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Introduction

Background: MLTT vs. HoTT

Just like axiomatic set theory is explained by sets in an informal sense,
the conceptual foundation of Martin-Löf type theory (MLTT) is
computations in an informal sense (a.k.a. the BHK-interpretation).

Proofs/objects as computations (e.g., succ : ¬maxN);

MLTT as a foundation of constructive maths.

On the other hand, homotopy type theory (HoTT) is motivated by the
homotopical interpretation of MLTT.

HoTT = MLTT + univalence + higher inductive types (HITs);

Homotopical interpretation: formulas as spaces, proofs/objects as
points, and higher proofs/objects as paths/homotopies.
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computations in an informal sense (a.k.a. the BHK-interpretation).

Proofs/objects as computations (e.g., succ : ¬maxN);

MLTT as a foundation of constructive maths.

On the other hand, homotopy type theory (HoTT) is motivated by the
homotopical interpretation of MLTT.

HoTT = MLTT + univalence + higher inductive types (HITs);

Homotopical interpretation: formulas as spaces, proofs/objects as
points, and higher proofs/objects as paths/homotopies.

N. Yamada (Univ. of Minnesota) Game semantics of HoTT Feb. 11, 2021, Western 2 / 19



Introduction

Background: MLTT vs. HoTT

Just like axiomatic set theory is explained by sets in an informal sense,
the conceptual foundation of Martin-Löf type theory (MLTT) is
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Introduction

Motivation: computational understanding of HoTT

HoTT uncovers new connections between type theory, higher category
theory and homotopy theory, and is a powerful foundation of maths.
On the other hand,

The topological view is orthogonal to the BHK-interpretation.

Moreover,

Are proofs given by working mathematicians points in spaces?

Motivation (The BHK-interpretation of HoTT)

To extend the BHK-interpretation of MLTT to HoTT so that one can
better understand HoTT as a foundation of constructive maths.
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Introduction

Main results

Theorem (Game semantics of HoTT)

There exists game semantics of HoTT (viz., MLTT equipped with One-,
Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

My game semantics of HoTT interprets

Types as games between Player and Opponent;

Terms as strategies (or algorithms for Player to play on games);

Identity proofs as strategies that verify equality between strategies.

This model can be seen as a variant of the BHK-interpretation.

Corollary (Consistency and independence)

1 Consistency of HoTT + strict univalence: IdU (A,B) ≡ Eq(A,B);

2 Independence of Markov’s principle from this extended HoTT.
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Introduction

Why game semantics? (part 1/3)

Nevertheless, one might wonder why I choose game semantics among
computational models such as realisability.
My answer is the following advantages of game semantics:

Effective for the study of type theory (e.g., independence of MP);

Semantics of computational effects and linear logic;

Applications in program verification and model checking;

Rich in higher structures by its intensionality.

The last point is new, and so let me explain it in the next few slides.

N. Yamada (Univ. of Minnesota) Game semantics of HoTT Feb. 11, 2021, Western 5 / 19
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Introduction

Why game semantics? (part 2/3)

Definition (Simplified games)

A game is a rooted dag whose vertices (or moves) have parity O/P,
and paths from a root (or positions) have parity OPOP...

q

. . .

0
�

1

�

2
?

3

-

q

�

q

n
?

-

m
?

Definition (Simplified strategies)

A strategy σ on a game G, written σ : G, is a map{
odd-length positions m1m2 . . .m2i+1 in G

}
→
{

P-moves m in G
}

s.t. m1m2 . . .m2i+1m is a position in G.

(E.g., q 7→ q; qqn 7→ n+ 1.)
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Introduction

Why game semantics? (part 3/3)

Strategies on N ⇒ N computing constant zero:

q � q

n
?

- 0
?

q � q

n
?

- 0
?

They are extensionally the same yet intensionally different.
Games IdN (n,m) and IdN⇒N (φ, ψ) := Πx:N IdN (φ ◦ x, ψ ◦ x):

q � q

n
?

- n

q � q

qm �
-

n
?

-

�

n
-

IdN has at most one strategy, but not the case for IdN⇒N . In this way,
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Introduction

Related work and my contributions

A pioneering constructive model of HoTT is cubical sets initiated by
Bezem, Coquand and Huber, and developed by many others.

Homotopical in nature;

Constructivity on the meta-theory.

Other related work is cubical assemblies proposed by Uemura and
higher dimensional meaning explanation by Angiuli and Harper.

On cubical type theory;

The unit interval, dimensional variables and path types.

My approach: BHK-interpretation of HoTT; based on globular sets
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Game-semantic ∞-groupoids, ∞-functors and trans.

Overview of my approach

Throughout this work, ∞-groupoids refer to strict ∞-categories
whose morphisms are weakly invertible in the sense of type equivalence.

