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Spectra

A prespectrum is a sequence of pointed types Y : Z→ Type∗ with
pointed maps ΣYn →∗ Yn+1 called structure maps.

By the adjunction Σ a Ω, we can equivalently take maps Yn →∗ ΩYn+1.

An Ω-spectrum or spectrum is a prespectrum Y where the maps
Yn →∗ ΩYn+1 are equivalences.

A spectrum Y is called n-truncated if Yk is (n+ k)-truncated for all k : Z.

The homotopy groups of an Ω-spectrum Y are πn(Y ) :≡ πn+k(Yk) (which
is independent of k and also defined for negative n).
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Spectra

Examples

If A is an abelian group, the Eilenberg-MacLane spectrum
HA : Ω-Spectrum where (HA)n = K(A,n) is a 0-truncated
Ω-spectrum.

If X and Y are prespectra, then X ∨ Y defined by

(X ∨ Y )n :≡ Xn ∨ Yn

is a prespectrum, since we have a pointed map

ΩXn+1 ∨ ΩYn+1 →∗ Ω(Xn+1 ∨ Yn+1).

If X is a pointed type and Y : X → Ω-Spectrum is family of spectra
parametrized over X we have a spectrum Π∗(x : X), Y x defined by

(Π∗(x : X), Y x)n :≡ Π∗(x : X), (Y x)n
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Cohomology

If X : Type∗ and Y : Ω-Spectrum, we have generalized reduced
cohomology:

Y n(X) ≡ H̃n(X;Y ) :≡ π−n(X →∗ Y ) ' ‖X →∗ Yn‖0.

If Y = HA, then we get the ordinary reduced cohomology H̃n(X;A).

If X is any type, we get unreduced cohomology

Hn(X;Y ) :≡ π−n(X → Y ) ' H̃n(X + 1;Y ).

We get parametrized cohomology by replacing functions with dependent
functions:

H̃n(X;λx.Y x) :≡ π−n(Π∗(x : X), Y x) ' ‖Π∗(x : X), (Y x)n)‖0.

Here Y : X → Ω-Spectrum is a parametrized spectrum.
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Long Exact Sequence of Homotopy Groups

Given a pointed map f : X →∗ Y with fiber F .
Then we have the following long exact sequence.

π0(Y )π0(X)π0(F )

π1(Y )π1(X)π1(F )

π2(Y )π2(X)π2(F )

...

π0(f)

π0(p1)

π0(δ)

π1(f)

π1(p1)

π1(δ)

π2(f)

π2(p1)
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Spectral Sequences

Definition. A spectral sequence consists of a family Ep,q
r of abelian

groups for p, q : Z and r ≥ 2. For a fixed r this gives
the r-page of the spectral sequence. . . .
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Spectral Sequences

Definition. . . . with differentials dp,qr : Ep,q
r → Ep+r,q−r+1

r such that
dr ◦ dr = 0 (this is cohomologically indexed) . . .
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Spectral Sequences

Definition. . . . and with isomorphisms αp,q
r : Hp,q(Er) ' Ep,q

r+1

where Hp,q(Er) = ker(dp,qr )/im(dp−r,q+r−1
r ).
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Spectral Sequences

Definition. . . . and with isomorphisms αp,q
r : Hp,q(Er) ' Ep,q

r+1

where Hp,q(Er) = ker(dp,qr )/im(dp−r,q+r−1
r ).

The differentials of Er+1 are not determined by (Er, dr).
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Convergence of Spectral Sequences

In many spectral sequences the
pages converge to Ep,q

∞ .

We can often compute the
abutment, a “twisted sum” of
the diagonals.
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Convergence of Spectral Sequences

For a bigraded abelian group Cp,q and graded abelian group Dn we write

Ep,q
2 = Cp,q ⇒ Dp+q

if there exists a spectral sequence Ep,q
r such that

The second page is Ep,q
2 = Cp,q;

The spectral sequence converges to Ep,q
∞ ;

The abutment Dn is a twisted sum of the Ep,q
∞ for n = p+ q.

This means that there are groups (Dn,q)q and short exact sequences:

0→ En,0
∞ →Dn → Dn,1 → 0

...
0→ Ep,q

∞ →Dn,q → Dn,q+1 → 0

0→ Ep−1,q+1
∞ →Dn,q+1 → Dn,q+2 → 0

...
0→ E0,n

∞ →Dn,n → 0
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Serre Spectral Sequence

Theorem (Serre Spectral Sequence)

If f : X → B is any map and Y is a truncated spectrum, then we have a
spectral sequence E with

Ep,q
2 = Hp(B;λb.Hq(fibf (b);Y ))⇒ Hp+q(X;Y ).

