Game Semantics of Homotopy Type Theory

Norihiro Yamada

yamad041@umn.edu University of Minnesota

Homotopy Type Theory Electronic Seminar Talks (HoTTEST) Department of Mathematics, Western University February 11, 2021

1/19

Just like axiomatic set theory is explained by *sets* in an informal sense, the conceptual foundation of Martin-Löf type theory (MLTT) is *computations* in an informal sense (a.k.a. the *BHK-interpretation*).

Just like axiomatic set theory is explained by *sets* in an informal sense, the conceptual foundation of Martin-Löf type theory (MLTT) is *computations* in an informal sense (a.k.a. the *BHK-interpretation*).

• *Proofs/objects as computations* (e.g., succ : ¬ max ℕ);

Just like axiomatic set theory is explained by *sets* in an informal sense, the conceptual foundation of Martin-Löf type theory (MLTT) is *computations* in an informal sense (a.k.a. the *BHK-interpretation*).

- *Proofs/objects as computations* (e.g., succ : ¬ max ℕ);
- MLTT as a foundation of *constructive* maths.

Just like axiomatic set theory is explained by *sets* in an informal sense, the conceptual foundation of Martin-Löf type theory (MLTT) is *computations* in an informal sense (a.k.a. the *BHK-interpretation*).

- *Proofs/objects as computations* (e.g., succ : ¬ max ℕ);
- MLTT as a foundation of *constructive* maths.

On the other hand, homotopy type theory (HoTT) is motivated by the *homotopical* interpretation of MLTT.

Just like axiomatic set theory is explained by *sets* in an informal sense, the conceptual foundation of Martin-Löf type theory (MLTT) is *computations* in an informal sense (a.k.a. the *BHK-interpretation*).

- *Proofs/objects as computations* (e.g., succ : ¬ max ℕ);
- MLTT as a foundation of *constructive* maths.

On the other hand, homotopy type theory (HoTT) is motivated by the *homotopical* interpretation of MLTT.

• HoTT = MLTT + univalence + higher inductive types (HITs);

Just like axiomatic set theory is explained by *sets* in an informal sense, the conceptual foundation of Martin-Löf type theory (MLTT) is *computations* in an informal sense (a.k.a. the *BHK-interpretation*).

- *Proofs/objects as computations* (e.g., succ : ¬ max ℕ);
- MLTT as a foundation of *constructive* maths.

On the other hand, homotopy type theory (HoTT) is motivated by the *homotopical* interpretation of MLTT.

- HoTT = MLTT + univalence + higher inductive types (HITs);
- Homotopical interpretation: formulas as spaces, *proofs/objects as points*, and *higher proofs/objects as paths/homotopies*.

HoTT uncovers new connections between type theory, higher category theory and homotopy theory, and is a powerful foundation of maths.

HoTT uncovers new connections between type theory, higher category theory and homotopy theory, and is a powerful foundation of maths. On the other hand,

HoTT uncovers new connections between type theory, higher category theory and homotopy theory, and is a powerful foundation of maths. On the other hand,

The topological view is orthogonal to the BHK-interpretation.

HoTT uncovers new connections between type theory, higher category theory and homotopy theory, and is a powerful foundation of maths. On the other hand,

The topological view is orthogonal to the BHK-interpretation.

Moreover,

HoTT uncovers new connections between type theory, higher category theory and homotopy theory, and is a powerful foundation of maths. On the other hand,

The topological view is orthogonal to the BHK-interpretation.

Moreover,

Are proofs given by working mathematicians points in spaces?

HoTT uncovers new connections between type theory, higher category theory and homotopy theory, and is a powerful foundation of maths. On the other hand,

The topological view is orthogonal to the BHK-interpretation.

Moreover,

Are proofs given by working mathematicians points in spaces?

Motivation (The BHK-interpretation of HoTT)

To extend the BHK-interpretation of MLTT to HoTT so that one can better understand *HoTT as a foundation of constructive maths*.

Theorem (Game semantics of HoTT)

There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

Theorem (Game semantics of HoTT)

There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

My game semantics of HoTT interprets

Theorem (Game semantics of HoTT)

There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

My game semantics of HoTT interprets

• Types as *games* between Player and Opponent;

Theorem (Game semantics of HoTT)

There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

My game semantics of HoTT interprets

- Types as *games* between Player and Opponent;
- Terms as *strategies* (or algorithms for Player to play on games);

Theorem (Game semantics of HoTT)

There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

My game semantics of HoTT interprets

- Types as *games* between Player and Opponent;
- Terms as *strategies* (or algorithms for Player to play on games);
- Identity proofs as *strategies that verify equality between strategies*.

Theorem (Game semantics of HoTT)

There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

My game semantics of HoTT interprets

- Types as *games* between Player and Opponent;
- Terms as *strategies* (or algorithms for Player to play on games);
- Identity proofs as *strategies that verify equality between strategies*.

This model can be seen as a variant of the BHK-interpretation.

Theorem (Game semantics of HoTT)

There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

My game semantics of HoTT interprets

- Types as *games* between Player and Opponent;
- Terms as *strategies* (or algorithms for Player to play on games);
- Identity proofs as strategies that verify equality between strategies.

This model can be seen as a variant of the BHK-interpretation.

Corollary (Consistency and independence)

Theorem (Game semantics of HoTT)

There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

My game semantics of HoTT interprets

- Types as *games* between Player and Opponent;
- Terms as *strategies* (or algorithms for Player to play on games);
- Identity proofs as *strategies that verify equality between strategies*.

This model can be seen as a variant of the BHK-interpretation.

Corollary (Consistency and independence)

• Consistency of HoTT + strict univalence: $Id_U(A, B) \equiv Eq(A, B)$;

Theorem (Game semantics of HoTT)

There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

My game semantics of HoTT interprets

- Types as *games* between Player and Opponent;
- Terms as *strategies* (or algorithms for Player to play on games);
- Identity proofs as *strategies that verify equality between strategies*.

This model can be seen as a variant of the BHK-interpretation.

Corollary (Consistency and independence)

- Consistency of HoTT + strict univalence: $Id_U(A, B) \equiv Eq(A, B);$
- **2** Independence of Markov's principle from this extended HoTT.

Introduction

Why game semantics? (part 1/3)

Nevertheless, one might wonder why I choose game semantics among computational models such as *realisability*.

Nevertheless, one might wonder why I choose game semantics among computational models such as *realisability*.

Nevertheless, one might wonder why I choose game semantics among computational models such as *realisability*.

My answer is the following advantages of game semantics:

• Effective for the study of type theory (e.g., independence of MP);

Nevertheless, one might wonder why I choose game semantics among computational models such as *realisability*.

- Effective for the study of type theory (e.g., independence of MP);
- Semantics of *computational effects* and *linear logic*;

Nevertheless, one might wonder why I choose game semantics among computational models such as *realisability*.

- Effective for the study of type theory (e.g., independence of MP);
- Semantics of *computational effects* and *linear logic*;
- Applications in *program verification* and *model checking*;

Nevertheless, one might wonder why I choose game semantics among computational models such as *realisability*.

- Effective for the study of type theory (e.g., independence of MP);
- Semantics of *computational effects* and *linear logic*;
- Applications in *program verification* and *model checking*;
- *Rich in higher structures* by its *intensionality*.

Nevertheless, one might wonder why I choose game semantics among computational models such as *realisability*.

My answer is the following advantages of game semantics:

- Effective for the study of type theory (e.g., independence of MP);
- Semantics of *computational effects* and *linear logic*;
- Applications in program verification and model checking;
- *Rich in higher structures* by its *intensionality*.

The last point is new, and so let me explain it in the next few slides.

Introduction

Why game semantics? (part 2/3)

Definition (Simplified games)

A game is a rooted dag whose vertices (or *moves*) have parity O/P, and paths from a root (or *positions*) have parity OPOP...

6/19

Definition (Simplified games)

A game is a rooted dag whose vertices (or *moves*) have parity O/P, and paths from a root (or *positions*) have parity OPOP...

6/19
Definition (Simplified games)

A game is a rooted dag whose vertices (or *moves*) have parity O/P, and paths from a root (or *positions*) have parity OPOP...

Definition (Simplified games)

A game is a rooted dag whose vertices (or *moves*) have parity O/P, and paths from a root (or *positions*) have parity OPOP...

Definition (Simplified games)

A game is a rooted dag whose vertices (or *moves*) have parity O/P, and paths from a root (or *positions*) have parity OPOP...

