = a).ap_f(p) = refl,$
 $d_2: \Pi(\kappa: \cdot \leftarrow \cdot \rightsquigarrow \cdot).h(\mathfrak{L}(\kappa)) = refl.$

A Graph Theoretic Problem 000 J. von Raumer – Coherence via Well-Foundedness Noetherian Cycle Induction

Proof of the Theorem:

- 1. Show that the statement is true if instead of d_2 , we index over all cycles.
- 2. Apply Noetherian Cycle Induction with $P(\gamma) := (h(\gamma) = \text{refl})$.

How to define the carrier of the free group on a set M?

1. As a (set-)quotient of words $List(M + M)/ \rightarrow$ where the \rightarrow is generated by

$$[\ldots, k, m, m^{-1}, l, \ldots] \rightsquigarrow [\ldots, k, l, \ldots].$$

How to define the carrier of the free group on a set M?

1. As a (set-)quotient of words $List(M + M)/ \rightarrow$ where the \rightarrow is generated by

$$[\ldots, k, m, m^{-1}, I, \ldots] \rightsquigarrow [\ldots, k, I, \ldots].$$

2. As the loop space $F_M := \Omega(H_M, \star)$ of the higher inductive type

data H_M : Type where $\star : H_M$ loops : $M \rightarrow (\star = \star)$

How to define the carrier of the free group on a set M?

1. As a (set-)quotient of words $List(M + M)/ \rightarrow$ where the \rightarrow is generated by

$$[\ldots, k, m, m^{-1}, l, \ldots] \rightsquigarrow [\ldots, k, l, \ldots].$$

2. As the loop space $F_M := \Omega(H_M, \star)$ of the higher inductive type

data H_M : Type where $\star : H_M$ loops : $M \rightarrow (\star = \star)$

Open question: Do these coincide?

Noetherian Cycle Induction

Application to Coherence 000000000 September 25, 2020 14/20

How to define the carrier of the free group on a set M?

1. As a (set-)quotient of words $List(M + M)/ \rightarrow$ where the \rightarrow is generated by

$$[\ldots, k, m, m^{-1}, I, \ldots] \rightsquigarrow [\ldots, k, I, \ldots].$$

2. As the loop space $F_M := \Omega(H_M, \star)$ of the higher inductive type

```
data H_M : Type where

\star : H_M

loops : M \rightarrow (\star = \star)
```

Approximation: Do their 1-truncations coincide? Or: Is the fundamental group of the free group trivial?

A Graph Theoretic Problem 000 J. von Raumer – Coherence via Well-Foundedness Noetherian Cycle Induction

Application to Coherence 000000000 September 25, 2020 14/20

- There is a canonical map $F_M \rightarrow \text{List}(M + M)/{\sim}$ factoring through $||F_M||_1$.
- Need to construct an inverse map $\text{List}(M + M) / \rightsquigarrow \to \|F_M\|_1$.
- By the previous theorem, we need to give $f : \text{List}(M + M) \to ||F_M||_1$, $h : \Pi\{k, l : \text{List}(M + M)\}.(k \rightsquigarrow l) \to f(k) = f(l)$, and show that *h* is refl on confluence diamonds.

How to show that *h* is refl on confluence diamonds:

Noetherian Cycle Induction

Application to Coherence

How to show that *h* is refl on confluence diamonds:

Noetherian Cycle Induction

Application to Coherence

How to show that *h* is refl on confluence diamonds:

Noetherian Cycle Induction

Application to Coherence

- 1. Is the free group HIT on a set again a set?
- 2. Is the suspension of a set a 1-type?
- 3. Does adding a loop to a type preserve it being 1-truncated?
- 4. Does adding set many loops to a type preserve it being 1-truncated?

Common generalisation:

Is the pushout $B +_A C$ a 1-type, if A is a set and B, C are 1-types?

Approximate the generalisation by showing that $||B +_A C||_2$ is a 1-type:

- Consider the encoding of equalities in pushouts (Seifert-van Kampen) à la Favonia and Shulman.
- The lists of equalities generalise the type List(M + M) in the free group example.
- Likewise apply Noetherian Cycle Induction.

Potential Application: Type Theory in Type Theory

- Want to internalise the syntax of type theory inside HoTT (à la Altenkirch, Kaposi).
- For many purposes treat convertability relations as equalities
- Take a quotient by a reduction relation!
- Standard model: Construct function from contexts to the universe of sets
- Open question: How to generalise the theorem such that it can deal with QIITs?

Conclusions

- We found a way to tackle proofs about cycles
- We used it to solve approximations to open problems
- The contents formalised in the Lean theorem prover (~ 1600 LoC)
- We are exploring applicability
 - to other open problems in HoTT
 - to the field of higher-dimensional rewriting (Thanks to Vincent van Oostrom for his remarks!)

Title Image: photograph by Pascal Dihé, distributed under a CC BY-SA 4.0 license