Definition (Game-semantic ∞-groupoids)

Define game-semantic ∞-groupoids to be ∞-groupoids internalised
in the category G of games (strictly, in the subcat Ǧ ↪→ G, a topos).

Forenotice:

Warren’s strict ∞-groupoid model modified and internalised in G;

Challenge: To recover Warren’s method with weak inverses;

Mostly generalised to finitely complete CwFs M with an NNO
such that each type A ∈ TyM(Γ) is a map M(1,Γ)→ Ob(M).
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Game-semantic ∞-groupoids, ∞-functors and trans.

Game-semantic ∞-groupoids (part 1/2)

Explicitly, a game-semantic ∞-category G consists of

A diagram in Ǧ

· · ·
s2-

t2
- G2

s1-

t1
- G1

s0-

t0
- G0

that satisfies sn ◦ sn+1 = sn ◦ tn+1 and tn ◦ sn+1 = tn ◦ tn+1;

A Ǧ-morphism ∗[n]
p : Gn ×Gp Gn → Gn for each 0 6 p < n, where

Gn ×Gp Gn
π2 - Gn

Gn

π1
?

sn−p
- Gp

tn−p

?

A Ǧ-morphism in : Gn → Gn+1.
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A Ǧ-morphism ∗[n]
p : Gn ×Gp Gn → Gn for each 0 6 p < n, where

Gn ×Gp Gn
π2 - Gn

Gn

π1
?

sn−p
- Gp

tn−p

?
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Game-semantic ∞-groupoids, ∞-functors and trans.

Game-semantic ∞-groupoids (part 2/2)

These data are required to satisfy the axioms of strict ∞-categories in
terms of commutative diagrams in Ǧ.
A game-semantic ∞-category G is a game-semantic ∞-groupoid if it is
equipped with Ǧ-morphisms with the ‘expected’ sources and targets

Gn
invn−→ Gn Gn

retn−→ Gn+1 Gn
secn−→ Gn+1 Gn

trin−→ Gn+2

that are functorial (on the nose).
‘Expected’ sources and targets: Given an n-cell f ∈ G(1, Gn), one gets

f−1 := inv ◦ f : t ◦ f → s ◦ f ηf := ret ◦ f : f−1 ∗ f → i ◦ s ◦ f

εf := sec◦ f : f ∗ f−1 → i◦ t◦ f δf := tri◦ f : (i◦ f)∗ηf → εf ∗ (i◦ f)

They correspond to type equivalence so that we model univalence.
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equipped with Ǧ-morphisms with the ‘expected’ sources and targets

Gn
invn−→ Gn Gn

retn−→ Gn+1 Gn
secn−→ Gn+1 Gn

trin−→ Gn+2

that are functorial (on the nose).
‘Expected’ sources and targets: Given an n-cell f ∈ G(1, Gn), one gets

f−1 := inv ◦ f : t ◦ f → s ◦ f ηf := ret ◦ f : f−1 ∗ f → i ◦ s ◦ f

εf := sec◦ f : f ∗ f−1 → i◦ t◦ f δf := tri◦ f : (i◦ f)∗ηf → εf ∗ (i◦ f)

They correspond to type equivalence so that we model univalence.

N. Yamada (Univ. of Minnesota) Game semantics of HoTT Feb. 11, 2021, Western 11 / 19



Game-semantic ∞-groupoids, ∞-functors and trans.

Game-semantic ∞-groupoids (part 2/2)

These data are required to satisfy the axioms of strict ∞-categories in
terms of commutative diagrams in Ǧ.
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Gn
invn−→ Gn Gn

retn−→ Gn+1 Gn
secn−→ Gn+1 Gn

trin−→ Gn+2

that are functorial (on the nose).

‘Expected’ sources and targets: Given an n-cell f ∈ G(1, Gn), one gets

f−1 := inv ◦ f : t ◦ f → s ◦ f ηf := ret ◦ f : f−1 ∗ f → i ◦ s ◦ f

εf := sec◦ f : f ∗ f−1 → i◦ t◦ f δf := tri◦ f : (i◦ f)∗ηf → εf ∗ (i◦ f)

They correspond to type equivalence so that we model univalence.

N. Yamada (Univ. of Minnesota) Game semantics of HoTT Feb. 11, 2021, Western 11 / 19



Game-semantic ∞-groupoids, ∞-functors and trans.

Game-semantic ∞-groupoids (part 2/2)

These data are required to satisfy the axioms of strict ∞-categories in
terms of commutative diagrams in Ǧ.
A game-semantic ∞-category G is a game-semantic ∞-groupoid if it is
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equipped with Ǧ-morphisms with the ‘expected’ sources and targets

Gn
invn−→ Gn Gn

retn−→ Gn+1 Gn
secn−→ Gn+1 Gn

trin−→ Gn+2

that are functorial (on the nose).
‘Expected’ sources and targets: Given an n-cell f ∈ G(1, Gn), one gets

f−1 := inv ◦ f : t ◦ f → s ◦ f ηf := ret ◦ f : f−1 ∗ f → i ◦ s ◦ f

εf := sec◦ f : f ∗ f−1 → i◦ t◦ f δf := tri◦ f : (i◦ f)∗ηf → εf ∗ (i◦ f)

They correspond to type equivalence so that we model univalence.