Definition (Simplified games)

A game is a rooted dag whose vertices (or *moves*) have parity O/P, and paths from a root (or *positions*) have parity OPOP...

Definition (Simplified strategies)

A strategy σ on a game G, written $\sigma : G$, is a map

 $\{ \text{ odd-length positions } m_1 m_2 \dots m_{2i+1} \text{ in } G \} \rightarrow \{ \text{ P-moves } m \text{ in } G \}$

s.t. $m_1 m_2 \dots m_{2i+1} m$ is a position in G.

Definition (Simplified games)

A game is a rooted dag whose vertices (or *moves*) have parity O/P, and paths from a root (or *positions*) have parity OPOP...

Definition (Simplified strategies)

A strategy σ on a game G, written $\sigma : G$, is a map

 $\{ \text{ odd-length positions } m_1 m_2 \dots m_{2i+1} \text{ in } G \} \rightarrow \{ \text{ P-moves } m \text{ in } G \}$

s.t. $m_1 m_2 \dots m_{2i+1} m$ is a position in G. (E.g., $q \mapsto q; qqn \mapsto n+1$.)

Introduction

Why game semantics? (part 3/3)

Strategies on $N \Rightarrow N$ computing *constant zero*:

7/19

Strategies on $N \Rightarrow N$ computing *constant zero*:

They are extensionally the same yet intensionally different.

Strategies on $N \Rightarrow N$ computing *constant zero*:

They are extensionally the same yet intensionally different. Games $\mathrm{Id}_N(\underline{n},\underline{m})$ and $\mathrm{Id}_{N\Rightarrow N}(\phi,\psi) := \prod_{x:N} \mathrm{Id}_N(\phi \circ x, \psi \circ x)$:

Strategies on $N \Rightarrow N$ computing *constant zero*:

They are extensionally the same yet intensionally different. Games $\mathrm{Id}_N(\underline{n},\underline{m})$ and $\mathrm{Id}_{N\Rightarrow N}(\phi,\psi) := \prod_{x:N} \mathrm{Id}_N(\phi \circ x, \psi \circ x)$:

Strategies on $N \Rightarrow N$ computing *constant zero*:

They are extensionally the same yet intensionally different. Games $\mathrm{Id}_N(\underline{n},\underline{m})$ and $\mathrm{Id}_{N\Rightarrow N}(\phi,\psi) := \prod_{x:N} \mathrm{Id}_N(\phi \circ x, \psi \circ x)$:

Strategies on $N \Rightarrow N$ computing *constant zero*:

They are extensionally the same yet intensionally different. Games $\mathrm{Id}_N(\underline{n},\underline{m})$ and $\mathrm{Id}_{N\Rightarrow N}(\phi,\psi) := \prod_{x:N} \mathrm{Id}_N(\phi \circ x, \psi \circ x)$:

 Id_N has at most one strategy, but not the case for $\mathrm{Id}_{N \Rightarrow N}$.

Strategies on $N \Rightarrow N$ computing *constant zero*:

They are extensionally the same yet intensionally different. Games $\mathrm{Id}_N(\underline{n},\underline{m})$ and $\mathrm{Id}_{N\Rightarrow N}(\phi,\psi) := \prod_{x:N} \mathrm{Id}_N(\phi \circ x, \psi \circ x)$:

 Id_N has at most one strategy, but not the case for $Id_{N \Rightarrow N}$. In this way, the *intensionality* of games makes their higher structure *nontrivial*.

N. Yamada (Univ. of Minnesota)

Game semantics of HoTT

A pioneering constructive model of HoTT is *cubical sets* initiated by Bezem, Coquand and Huber, and developed by many others.

A pioneering constructive model of HoTT is *cubical sets* initiated by Bezem, Coquand and Huber, and developed by many others.

• *Homotopical* in nature;

A pioneering constructive model of HoTT is *cubical sets* initiated by Bezem, Coquand and Huber, and developed by many others.

- *Homotopical* in nature;
- Constructivity on the *meta-theory*.

A pioneering constructive model of HoTT is *cubical sets* initiated by Bezem, Coquand and Huber, and developed by many others.

- *Homotopical* in nature;
- Constructivity on the *meta-theory*.

Other related work is *cubical assemblies* proposed by Uemura and *higher dimensional meaning explanation* by Angiuli and Harper.

A pioneering constructive model of HoTT is *cubical sets* initiated by Bezem, Coquand and Huber, and developed by many others.

- *Homotopical* in nature;
- Constructivity on the *meta-theory*.

Other related work is *cubical assemblies* proposed by Uemura and *higher dimensional meaning explanation* by Angiuli and Harper.

• On cubical type theory;

A pioneering constructive model of HoTT is *cubical sets* initiated by Bezem, Coquand and Huber, and developed by many others.

- *Homotopical* in nature;
- Constructivity on the *meta-theory*.

Other related work is *cubical assemblies* proposed by Uemura and *higher dimensional meaning explanation* by Angiuli and Harper.

- On *cubical type theory*;
- The unit interval, dimensional variables and path types.

A pioneering constructive model of HoTT is *cubical sets* initiated by Bezem, Coquand and Huber, and developed by many others.

- *Homotopical* in nature;
- Constructivity on the *meta-theory*.

Other related work is *cubical assemblies* proposed by Uemura and *higher dimensional meaning explanation* by Angiuli and Harper.

- On *cubical type theory*;
- The unit interval, dimensional variables and path types.

My approach: BHK-interpretation of HoTT; based on globular sets

Throughout this work, ∞ -groupoids refer to strict ∞ -categories whose morphisms are weakly invertible in the sense of type equivalence.

Throughout this work, ∞ -groupoids refer to strict ∞ -categories whose morphisms are weakly invertible in the sense of type equivalence.

Definition (Game-semantic ∞ -groupoids)

Define game-semantic ∞ -groupoids to be ∞ -groupoids internalised in the category \mathcal{G} of games (strictly, in the subcat $\check{\mathcal{G}} \hookrightarrow \mathcal{G}$, a topos).

Throughout this work, ∞ -groupoids refer to strict ∞ -categories whose morphisms are weakly invertible in the sense of type equivalence.

Definition (Game-semantic ∞ -groupoids)

Define game-semantic ∞ -groupoids to be ∞ -groupoids internalised in the category \mathcal{G} of games (strictly, in the subcat $\check{\mathcal{G}} \hookrightarrow \mathcal{G}$, a topos).

Forenotice:

Throughout this work, ∞ -groupoids refer to strict ∞ -categories whose morphisms are weakly invertible in the sense of type equivalence.

Definition (Game-semantic ∞ -groupoids)

Define *game-semantic* ∞ -*groupoids* to be ∞ -groupoids internalised in the category \mathcal{G} of games (strictly, in the subcat $\check{\mathcal{G}} \hookrightarrow \mathcal{G}$, a topos).

Forenotice:

• Warren's strict ∞ -groupoid model modified and internalised in \mathcal{G} ;

Throughout this work, ∞ -groupoids refer to strict ∞ -categories whose morphisms are weakly invertible in the sense of type equivalence.

Definition (Game-semantic ∞ -groupoids)

Define *game-semantic* ∞ -*groupoids* to be ∞ -groupoids internalised in the category \mathcal{G} of games (strictly, in the subcat $\check{\mathcal{G}} \hookrightarrow \mathcal{G}$, a topos).

Forenotice:

- Warren's strict ∞ -groupoid model modified and internalised in \mathcal{G} ;
- Challenge: To recover Warren's method with *weak* inverses;

Throughout this work, ∞ -groupoids refer to strict ∞ -categories whose morphisms are weakly invertible in the sense of type equivalence.

Definition (Game-semantic ∞ -groupoids)

Define *game-semantic* ∞ -*groupoids* to be ∞ -groupoids internalised in the category \mathcal{G} of games (strictly, in the subcat $\check{\mathcal{G}} \hookrightarrow \mathcal{G}$, a topos).

Forenotice:

- Warren's strict ∞ -groupoid model modified and internalised in \mathcal{G} ;
- Challenge: To recover Warren's method with *weak* inverses;
- Mostly generalised to finitely complete CwFs \mathcal{M} with an NNO such that each type $A \in \operatorname{Ty}_{\mathcal{M}}(\Gamma)$ is a map $\mathcal{M}(1,\Gamma) \to \operatorname{Ob}(\mathcal{M})$.