If Y = HA and B is pointed simply connected, then we get:

Ep,q
2 = Hp(B;Hq(F ;A))⇒ Hp+q(X;A).

where F is the fiber of f at b0.
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Atiyah-Hirzebruch Spectral Sequence

Theorem (Atiyah-Hirzebruch Spectral Sequence)

If X is any type and Y : X → Ω-Spectrum is a family of k-truncated
spectra over X, then we have a spectral sequence E with

Ep,q
2 = Hp(X;λx.π−q(Y x))⇒ Hp+q(X;λx.Y x).

The Atiyah-Hirzebruch spectral sequence is also true if we replace all
cohomologies by reduced cohomologies:

Ep,q
2 = H̃p(X;λx.π−q(Y x))⇒ H̃p+q(X;λx.Y x).
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Formalization

There is a full formalization of the Serre and Atiyah-Hirzebruch
spectral sequences for cohomology in Lean.

As an application, we formalized the Gysin sequence.

Other applications are in progress.

Available at github.com/cmu-phil/Spectral.

Formalized by vD, Jeremy Avigad, Steve Awodey, Ulrik Buchholtz,
Egbert Rijke and Mike Shulman.
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Homology Spectral Sequences

For many applications, we also need the Serre spectral sequence for
homology.

For example, the version for homology gives Hurewicz theorem.
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Smash Product

For pointed types A and B, the smash product A ∧B is the following
homotopy pushout.

A ∨B 1

A×B A ∧B
•
a0

• b0

A

B

Given a type X and prespectrum Y we can now define a prespectrum
X ∧ Y with

(X ∧ Y )n :≡ X ∧ Yn.
The homology of X with coefficients in a prespectrum Y can be defined as

Yn(X) ≡ H̃n(X;Y ) :≡ πn(X ∧ Y ) = colimk(πn+k(X ∧ Yk)).
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Symmetric Monoidal Structure

Last HoTTEST Guillaume talked about his approach to prove that ∧ form
a 1-coherent symmetric monoidal product on pointed types.

Together with Stefano Piceghello I have tried to prove this using the
adjunction (−) ∧B a B →∗ (−), i.e.

(A ∧B →∗ C) '∗ (A→∗ B →∗ C).

We have formalized this adjunction, natural in A, B and C.

This gives us associativity, symmetry and Σ(A∧B) '∗ A∧ΣB as pointed
natural equivalences.

However, for the coherences (like the pentagon and hexagon) we need an
enriched adjunction [Eilenberg-Kelly, Closed Categories, 1965].
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Symmetric Monoidal Structure

The naturality of the adjunction is the following statement: Given
f : A′ → A and g : B′ → B and h : C → C ′, the following square of
pointed maps commutes:

A ∧B →∗ C A→∗ B →∗ C

A′ ∧B′ →∗ C ′ A′ →∗ B′ →∗ C ′

An enriched adjunction is one where the proof of naturality is pointed in h.
That is, if h ≡ 0C,C′ then the proof of naturality would be equal to the
filler of the following square

A ∧B →∗ C A→∗ B →∗ C

A ∧B →∗ C ′ A→∗ B →∗ C ′
0

0
0
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Spectrification

If X : Type∗ and Y : Ω-Spectrum then X ∧ Y is not generally an
Ω-spectrum.

However, we can use the spectrification L : Prespectrum→ Ω-Spectrum.

L is a left adjoint to the forgetful map U : Ω-Spectrum→ Prespectrum.

It can be either defined as a family of recursive HITs, or as a colimit

(LY )n :≡ colimk(ΩkYn+k).

With neither definition the adjunction has been carefully shown.
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Parametrized Homology

We will also need parametrized homology.
(x : A) ∧B(x) is a parametrized version of the smash product, the
following homotopy pushout:

A ∨B(a0) 1

Σ(x : A), B(x) (x : A) ∧B(x)

•
a0

A

B
b0

B(a0)
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Parametrized Homology

This has the following universal property:

((x : A) ∧B(x)→∗ C) '∗ (Π∗(x : A), B(x)→∗ C).