N. Yamada (Univ. of Minnesota) Game semantics of HoTT Feb. 11, 2021, Western 11 / 19



Game-semantic ∞-groupoids, ∞-functors and trans.

Game-semantic ∞-groupoids (part 2/2)

These data are required to satisfy the axioms of strict ∞-categories in
terms of commutative diagrams in Ǧ.
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Game-semantic ∞-groupoids, ∞-functors and trans.

Game-semantic ∞-functors

Define a (set-theoretic) ∞-groupoid |G| by |G|n := G(1, Gn).

Definition (Game-semantic ∞-functors)

Define game-semantic ∞-functors between game-semantic
∞-groupoids G and H to be strategies φ ∈ TmG(N,HG), where
HG(n) := HGn

n , s.t. φ? := (φ?n := φ◦n : HGn
n )n∈G(1,N) forms∞-functors

|G| → |H| internalised in G that preserve the data of inverses.

Explicitly, the functoriality of the family φ? means: sn ◦ φ?n+1 = φ?n ◦ sn,

tn ◦φ?n+1 = φ?n ◦ tn, φ?n ◦ ∗
[n]
p = ∗[n]

p ◦ (φ?n×Bp φ
?
n) and φ?n+1 ◦ in = in ◦φ?n.

Lemma (∞-category of game-semantic ∞-categories)

The category ∞GGpd of game-semantic ∞-groupoids and ∞-functors
gives rise to a (set-theoretic) ∞-category.

The map | | extends to a functor ∞GGpd→∞Gpd :=∞SetGpd.
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Game-semantic ∞-groupoids, ∞-functors and trans.

Game-semantic transformations

This functor | | :∞GGpd→∞Gpd sends game-semantic ∞-functors
φ : G→ H to the (set-theoretic) ∞-functors |φ| : |G| → |H| given by

|φ|n : γ ∈ G(1, Gn) 7→ φ?n ◦ γ ∈ G(1, Hn).

In ∞GGpd, n-cells (n > 1) are game-semantic (n− 1)-transformations:

Definition (Game-semantic transformations)

Define game-semantic transformations between game-semantic
∞-functors φ, ψ : G→ H to be transformations |φ| → |ψ| internalised
in G, and similarly game-semantic n-transformations for all n > 0.

Explicitly, a game-semantic 1-transformation φ→ ψ is a G-morphism
α : G0 → H1 with s ◦ α = φ?0, t ◦ α = ψ?0 and naturality.
The functor | | extends to an ∞-functor ∞GGpd→∞Gpd by

|α|γ := α ◦ γ ∈ G(1, Hn+1) (γ ∈ G(1, G0)).
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Game semantics of HoTT

Overview of the interpretation

Now, one can sketch the game semantics J KG of HoTT in ∞GGpd:

` Γ ctx 7→ JΓKG ∈ ∞GGpd0;

Γ ` A ty 7→ JAKG ∈ ∞Gpd1(|JΓKG |,∞GGpd)

,

where we later
extend the ∞-category ∞GGpd to an ∞-groupoid;

Γ ` a : A 7→ JaKG ∈ ∞GGpd1(JΓKG , JΓKG .JAKG) that is a section of
the first projection JΓKG .JAKG → JΓKG (of Grothendieck const.);

Γ ` p : a1 =A a2 7→ JpKG ∈ ∞GGpd2(Ja1KG , Ja2KG);

Γ ` q : p1 =a1=Aa2 p2 7→ JqKG ∈ ∞GGpd3(Jp1KG , Jp2KG), and so on.

We interpret One-, Zero- and N-types by discrete game-semantic
∞-groupoids, and Id-type by IdA(γ, α1, α2) := A(γ)(α1, α2) ↪→ A(γ).
In the rest of the talk, I focus on Pi-type and univalent universes.
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Game semantics of HoTT

Game semantics of Pi-type (part 1/2)

In the following, I omit the semantic bracket J KG .
I interpret Pi-type by Π(Γ, A) ∈ ∞GGpd0:

0-cells are sections Γ→ Γ.A of the projection Γ.A→ Γ;

n-cells σ → τ (n > 0) are game-semantic n-transformations σ → τ ;

The composition ∗p : Π(Γ, A)n ×Π(Γ,A)p Π(Γ, A)n → Π(Γ, A)n
internalises the following algorithm in G:(

Γ0
σ,τ−→ (Γ.A)n

)
7→
(

Γ0
∆−→ Γ2

0
σ×τ−→ (Γ.A)2

n

∗p−→ (Γ.A)n

)
;

The identity in : Π(Γ, A)n → Π(Γ, A)n+1 internalises the following
algorithm in G:(

Γ0
σ−→ (Γ.A)n

)
7→
(

Γ0
σ−→ (Γ.A)n

in−→ (Γ.A)n+1

)
,

and similarly for the data of inverses: invn, retn, secn and trin.
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Game semantics of HoTT

Game semantics of Pi-type (part 2/2)

Game-semantic trans. make sense as identity proofs in Pi-type.