Explicitly, a game-semantic ∞ -category G consists of

Explicitly, a game-semantic ∞-category G consists of
A diagram in Ğ

$$\cdots \xrightarrow{s_2} G_2 \xrightarrow{s_1} G_1 \xrightarrow{s_0} G_0$$

that satisfies $s_n \circ s_{n+1} = s_n \circ t_{n+1}$ and $t_n \circ s_{n+1} = t_n \circ t_{n+1}$;

N. Yamada (Univ. of Minnesota) Game semantics of HoTT Feb. 11, 2021, Western 10/19

Explicitly, a game-semantic ∞-category G consists of
A diagram in Ğ

$$\cdots \xrightarrow{s_2} G_2 \xrightarrow{s_1} G_1 \xrightarrow{s_0} G_0$$

that satisfies $s_n \circ s_{n+1} = s_n \circ t_{n+1}$ and $t_n \circ s_{n+1} = t_n \circ t_{n+1}$; • A $\check{\mathcal{G}}$ -morphism $*_p^{[n]} : G_n \times_{G_p} G_n \to G_n$ for each $0 \leq p < n$,
Explicitly, a game-semantic ∞-category G consists of
A diagram in Ğ

$$\cdots \xrightarrow{s_2} G_2 \xrightarrow{s_1} G_1 \xrightarrow{s_0} G_0$$

that satisfies $s_n \circ s_{n+1} = s_n \circ t_{n+1}$ and $t_n \circ s_{n+1} = t_n \circ t_{n+1}$; • A $\check{\mathcal{G}}$ -morphism $*_p^{[n]} : G_n \times_{G_n} G_n \to G_n$ for each $0 \leq p < n$, where

Explicitly, a game-semantic ∞-category G consists of
A diagram in Ğ

$$\cdots \xrightarrow{s_2} G_2 \xrightarrow{s_1} G_1 \xrightarrow{s_0} G_0$$

that satisfies $s_n \circ s_{n+1} = s_n \circ t_{n+1}$ and $t_n \circ s_{n+1} = t_n \circ t_{n+1}$; $\bigwedge \check{C}$ morphism $r_n^{[n]} : C \to C$ for each 0 < m < n, where

• A $\check{\mathcal{G}}$ -morphism $*_p^{[n]} : G_n \times_{G_p} G_n \to G_n$ for each $0 \leq p < n$, where

• A $\check{\mathcal{G}}$ -morphism $i_n: G_n \to G_{n+1}$.

These data are required to satisfy the axioms of strict ∞ -categories in terms of commutative diagrams in $\check{\mathcal{G}}$.

These data are required to satisfy the axioms of strict ∞ -categories in terms of commutative diagrams in $\check{\mathcal{G}}$.

A game-semantic ∞ -category G is a game-semantic ∞ -groupoid if it is equipped with $\check{\mathcal{G}}$ -morphisms with the 'expected' sources and targets

$$G_n \xrightarrow{\operatorname{inv}_n} G_n \qquad G_n \xrightarrow{\operatorname{ret}_n} G_{n+1} \qquad G_n \xrightarrow{\operatorname{sec}_n} G_{n+1} \qquad G_n \xrightarrow{\operatorname{tri}_n} G_{n+2}$$

that are functorial (on the nose).

These data are required to satisfy the axioms of strict ∞ -categories in terms of commutative diagrams in $\check{\mathcal{G}}$.

A game-semantic ∞ -category G is a game-semantic ∞ -groupoid if it is equipped with $\check{\mathcal{G}}$ -morphisms with the 'expected' sources and targets

$$G_n \xrightarrow{\operatorname{inv}_n} G_n \qquad G_n \xrightarrow{\operatorname{ret}_n} G_{n+1} \qquad G_n \xrightarrow{\operatorname{sec}_n} G_{n+1} \qquad G_n \xrightarrow{\operatorname{tri}_n} G_{n+2}$$

that are functorial (on the nose). 'Expected' sources and targets:

These data are required to satisfy the axioms of strict ∞ -categories in terms of commutative diagrams in $\check{\mathcal{G}}$.

A game-semantic ∞ -category G is a game-semantic ∞ -groupoid if it is equipped with $\check{\mathcal{G}}$ -morphisms with the 'expected' sources and targets

$$G_n \xrightarrow{\operatorname{inv}_n} G_n \qquad G_n \xrightarrow{\operatorname{ret}_n} G_{n+1} \qquad G_n \xrightarrow{\operatorname{sec}_n} G_{n+1} \qquad G_n \xrightarrow{\operatorname{tri}_n} G_{n+2}$$

that are functorial (on the nose).

'Expected' sources and targets: Given an *n*-cell $f \in \mathcal{G}(1, G_n)$, one gets

$$f^{-1} := \operatorname{inv} \circ f : t \circ f \to s \circ f \qquad \eta_f := \operatorname{ret} \circ f : f^{-1} * f \to i \circ s \circ f$$
$$\epsilon_f := \operatorname{sec} \circ f : f * f^{-1} \to i \circ t \circ f \qquad \delta_f := \operatorname{tri} \circ f : (i \circ f) * \eta_f \to \epsilon_f * (i \circ f)$$

These data are required to satisfy the axioms of strict ∞ -categories in terms of commutative diagrams in $\check{\mathcal{G}}$.

A game-semantic ∞ -category G is a game-semantic ∞ -groupoid if it is equipped with $\check{\mathcal{G}}$ -morphisms with the 'expected' sources and targets

$$G_n \xrightarrow{\operatorname{inv}_n} G_n \qquad G_n \xrightarrow{\operatorname{ret}_n} G_{n+1} \qquad G_n \xrightarrow{\operatorname{sec}_n} G_{n+1} \qquad G_n \xrightarrow{\operatorname{tri}_n} G_{n+2}$$

that are functorial (on the nose).

'Expected' sources and targets: Given an *n*-cell $f \in \mathcal{G}(1, G_n)$, one gets

$$f^{-1} := \operatorname{inv} \circ f : t \circ f \to s \circ f \qquad \eta_f := \operatorname{ret} \circ f : f^{-1} * f \to i \circ s \circ f$$

$$\epsilon_f := \operatorname{sec} \circ f : f * f^{-1} \to i \circ t \circ f \qquad \delta_f := \operatorname{tri} \circ f : (i \circ f) * \eta_f \to \epsilon_f * (i \circ f)$$

They correspond to type equivalence so that we model univalence.

Define a (set-theoretic) ∞ -groupoid |G| by $|G|_n := \mathcal{G}(1, G_n)$.

Define a (set-theoretic) ∞ -groupoid |G| by $|G|_n := \mathcal{G}(1, G_n)$.

Definition (Game-semantic ∞ -functors)

Define game-semantic ∞ -functors between game-semantic ∞ -groupoids G and H to be strategies $\phi \in \operatorname{Tm}_{\mathcal{G}}(N, H^G)$, where $H^G(\underline{n}) := H_n^{G_n}$, s.t. $\phi^* := (\phi_n^* := \phi \circ \underline{n} : H_n^{G_n})_{\underline{n} \in \mathcal{G}(1,N)}$ forms ∞ -functors $|G| \to |H|$ internalised in \mathcal{G} that preserve the data of inverses.

Define a (set-theoretic) ∞ -groupoid |G| by $|G|_n := \mathcal{G}(1, G_n)$.

Definition (Game-semantic ∞ -functors)

Define *game-semantic* ∞ -*functors* between game-semantic ∞ -groupoids G and H to be strategies $\phi \in \operatorname{Tm}_{\mathcal{G}}(N, H^G)$, where $H^G(\underline{n}) := H_n^{G_n}$, s.t. $\phi^* := (\phi_n^* := \phi \circ \underline{n} : H_n^{G_n})_{\underline{n} \in \mathcal{G}(1,N)}$ forms ∞ -functors $|G| \to |H|$ internalised in \mathcal{G} that preserve the data of inverses.

Explicitly, the *functoriality* of the family ϕ^* means: $s_n \circ \phi_{n+1}^* = \phi_n^* \circ s_n$, $t_n \circ \phi_{n+1}^* = \phi_n^* \circ t_n$, $\phi_n^* \circ *_p^{[n]} = *_p^{[n]} \circ (\phi_n^* \times_{B_p} \phi_n^*)$ and $\phi_{n+1}^* \circ i_n = i_n \circ \phi_n^*$.

Define a (set-theoretic) ∞ -groupoid |G| by $|G|_n := \mathcal{G}(1, G_n)$.