Therefore,
Σ((x : A) ∧B(x)) '∗ (x : A) ∧ ΣB(x).

This means that we can define (x : A) ∧ Y x for A : Type∗ and
Y : A→ Ω-Spectrum.

We define parametrized homology as

H̃n(X;λx.Y x) :≡ πn((x : X) ∧ Y x).
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Sequence of Spectra

We use the following result to prove the Atiyah-Hirzebruch theorem.
This is a stable analogue of the Bousfield-Kan spectral sequence.

Theorem

Given a sequence of spectra

· · · → As
fs−→ As−1

fs−1−−−→ As−2 → · · ·

with fibers Fs :≡ fibfs , suppose for all n

πn(As) = 0 for s small enough

πn(fs) is an isomorphism for s large enough.

Then we have a spectral sequence E with

En,s
2 = πn(Fs)⇒ πn(A∞).

For cohomology we apply this using As :≡ Π∗(x : X), ‖Y x‖s.
For homology, can we replace dependent maps by parametrized smash?
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Spectral Sequences for Homology

Given X : Type∗ and Y : X → Prespectrum. We can form:

· · · → ‖Y x‖s → ‖Y x‖s−1 → · · ·

To compute the fiber of this map we need to prove that smashing
preserves fiber sequences.

For spectra, the map X ∨ Y → X × Y is ∞-connected.

Whitehead’s theorem implies that fiber sequences and cofiber
sequences are the same.

We only want the correct homotopy groups, so we can probably avoid
the use of Whitehead’s Theorem.
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Spectral Sequences for Homology
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Spectral Sequences for Homology

To actually get the Serre spectral sequence we might need a weaker notion
of convergence than the one used for cohomology.

If we overcome these challenges, we get for a family Y of prespectra:
(AHSS)

E2
p,q = H̃p(X;λx.πq(Y x))⇒ H̃p+q(X;λx.Y x).

For f : X → B and a prespectrum Y : (SSS)

E2
p,q = Hp(B;λb.Hq(fibf (b);Y ))⇒ Hp+q(X;Y ).
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Applications

Corollary (Gysin sequence)

If f : E →∗ B is a pointed map with fiber fibf (b0) '∗ Sn−1 for n ≥ 2 and
if B is simply connected and A is an abelian group, then there exists a
long exact sequence

· · · → H i−1(E;A)→ H i−n(B;A)→ H i(B;A)→ H i(E;A)→ · · · .

Corollary (Wang sequence)

If f : E →∗ Sn is a pointed map with fiber F for n ≥ 2, then there exists
a long exact sequence

· · · → H i−1(F ;A)→ H i−n(F ;A)→ H i(E;A)→ H i(F ;A)→ · · · .

They both also have analogues for homology.
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Example: Gysin sequence

Given Sn−1 ↪→ E
f−→ B. Page 2 of the spectral sequence is

Ep,q
2 = Hp(B;Hq(Sn−1;A)) =

{
Hp(B;A) if q ∈ {0, n− 1}
0 otherwise.

deg(dr) = (r,−(r − 1))

p

q

0

n− 1

H0(B)

H0(B)

H1(B)

H1(B)

· · ·

· · ·

Hn(B)

Hn(B)

Hn+1(B)

Hn+1(B)

p

q

0

n− 1

coker dn

ker dn

coker dn

ker dn

· · ·

· · ·

coker dn

ker dn

coker dn

ker dn

Ep,q
n+1 = Ep,q

∞

The abutment gives short exact sequences

0→ coker di−n,n−1n → H i(E;A)→ ker di−(n−1),n−1n → 0
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Example: Gysin sequence

0 ker d Hi−n(B;A) Hi(B;A) coker d 0

0

Hi(E;A)

ker d

0

0 Hi+1−n(B;A) Hi+1(B;A)

Hi−1(E;A)

coker d

0

0

d

d
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Future Applications

Hurewicz theorem

Serre class theorem: If C is a Serre class and X path connected and
abelian then πn(X) ∈ C for all n iff Hn(X) ∈ C for all n.
Challenges:

I The proof uses the Universal Coefficient Theorem, which might require
the axiom of choice.

I Constructively, the collection of finite abelian groups and the collection
of finitely generated abelian groups do not form Serre classes.

We can compute (co)homology groups of generalized cohomology
theories (like K-theory).

Computation of more homotopy groups of spheres.
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Thank you
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