Definition (Game-semantic ∞ -functors)

Define game-semantic ∞ -functors between game-semantic ∞ -groupoids G and H to be strategies $\phi \in \operatorname{Tm}_{\mathcal{G}}(N, H^G)$, where $H^G(\underline{n}) := H_n^{G_n}$, s.t. $\phi^* := (\phi_n^* := \phi \circ \underline{n} : H_n^{G_n})_{\underline{n} \in \mathcal{G}(1,N)}$ forms ∞ -functors $|G| \to |H|$ internalised in \mathcal{G} that preserve the data of inverses.

Explicitly, the *functoriality* of the family ϕ^* means: $s_n \circ \phi_{n+1}^* = \phi_n^* \circ s_n$, $t_n \circ \phi_{n+1}^* = \phi_n^* \circ t_n$, $\phi_n^* \circ *_p^{[n]} = *_p^{[n]} \circ (\phi_n^* \times_{B_p} \phi_n^*)$ and $\phi_{n+1}^* \circ i_n = i_n \circ \phi_n^*$.

Lemma (∞ -category of game-semantic ∞ -categories) The category $\infty \mathcal{G}$ Gpd of game-semantic ∞ -groupoids and ∞ -functors gives rise to a (set-theoretic) ∞ -category.

Define a (set-theoretic) ∞ -groupoid |G| by $|G|_n := \mathcal{G}(1, G_n)$.

Definition (Game-semantic ∞ -functors)

Define game-semantic ∞ -functors between game-semantic ∞ -groupoids G and H to be strategies $\phi \in \operatorname{Tm}_{\mathcal{G}}(N, H^G)$, where $H^G(\underline{n}) := H_n^{G_n}$, s.t. $\phi^* := (\phi_n^* := \phi \circ \underline{n} : H_n^{G_n})_{\underline{n} \in \mathcal{G}(1,N)}$ forms ∞ -functors $|G| \to |H|$ internalised in \mathcal{G} that preserve the data of inverses.

Explicitly, the *functoriality* of the family ϕ^* means: $s_n \circ \phi_{n+1}^* = \phi_n^* \circ s_n$, $t_n \circ \phi_{n+1}^* = \phi_n^* \circ t_n$, $\phi_n^* \circ *_p^{[n]} = *_p^{[n]} \circ (\phi_n^* \times_{B_p} \phi_n^*)$ and $\phi_{n+1}^* \circ i_n = i_n \circ \phi_n^*$.

Lemma (∞ -category of game-semantic ∞ -categories) The category $\infty \mathcal{G}$ Gpd of game-semantic ∞ -groupoids and ∞ -functors gives rise to a (set-theoretic) ∞ -category.

The map $|_{\text{-}}|$ extends to a functor $\infty \mathcal{G}\mathrm{Gpd} \to \infty \mathrm{Gpd} \coloneqq \infty \mathrm{Set}\mathrm{Gpd}.$

This functor $| \cdot | : \infty \mathcal{G}Gpd \to \infty Gpd$ sends game-semantic ∞ -functors $\phi : G \to H$ to the (set-theoretic) ∞ -functors $|\phi| : |G| \to |H|$ given by

$$|\phi|_n : \gamma \in \mathcal{G}(1, G_n) \mapsto \phi_n^\star \circ \gamma \in \mathcal{G}(1, H_n).$$

This functor $| \cdot | : \infty \mathcal{G}Gpd \to \infty Gpd$ sends game-semantic ∞ -functors $\phi : G \to H$ to the (set-theoretic) ∞ -functors $|\phi| : |G| \to |H|$ given by

 $|\phi|_n : \gamma \in \mathcal{G}(1, G_n) \mapsto \phi_n^\star \circ \gamma \in \mathcal{G}(1, H_n).$

In $\infty \mathcal{G}$ Gpd, *n*-cells (n > 1) are game-semantic (n - 1)-transformations:

This functor $| \cdot | : \infty \mathcal{G}Gpd \to \infty Gpd$ sends game-semantic ∞ -functors $\phi : G \to H$ to the (set-theoretic) ∞ -functors $|\phi| : |G| \to |H|$ given by

 $|\phi|_n : \gamma \in \mathcal{G}(1, G_n) \mapsto \phi_n^\star \circ \gamma \in \mathcal{G}(1, H_n).$

In $\infty \mathcal{G}$ Gpd, *n*-cells (n > 1) are game-semantic (n - 1)-transformations:

Definition (Game-semantic transformations)

Define game-semantic transformations between game-semantic ∞ -functors $\phi, \psi: G \to H$ to be transformations $|\phi| \to |\psi|$ internalised in \mathcal{G} , and similarly game-semantic *n*-transformations for all n > 0.

This functor $| \cdot | : \infty \mathcal{G}Gpd \to \infty Gpd$ sends game-semantic ∞ -functors $\phi : G \to H$ to the (set-theoretic) ∞ -functors $|\phi| : |G| \to |H|$ given by

 $|\phi|_n: \gamma \in \mathcal{G}(1, G_n) \mapsto \phi_n^\star \circ \gamma \in \mathcal{G}(1, H_n).$

In $\infty \mathcal{G}$ Gpd, *n*-cells (n > 1) are game-semantic (n - 1)-transformations:

Definition (Game-semantic transformations)

Define game-semantic transformations between game-semantic ∞ -functors $\phi, \psi: G \to H$ to be transformations $|\phi| \to |\psi|$ internalised in \mathcal{G} , and similarly game-semantic *n*-transformations for all n > 0.

Explicitly, a game-semantic 1-transformation $\phi \to \psi$ is a \mathcal{G} -morphism $\alpha: G_0 \to H_1$ with $s \circ \alpha = \phi_0^*, t \circ \alpha = \psi_0^*$ and naturality.

This functor $| \cdot | : \infty \mathcal{G}Gpd \to \infty Gpd$ sends game-semantic ∞ -functors $\phi : G \to H$ to the (set-theoretic) ∞ -functors $|\phi| : |G| \to |H|$ given by

 $|\phi|_n : \gamma \in \mathcal{G}(1, G_n) \mapsto \phi_n^\star \circ \gamma \in \mathcal{G}(1, H_n).$

In $\infty \mathcal{G}$ Gpd, *n*-cells (n > 1) are game-semantic (n - 1)-transformations:

Definition (Game-semantic transformations)

Define game-semantic transformations between game-semantic ∞ -functors $\phi, \psi: G \to H$ to be transformations $|\phi| \to |\psi|$ internalised in \mathcal{G} , and similarly game-semantic *n*-transformations for all n > 0.

Explicitly, a game-semantic 1-transformation $\phi \to \psi$ is a \mathcal{G} -morphism $\alpha: G_0 \to H_1$ with $s \circ \alpha = \phi_0^*, t \circ \alpha = \psi_0^*$ and naturality. The functor $|_{-}|$ extends to an ∞ -functor $\infty \mathcal{G}$ Gpd $\to \infty$ Gpd by

$$|\alpha|_{\gamma} := \alpha \circ \gamma \in \mathcal{G}(1, H_{n+1}) \quad (\gamma \in \mathcal{G}(1, G_0)).$$

,

Now, one can sketch the game semantics $[\![-]\!]_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}\mathrm{Gpd}$:

,

14/19

Now, one can sketch the game semantics $[\![-]\!]_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}\mathrm{Gpd}$:

,

• $\vdash \Gamma \operatorname{\mathsf{ctx}} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_0;$

Now, one can sketch the game semantics $\llbracket_{-} \rrbracket_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}$ Gpd:

- $\vdash \Gamma \operatorname{\mathsf{ctx}} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_0;$
- $\Gamma \vdash A \text{ ty} \mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \mathrm{Gpd}_1(|\llbracket \Gamma \rrbracket_{\mathcal{G}}|, \infty \mathcal{G}\mathrm{Gpd}),$

Now, one can sketch the game semantics $\llbracket_{-} \rrbracket_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}$ Gpd:

- $\vdash \Gamma \operatorname{\mathsf{ctx}} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_0;$
- $\Gamma \vdash A$ ty $\mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \operatorname{Gpd}_1(|\llbracket \Gamma \rrbracket_{\mathcal{G}}|, \infty \mathcal{G} \operatorname{Gpd})$, where we later extend the ∞ -category $\infty \mathcal{G} \operatorname{Gpd}$ to an ∞ -groupoid;

Now, one can sketch the game semantics $[\![-]\!]_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}\mathrm{Gpd}$:

- $\vdash \Gamma \operatorname{\mathsf{ctx}} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_0;$
- $\Gamma \vdash A$ ty $\mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \operatorname{Gpd}_1(|\llbracket \Gamma \rrbracket_{\mathcal{G}}|, \infty \mathcal{G} \operatorname{Gpd})$, where we later extend the ∞ -category $\infty \mathcal{G} \operatorname{Gpd}$ to an ∞ -groupoid;
- $\Gamma \vdash a : A \mapsto \llbracket a \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \mathrm{Gpd}_1(\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket A \rrbracket_{\mathcal{G}})$ that is a section of the first projection $\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket A \rrbracket_{\mathcal{G}} \to \llbracket \Gamma \rrbracket_{\mathcal{G}}$ (of Grothendieck const.);

Now, one can sketch the game semantics $[\![-]\!]_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}\mathrm{Gpd}$:

- $\vdash \Gamma \operatorname{\mathsf{ctx}} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_0;$
- $\Gamma \vdash A$ ty $\mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \operatorname{Gpd}_1(|\llbracket \Gamma \rrbracket_{\mathcal{G}}|, \infty \mathcal{G} \operatorname{Gpd})$, where we later extend the ∞ -category $\infty \mathcal{G} \operatorname{Gpd}$ to an ∞ -groupoid;
- $\Gamma \vdash a : A \mapsto \llbracket a \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \mathrm{Gpd}_1(\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket A \rrbracket_{\mathcal{G}})$ that is a section of the first projection $\llbracket \Gamma \rrbracket_{\mathcal{G}}.\llbracket A \rrbracket_{\mathcal{G}} \to \llbracket \Gamma \rrbracket_{\mathcal{G}}$ (of Grothendieck const.);
- $\Gamma \vdash p : a_1 =_A a_2 \mapsto \llbracket p \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_2(\llbracket a_1 \rrbracket_{\mathcal{G}}, \llbracket a_2 \rrbracket_{\mathcal{G}});$

Now, one can sketch the game semantics $[\![-]\!]_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}\mathrm{Gpd}$:

- $\vdash \Gamma \operatorname{\mathsf{ctx}} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_0;$
- $\Gamma \vdash A$ ty $\mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \operatorname{Gpd}_1(|\llbracket \Gamma \rrbracket_{\mathcal{G}}|, \infty \mathcal{G} \operatorname{Gpd})$, where we later extend the ∞ -category $\infty \mathcal{G} \operatorname{Gpd}$ to an ∞ -groupoid;
- $\Gamma \vdash a : A \mapsto \llbracket a \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \mathrm{Gpd}_1(\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket A \rrbracket_{\mathcal{G}})$ that is a section of the first projection $\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket A \rrbracket_{\mathcal{G}} \to \llbracket \Gamma \rrbracket_{\mathcal{G}}$ (of Grothendieck const.);
- $\Gamma \vdash p : a_1 =_A a_2 \mapsto \llbracket p \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_2(\llbracket a_1 \rrbracket_{\mathcal{G}}, \llbracket a_2 \rrbracket_{\mathcal{G}});$
- $\Gamma \vdash q : p_1 =_{a_1 =_A a_2} p_2 \mapsto \llbracket q \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_3(\llbracket p_1 \rrbracket_{\mathcal{G}}, \llbracket p_2 \rrbracket_{\mathcal{G}}),$

14/19

Now, one can sketch the game semantics $[\![-]\!]_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}\mathrm{Gpd}$:

- $\vdash \Gamma \operatorname{\mathsf{ctx}} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_0;$
- $\Gamma \vdash A$ ty $\mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \operatorname{Gpd}_1(|\llbracket \Gamma \rrbracket_{\mathcal{G}}|, \infty \mathcal{G} \operatorname{Gpd})$, where we later extend the ∞ -category $\infty \mathcal{G} \operatorname{Gpd}$ to an ∞ -groupoid;
- $\Gamma \vdash a : A \mapsto \llbracket a \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \mathrm{Gpd}_1(\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket A \rrbracket_{\mathcal{G}})$ that is a section of the first projection $\llbracket \Gamma \rrbracket_{\mathcal{G}}.\llbracket A \rrbracket_{\mathcal{G}} \to \llbracket \Gamma \rrbracket_{\mathcal{G}}$ (of Grothendieck const.);
- $\Gamma \vdash p : a_1 =_A a_2 \mapsto \llbracket p \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_2(\llbracket a_1 \rrbracket_{\mathcal{G}}, \llbracket a_2 \rrbracket_{\mathcal{G}});$
- $\Gamma \vdash q : p_1 =_{a_1 =_A a_2} p_2 \mapsto \llbracket q \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_3(\llbracket p_1 \rrbracket_{\mathcal{G}}, \llbracket p_2 \rrbracket_{\mathcal{G}})$, and so on.

14/19

Now, one can sketch the game semantics $[\![-]\!]_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}\mathrm{Gpd}$:

- $\vdash \Gamma \operatorname{\mathsf{ctx}} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_0;$
- $\Gamma \vdash A$ ty $\mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \operatorname{Gpd}_1(|\llbracket \Gamma \rrbracket_{\mathcal{G}}|, \infty \mathcal{G} \operatorname{Gpd})$, where we later extend the ∞ -category $\infty \mathcal{G} \operatorname{Gpd}$ to an ∞ -groupoid;
- $\Gamma \vdash a : A \mapsto \llbracket a \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \mathrm{Gpd}_1(\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket A \rrbracket_{\mathcal{G}})$ that is a section of the first projection $\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket A \rrbracket_{\mathcal{G}} \to \llbracket \Gamma \rrbracket_{\mathcal{G}}$ (of Grothendieck const.);
- $\Gamma \vdash p : a_1 =_A a_2 \mapsto \llbracket p \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_2(\llbracket a_1 \rrbracket_{\mathcal{G}}, \llbracket a_2 \rrbracket_{\mathcal{G}});$
- $\Gamma \vdash q : p_1 =_{a_1 =_A a_2} p_2 \mapsto \llbracket q \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_3(\llbracket p_1 \rrbracket_{\mathcal{G}}, \llbracket p_2 \rrbracket_{\mathcal{G}})$, and so on.

We interpret One-, Zero- and N-types by discrete game-semantic ∞ -groupoids,

Now, one can sketch the game semantics $[\![-]\!]_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}\mathrm{Gpd}$:

- $\vdash \Gamma \operatorname{\mathsf{ctx}} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_0;$
- $\Gamma \vdash A$ ty $\mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \operatorname{Gpd}_1(|\llbracket \Gamma \rrbracket_{\mathcal{G}}|, \infty \mathcal{G} \operatorname{Gpd})$, where we later extend the ∞ -category $\infty \mathcal{G} \operatorname{Gpd}$ to an ∞ -groupoid;
- $\Gamma \vdash a : A \mapsto \llbracket a \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \mathrm{Gpd}_1(\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket A \rrbracket_{\mathcal{G}})$ that is a section of the first projection $\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket A \rrbracket_{\mathcal{G}} \to \llbracket \Gamma \rrbracket_{\mathcal{G}}$ (of Grothendieck const.);
- $\Gamma \vdash p : a_1 =_A a_2 \mapsto \llbracket p \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_2(\llbracket a_1 \rrbracket_{\mathcal{G}}, \llbracket a_2 \rrbracket_{\mathcal{G}});$
- $\Gamma \vdash q : p_1 =_{a_1 =_A a_2} p_2 \mapsto \llbracket q \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_3(\llbracket p_1 \rrbracket_{\mathcal{G}}, \llbracket p_2 \rrbracket_{\mathcal{G}})$, and so on.

We interpret One-, Zero- and N-types by discrete game-semantic ∞ -groupoids, and Id-type by $\mathrm{Id}_A(\gamma, \alpha_1, \alpha_2) := A(\gamma)(\alpha_1, \alpha_2) \hookrightarrow A(\gamma)$.

Now, one can sketch the game semantics $[\![-]\!]_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}\mathrm{Gpd}$:

- $\vdash \Gamma \operatorname{\mathsf{ctx}} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_0;$
- $\Gamma \vdash A$ ty $\mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \operatorname{Gpd}_1(|\llbracket \Gamma \rrbracket_{\mathcal{G}}|, \infty \mathcal{G} \operatorname{Gpd})$, where we later extend the ∞ -category $\infty \mathcal{G} \operatorname{Gpd}$ to an ∞ -groupoid;
- $\Gamma \vdash a : A \mapsto \llbracket a \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \mathrm{Gpd}_1(\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket A \rrbracket_{\mathcal{G}})$ that is a section of the first projection $\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket A \rrbracket_{\mathcal{G}} \to \llbracket \Gamma \rrbracket_{\mathcal{G}}$ (of Grothendieck const.);
- $\Gamma \vdash p : a_1 =_A a_2 \mapsto \llbracket p \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_2(\llbracket a_1 \rrbracket_{\mathcal{G}}, \llbracket a_2 \rrbracket_{\mathcal{G}});$
- $\Gamma \vdash q : p_1 =_{a_1 =_A a_2} p_2 \mapsto \llbracket q \rrbracket_{\mathcal{G}} \in \infty \mathcal{G}Gpd_3(\llbracket p_1 \rrbracket_{\mathcal{G}}, \llbracket p_2 \rrbracket_{\mathcal{G}})$, and so on.

We interpret One-, Zero- and N-types by discrete game-semantic ∞ -groupoids, and Id-type by $\mathrm{Id}_A(\gamma, \alpha_1, \alpha_2) := A(\gamma)(\alpha_1, \alpha_2) \hookrightarrow A(\gamma)$. In the rest of the talk, I focus on Pi-type and univalent universes. Game semantics of HoTT

Game semantics of Pi-type (part 1/2)

Game semantics of Pi-type (part 1/2)

In the following, I omit the semantic bracket $[\![_]\!]_{\mathcal{G}}.$

Game semantics of Pi-type (part 1/2)

In the following, I omit the semantic bracket $\llbracket_{-} \rrbracket_{\mathcal{G}}$. I interpret Pi-type by $\Pi(\Gamma, A) \in \infty \mathcal{G}Gpd_0$:

Game semantics of Pi-type (part 1/2)

In the following, I omit the semantic bracket $\llbracket - \rrbracket_{\mathcal{G}}$. I interpret Pi-type by $\Pi(\Gamma, A) \in \infty \mathcal{G}Gpd_0$:

• 0-cells are sections $\Gamma \to \Gamma A$ of the projection $\Gamma A \to \Gamma$;
In the following, I omit the semantic bracket $\llbracket - \rrbracket_{\mathcal{G}}$. I interpret Pi-type by $\Pi(\Gamma, A) \in \infty \mathcal{G}Gpd_0$:

- 0-cells are sections $\Gamma \to \Gamma A$ of the projection $\Gamma A \to \Gamma$;
- *n*-cells $\sigma \to \tau$ (n > 0) are game-semantic *n*-transformations $\sigma \to \tau$;

In the following, I omit the semantic bracket $\llbracket - \rrbracket_{\mathcal{G}}$. I interpret Pi-type by $\Pi(\Gamma, A) \in \infty \mathcal{G}Gpd_0$:

- 0-cells are sections $\Gamma \to \Gamma A$ of the projection $\Gamma A \to \Gamma$;
- *n*-cells $\sigma \to \tau$ (n > 0) are game-semantic *n*-transformations $\sigma \to \tau$;
- The composition $*_p : \Pi(\Gamma, A)_n \times_{\Pi(\Gamma, A)_p} \Pi(\Gamma, A)_n \to \Pi(\Gamma, A)_n$ internalises the following algorithm in \mathcal{G} :

In the following, I omit the semantic bracket $\llbracket - \rrbracket_{\mathcal{G}}$. I interpret Pi-type by $\Pi(\Gamma, A) \in \infty \mathcal{G}Gpd_0$:

- 0-cells are sections $\Gamma \to \Gamma A$ of the projection $\Gamma A \to \Gamma$;
- *n*-cells $\sigma \to \tau$ (n > 0) are game-semantic *n*-transformations $\sigma \to \tau$;
- The composition $*_p : \Pi(\Gamma, A)_n \times_{\Pi(\Gamma, A)_p} \Pi(\Gamma, A)_n \to \Pi(\Gamma, A)_n$ internalises the following algorithm in \mathcal{G} :

$$\left(\Gamma_0 \xrightarrow{\sigma,\tau} (\Gamma.A)_n\right) \mapsto \left(\Gamma_0 \xrightarrow{\Delta} \Gamma_0^2 \xrightarrow{\sigma \times \tau} (\Gamma.A)_n^2 \xrightarrow{*_p} (\Gamma.A)_n\right);$$

In the following, I omit the semantic bracket $\llbracket - \rrbracket_{\mathcal{G}}$. I interpret Pi-type by $\Pi(\Gamma, A) \in \infty \mathcal{G}Gpd_0$:

- 0-cells are sections $\Gamma \to \Gamma A$ of the projection $\Gamma A \to \Gamma$;
- *n*-cells $\sigma \to \tau$ (n > 0) are game-semantic *n*-transformations $\sigma \to \tau$;
- The composition $*_p : \Pi(\Gamma, A)_n \times_{\Pi(\Gamma, A)_p} \Pi(\Gamma, A)_n \to \Pi(\Gamma, A)_n$ internalises the following algorithm in \mathcal{G} :

$$\left(\Gamma_0 \xrightarrow{\sigma, \tau} (\Gamma.A)_n\right) \mapsto \left(\Gamma_0 \xrightarrow{\Delta} \Gamma_0^2 \xrightarrow{\sigma \times \tau} (\Gamma.A)_n^2 \xrightarrow{*_p} (\Gamma.A)_n\right);$$

• The identity $i_n : \Pi(\Gamma, A)_n \to \Pi(\Gamma, A)_{n+1}$ internalises the following algorithm in \mathcal{G} :

In the following, I omit the semantic bracket $\llbracket - \rrbracket_{\mathcal{G}}$. I interpret Pi-type by $\Pi(\Gamma, A) \in \infty \mathcal{G}Gpd_0$:

- 0-cells are sections $\Gamma \to \Gamma A$ of the projection $\Gamma A \to \Gamma$;
- *n*-cells $\sigma \to \tau$ (n > 0) are game-semantic *n*-transformations $\sigma \to \tau$;
- The composition $*_p : \Pi(\Gamma, A)_n \times_{\Pi(\Gamma, A)_p} \Pi(\Gamma, A)_n \to \Pi(\Gamma, A)_n$ internalises the following algorithm in \mathcal{G} :

$$\left(\Gamma_0 \xrightarrow{\sigma,\tau} (\Gamma.A)_n\right) \mapsto \left(\Gamma_0 \xrightarrow{\Delta} \Gamma_0^2 \xrightarrow{\sigma \times \tau} (\Gamma.A)_n^2 \xrightarrow{*_p} (\Gamma.A)_n\right);$$

• The identity $i_n : \Pi(\Gamma, A)_n \to \Pi(\Gamma, A)_{n+1}$ internalises the following algorithm in \mathcal{G} :

$$\left(\Gamma_0 \xrightarrow{\sigma} (\Gamma.A)_n\right) \mapsto \left(\Gamma_0 \xrightarrow{\sigma} (\Gamma.A)_n \xrightarrow{i_n} (\Gamma.A)_{n+1}\right),$$

15/19

In the following, I omit the semantic bracket $\llbracket - \rrbracket_{\mathcal{G}}$. I interpret Pi-type by $\Pi(\Gamma, A) \in \infty \mathcal{G}Gpd_0$:

- 0-cells are sections $\Gamma \to \Gamma A$ of the projection $\Gamma A \to \Gamma$;
- *n*-cells $\sigma \to \tau$ (n > 0) are game-semantic *n*-transformations $\sigma \to \tau$;
- The composition $*_p : \Pi(\Gamma, A)_n \times_{\Pi(\Gamma, A)_p} \Pi(\Gamma, A)_n \to \Pi(\Gamma, A)_n$ internalises the following algorithm in \mathcal{G} :

$$\left(\Gamma_0 \xrightarrow{\sigma,\tau} (\Gamma.A)_n\right) \mapsto \left(\Gamma_0 \xrightarrow{\Delta} \Gamma_0^2 \xrightarrow{\sigma \times \tau} (\Gamma.A)_n^2 \xrightarrow{*_p} (\Gamma.A)_n\right);$$

• The identity $i_n : \Pi(\Gamma, A)_n \to \Pi(\Gamma, A)_{n+1}$ internalises the following algorithm in \mathcal{G} :

$$\left(\Gamma_0 \xrightarrow{\sigma} (\Gamma.A)_n\right) \mapsto \left(\Gamma_0 \xrightarrow{\sigma} (\Gamma.A)_n \xrightarrow{i_n} (\Gamma.A)_{n+1}\right),$$

and similarly for the data of inverses: inv_n , ret_n , sec_n and tri_n .

Game semantics of HoTT

Game semantics of Pi-type (part 2/2)

Game-semantic trans. make sense as *identity proofs in Pi-type*.

Game-semantic trans. make sense as *identity proofs in Pi-type*.

where fun $(\phi) := \{ (n, m) \in \mathbb{N}^2 \mid \phi \circ \underline{n} = \underline{m} \}$, and similarly for fun (ψ) .

Game-semantic trans. make sense as *identity proofs in Pi-type*.

where fun $(\phi) := \{ (n, m) \in \mathbb{N}^2 \mid \phi \circ \underline{n} = \underline{m} \}$, and similarly for fun (ψ) .

• Validates *strict* funext: $Id_{\Pi(\Gamma,A)}(\phi,\psi) = \prod_{x:\Gamma} Id_{A(x)}(\phi(x),\psi(x));$

Game-semantic trans. make sense as *identity proofs in Pi-type*.

where fun $(\phi) := \{ (n, m) \in \mathbb{N}^2 \mid \phi \circ \underline{n} = \underline{m} \}$, and similarly for fun (ψ) .

- Validates *strict* funext: $Id_{\Pi(\Gamma,A)}(\phi,\psi) = \prod_{x:\Gamma} Id_{A(x)}(\phi(x),\psi(x));$
- *Nontrivial* computations that verify $fun(\phi) = fun(\psi)$;

Game-semantic trans. make sense as *identity proofs in Pi-type*.

where fun $(\phi) := \{ (n, m) \in \mathbb{N}^2 \mid \phi \circ \underline{n} = \underline{m} \}$, and similarly for fun (ψ) .

- Validates *strict* funext: $Id_{\Pi(\Gamma,A)}(\phi,\psi) = \prod_{x:\Gamma} Id_{A(x)}(\phi(x),\psi(x));$
- *Nontrivial* computations that verify $fun(\phi) = fun(\psi)$;
- The oracle O is crucial to handle the *infinitary* domain N.

Game-semantic trans. make sense as *identity proofs in Pi-type*.

where fun $(\phi) := \{ (n, m) \in \mathbb{N}^2 \mid \phi \circ \underline{n} = \underline{m} \}$, and similarly for fun (ψ) .

- Validates *strict* funext: $\mathrm{Id}_{\Pi(\Gamma,A)}(\phi,\psi) = \Pi_{x:\Gamma}\mathrm{Id}_{A(x)}(\phi(x),\psi(x));$
- *Nontrivial* computations that verify $fun(\phi) = fun(\psi)$;
- The oracle O is crucial to handle the *infinitary* domain N.

Some higher cells in $\Pi(\Gamma, A)$ are only weakly invertible, and so we must weaken the strict invertibility anyway (not only for univalence).

Game-semantic trans. make sense as *identity proofs in Pi-type*.

where fun $(\phi) := \{ (n, m) \in \mathbb{N}^2 \mid \phi \circ \underline{n} = \underline{m} \}$, and similarly for fun (ψ) .

- Validates *strict* funext: $\mathrm{Id}_{\Pi(\Gamma,A)}(\phi,\psi) = \Pi_{x:\Gamma}\mathrm{Id}_{A(x)}(\phi(x),\psi(x));$
- *Nontrivial* computations that verify $fun(\phi) = fun(\psi)$;
- The oracle O is crucial to handle the *infinitary* domain N.

Some higher cells in $\Pi(\Gamma, A)$ are only weakly invertible, and so we must weaken the strict invertibility anyway (not only for univalence).

• Identities in $\Pi(\Gamma, A)$ never visit the domain N;

Game-semantic trans. make sense as *identity proofs in Pi-type*.

where fun $(\phi) := \{ (n, m) \in \mathbb{N}^2 \mid \phi \circ \underline{n} = \underline{m} \}$, and similarly for fun (ψ) .

- Validates *strict* funext: $\mathrm{Id}_{\Pi(\Gamma,A)}(\phi,\psi) = \Pi_{x:\Gamma}\mathrm{Id}_{A(x)}(\phi(x),\psi(x));$
- *Nontrivial* computations that verify $fun(\phi) = fun(\psi)$;
- The oracle O is crucial to handle the *infinitary* domain N.

Some higher cells in $\Pi(\Gamma, A)$ are only weakly invertible, and so we must weaken the strict invertibility anyway (not only for univalence).

- Identities in $\Pi(\Gamma, A)$ never visit the domain N;
- Compositions in $\Pi(\Gamma, A)$ cannot undo a visit to the domain N.

 Extend the (set-theoretic) ∞-category ∞GGpd to an ∞-groupoid, in which higher cells are type equivalence;

- Extend the (set-theoretic) ∞-category ∞GGpd to an ∞-groupoid, in which higher cells are type equivalence;
- ② Internalise $\mathcal{U} \hookrightarrow \infty \mathcal{G}$ Gpd in \mathcal{G} , where plays on \mathcal{U}_0 encode freely generated objects in ∞ \mathcal{G} Gpd₀, and \mathcal{U}_n (n > 0) restricts ∞ \mathcal{G} Gpd_n.

- Extend the (set-theoretic) ∞-category ∞GGpd to an ∞-groupoid, in which higher cells are type equivalence;
- ② Internalise $\mathcal{U} \hookrightarrow \infty \mathcal{G}$ Gpd in \mathcal{G} , where plays on \mathcal{U}_0 encode freely generated objects in ∞ \mathcal{G} Gpd₀, and \mathcal{U}_n (n > 0) restricts ∞ \mathcal{G} Gpd_n.

Lemma (∞ -groupoid of game-semantic ∞ -groupoids) The following extends the ∞ -category $\infty \mathcal{G}$ Gpd to an ∞ -groupoid.

- Extend the (set-theoretic) ∞-category ∞GGpd to an ∞-groupoid, in which higher cells are type equivalence;
- ② Internalise $\mathcal{U} \hookrightarrow \infty \mathcal{G}$ Gpd in \mathcal{G} , where plays on \mathcal{U}_0 encode freely generated objects in ∞ \mathcal{G} Gpd₀, and \mathcal{U}_n (n > 0) restricts ∞ \mathcal{G} Gpd_n.

Lemma (∞ -groupoid of game-semantic ∞ -groupoids)

The following extends the ∞ -category $\infty \mathcal{G}Gpd$ to an ∞ -groupoid.

• 0-cells are game-semantic ∞ -groupoids;

- Extend the (set-theoretic) ∞-category ∞GGpd to an ∞-groupoid, in which higher cells are type equivalence;
- ② Internalise $\mathcal{U} \hookrightarrow \infty \mathcal{G}$ Gpd in \mathcal{G} , where plays on \mathcal{U}_0 encode freely generated objects in ∞ \mathcal{G} Gpd₀, and \mathcal{U}_n (n > 0) restricts ∞ \mathcal{G} Gpd_n.

Lemma (∞ -groupoid of game-semantic ∞ -groupoids)

The following extends the ∞ -category $\infty \mathcal{G}$ Gpd to an ∞ -groupoid.

- 0-cells are game-semantic ∞ -groupoids;
- A 1-cell $(\phi, \psi, \sigma, \tau, \mu) : G \to H$ consists of game-semantic ∞ -functors $\phi : G \to H$ and $\psi : H \to G$, trans. $\sigma : \psi * \phi \to i(G)$ and $\tau : \phi * \psi \to i(H)$, and 2-trans. $\mu : i(\phi) * \sigma \to \tau * i(\psi)$;

17/19

- Extend the (set-theoretic) ∞-category ∞GGpd to an ∞-groupoid, in which higher cells are type equivalence;
- ② Internalise $\mathcal{U} \hookrightarrow \infty \mathcal{G}$ Gpd in \mathcal{G} , where plays on \mathcal{U}_0 encode freely generated objects in ∞ \mathcal{G} Gpd₀, and \mathcal{U}_n (n > 0) restricts ∞ \mathcal{G} Gpd_n.

Lemma (∞ -groupoid of game-semantic ∞ -groupoids)

The following extends the ∞ -category $\infty \mathcal{G}$ Gpd to an ∞ -groupoid.

- 0-cells are game-semantic ∞ -groupoids;
- A 1-cell $(\phi, \psi, \sigma, \tau, \mu) : G \to H$ consists of game-semantic ∞ -functors $\phi : G \to H$ and $\psi : H \to G$, trans. $\sigma : \psi * \phi \to i(G)$ and $\tau : \phi * \psi \to i(H)$, and 2-trans. $\mu : i(\phi) * \sigma \to \tau * i(\psi)$;
- (n > 1) An *n*-cell $(\alpha, \beta, \eta, \epsilon, \delta) : (\phi, \psi, \sigma, \tau, \mu) \to (\phi', \psi', \sigma', \tau', \mu')$ consists of game-semantic (n - 1)-trans. $\alpha : \phi \to \phi'$ and $\beta : \phi' \to \phi$, *n*-trans. $\eta : \beta * \alpha \to i(\phi)$ and $\epsilon : \alpha * \beta \to i(\phi')$, and an (n + 1)-trans. $\delta : i(\alpha) * \eta \to \epsilon * i(\alpha)$;

N. Yamada (Univ. of Minnesota)

17/19

• The inverse of each *n*-cell $(\alpha, \beta, \eta, \epsilon, \delta)$ is the quadruple

 $\operatorname{inv}(\alpha,\beta,\eta,\epsilon,\delta) \coloneqq (\beta,\alpha,\epsilon,\eta,\operatorname{dual}(\delta)),$

where dual(μ): $i(\beta) * \epsilon \to \eta * i(\beta)$ is too technical to present here;

• The inverse of each *n*-cell $(\alpha, \beta, \eta, \epsilon, \delta)$ is the quadruple

 $\operatorname{inv}(\alpha,\beta,\eta,\epsilon,\delta) := (\beta,\alpha,\epsilon,\eta,\operatorname{dual}(\delta)),$

where dual(μ): $i(\beta) * \epsilon \to \eta * i(\beta)$ is too technical to present here;

• The identity on each 0-cell G is the quintuple

 $i(G) \mathrel{\mathop:}= (i(G), i(G), i^2(G), i^2(G), i^3(G));$

• The inverse of each *n*-cell $(\alpha, \beta, \eta, \epsilon, \delta)$ is the quadruple

 $\operatorname{inv}(\alpha,\beta,\eta,\epsilon,\delta) := (\beta,\alpha,\epsilon,\eta,\operatorname{dual}(\delta)),$

where dual(μ): i(β) * ε → η * i(β) is too technical to present here;
The identity on each 0-cell G is the quintuple

$$i(G) := (i(G), i(G), i^2(G), i^2(G), i^3(G));$$

• (n > 0) The identity on each *n*-cell $(\alpha, \beta, \eta, \epsilon, \delta)$ is the quintuple

$$i(\alpha,\beta,\eta,\epsilon,\delta) \coloneqq (i(\alpha),i(\alpha),i^2(\alpha),i^2(\alpha),i^3(\alpha));$$

• The inverse of each $n\text{-cell}~(\alpha,\beta,\eta,\epsilon,\delta)$ is the quadruple

 $\operatorname{inv}(\alpha,\beta,\eta,\epsilon,\delta) := (\beta,\alpha,\epsilon,\eta,\operatorname{dual}(\delta)),$

where dual(μ): i(β) * ε → η * i(β) is too technical to present here;
The identity on each 0-cell G is the quintuple

$$i(G) := (i(G), i(G), i^2(G), i^2(G), i^3(G));$$

• (n > 0) The identity on each *n*-cell $(\alpha, \beta, \eta, \epsilon, \delta)$ is the quintuple

$$i(\alpha,\beta,\eta,\epsilon,\delta) := (i(\alpha),i(\alpha),i^2(\alpha),i^2(\alpha),i^3(\alpha));$$

• $\operatorname{ret}(\alpha, \beta, \eta, \epsilon, \delta) := (\eta, \operatorname{inv} \circ \eta, \operatorname{ret} \circ \eta, \sec \circ \eta, \operatorname{tri} \circ \eta)$, and similarly for $\operatorname{sec}(\alpha, \beta, \eta, \epsilon, \delta)$ and $\operatorname{tri}(\alpha, \beta, \eta, \epsilon, \delta)$;

• The $*_p$ -composition of composable *n*-cells $(\alpha, \beta, \eta, \epsilon, \delta)$ and $(\alpha', \beta', \eta', \epsilon', \delta')$ is the quintuple

$$\begin{aligned} & (\alpha',\beta',\eta',\epsilon',\delta')*_p(\alpha,\beta,\eta,\epsilon,\delta) \\ & \coloneqq \begin{cases} (\alpha'*_n\alpha,\beta*_n\beta',\eta*_{n+1}(i(\beta)*_n\eta'*_ni(\alpha)),\dots) & \text{if } p=n-1; \\ (\alpha'*_p\alpha,\beta'*_p\beta,\eta'*_p\eta,\epsilon'*_p\epsilon,\delta'*_p\delta) & \text{if } p$$

• The $*_p$ -composition of composable *n*-cells $(\alpha, \beta, \eta, \epsilon, \delta)$ and $(\alpha', \beta', \eta', \epsilon', \delta')$ is the quintuple

$$\begin{aligned} & (\alpha',\beta',\eta',\epsilon',\delta') *_p (\alpha,\beta,\eta,\epsilon,\delta) \\ & \coloneqq \begin{cases} (\alpha'*_n\alpha,\beta*_n\beta',\eta*_{n+1}(i(\beta)*_n\eta'*_ni(\alpha)),\dots) & \text{if } p=n-1; \\ (\alpha'*_p\alpha,\beta'*_p\beta,\eta'*_p\eta,\epsilon'*_p\epsilon,\delta'*_p\delta) & \text{if } p$$

For $(\mu : \Gamma_0 \to \mathcal{U}_0) \Leftrightarrow (\operatorname{fun}(\mu) \in \operatorname{Ty}_{\mathcal{G}}(\Gamma)_0)$, define the game \mathcal{U}_0 by

• The $*_p$ -composition of composable *n*-cells $(\alpha, \beta, \eta, \epsilon, \delta)$ and $(\alpha', \beta', \eta', \epsilon', \delta')$ is the quintuple

$$(\alpha', \beta', \eta', \epsilon', \delta') *_p (\alpha, \beta, \eta, \epsilon, \delta)$$

:=
$$\begin{cases} (\alpha' *_n \alpha, \beta *_n \beta', \eta *_{n+1} (i(\beta) *_n \eta' *_n i(\alpha)), \dots) & \text{if } p = n-1; \\ (\alpha' *_p \alpha, \beta' *_p \beta, \eta' *_p \eta, \epsilon' *_p \epsilon, \delta' *_p \delta) & \text{if } p < n-1, \end{cases}$$

For $(\mu: \Gamma_0 \to \mathcal{U}_0) \Leftrightarrow (\operatorname{fun}(\mu) \in \operatorname{Ty}_{\mathcal{G}}(\Gamma)_0)$, define the game \mathcal{U}_0 by

$$\begin{array}{c} \frac{q}{q} \\ \downarrow \\ \downarrow \\ \ddagger (N) \end{array}$$

 ΛI

• The $*_p$ -composition of composable *n*-cells $(\alpha, \beta, \eta, \epsilon, \delta)$ and $(\alpha', \beta', \eta', \epsilon', \delta')$ is the quintuple

$$(\alpha',\beta',\eta',\epsilon',\delta') *_p (\alpha,\beta,\eta,\epsilon,\delta)$$

:=
$$\begin{cases} (\alpha' *_n \alpha,\beta *_n \beta',\eta *_{n+1} (i(\beta) *_n \eta' *_n i(\alpha)),\dots) & \text{if } p = n-1; \\ (\alpha' *_p \alpha,\beta' *_p \beta,\eta' *_p \eta,\epsilon' *_p \epsilon,\delta' *_p \delta) & \text{if } p < n-1, \end{cases}$$

For $(\mu : \Gamma_0 \to \mathcal{U}_0) \Leftrightarrow (\operatorname{fun}(\mu) \in \operatorname{Ty}_{\mathcal{G}}(\Gamma)_0)$, define the game \mathcal{U}_0 by

• The $*_p$ -composition of composable *n*-cells $(\alpha, \beta, \eta, \epsilon, \delta)$ and $(\alpha', \beta', \eta', \epsilon', \delta')$ is the quintuple

$$\begin{aligned} & (\alpha',\beta',\eta',\epsilon',\delta') *_p (\alpha,\beta,\eta,\epsilon,\delta) \\ & \coloneqq \begin{cases} (\alpha'*_n\alpha,\beta*_n\beta',\eta*_{n+1}(i(\beta)*_n\eta'*_ni(\alpha)),\dots) & \text{if } p=n-1; \\ (\alpha'*_p\alpha,\beta'*_p\beta,\eta'*_p\eta,\epsilon'*_p\epsilon,\delta'*_p\delta) & \text{if } p$$

For $(\mu : \Gamma_0 \to \mathcal{U}_0) \Leftrightarrow (\operatorname{fun}(\mu) \in \operatorname{Ty}_{\mathcal{G}}(\Gamma)_0)$, define the game \mathcal{U}_0 by