IdN⇒N (φ, ψ) =

q � q

qn �
-

fun(φ)(n)
?

-

�

fun(ψ)(n)
-

where fun(φ) := { (n,m) ∈ N2 | φ ◦ n = m }, and similarly for fun(ψ).

Validates strict funext: IdΠ(Γ,A)(φ, ψ) = Πx:ΓIdA(x)(φ(x), ψ(x));

Nontrivial computations that verify fun(φ) = fun(ψ);

The oracle O is crucial to handle the infinitary domain N .

Some higher cells in Π(Γ, A) are only weakly invertible, and so we must
weaken the strict invertibility anyway (not only for univalence).

Identities in Π(Γ, A) never visit the domain N ;

Compositions in Π(Γ, A) cannot undo a visit to the domain N .
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Game semantics of HoTT

Game semantics of univalent universes (part 1/3)

1 Extend the (set-theoretic) ∞-category ∞GGpd to an ∞-groupoid,
in which higher cells are type equivalence;

2 Internalise U ↪→∞GGpd in G, where plays on U0 encode freely
generated objects in ∞GGpd0, and Un (n > 0) restricts ∞GGpdn.

Lemma (∞-groupoid of game-semantic ∞-groupoids)

The following extends the ∞-category ∞GGpd to an ∞-groupoid.

0-cells are game-semantic ∞-groupoids;
A 1-cell (φ, ψ, σ, τ, µ) : G→ H consists of game-semantic
∞-functors φ : G→ H and ψ : H → G, trans. σ : ψ ∗ φ→ i(G)
and τ : φ ∗ ψ → i(H), and 2-trans. µ : i(φ) ∗ σ → τ ∗ i(ψ);
(n > 1) An n-cell (α, β, η, ε, δ) : (φ, ψ, σ, τ, µ)→ (φ′, ψ′, σ′, τ ′, µ′)
consists of game-semantic (n− 1)-trans. α : φ→ φ′ and
β : φ′ → φ, n-trans. η : β ∗ α→ i(φ) and ε : α ∗ β → i(φ′), and an
(n+ 1)-trans. δ : i(α) ∗ η → ε ∗ i(α);
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Game semantics of HoTT

Game semantics of univalent universes (part 2/3)

The inverse of each n-cell (α, β, η, ε, δ) is the quadruple

inv(α, β, η, ε, δ) := (β, α, ε, η, dual(δ)),

where dual(µ) : i(β) ∗ ε→ η ∗ i(β) is too technical to present here;

The identity on each 0-cell G is the quintuple

i(G) := (i(G), i(G), i2(G), i2(G), i3(G));

(n > 0) The identity on each n-cell (α, β, η, ε, δ) is the quintuple

i(α, β, η, ε, δ) := (i(α), i(α), i2(α), i2(α), i3(α));

ret(α, β, η, ε, δ) := (η, inv ◦ η, ret ◦ η, sec ◦ η, tri ◦ η), and similarly
for sec(α, β, η, ε, δ) and tri(α, β, η, ε, δ);
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Game semantics of HoTT

Game semantics of univalent universes (part 3/3)

The ∗p-composition of composable n-cells (α, β, η, ε, δ) and
(α′, β′, η′, ε′, δ′) is the quintuple

(α′, β′, η′, ε′, δ′) ∗p (α, β, η, ε, δ)

:=

{
(α′ ∗n α, β ∗n β′, η ∗n+1 (i(β) ∗n η′ ∗n i(α)), . . . ) if p = n− 1;

(α′ ∗p α, β′ ∗p β, η′ ∗p η, ε′ ∗p ε, δ′ ∗p δ) if p < n− 1,

For
(
µ : Γ0 → U0

)
⇔
(
fun(µ) ∈ TyG(Γ)0

)
, define the game U0 by

N

q

](N)
?

Σ(A,B)

q

A � ](Σ)
?

- B

IdA(α1, α2)

q - ](Id)

A
�

α1 : A
?

α2 : A

-

N. Yamada (Univ. of Minnesota) Game semantics of HoTT Feb. 11, 2021, Western 19 / 19



Game semantics of HoTT

Game semantics of univalent universes (part 3/3)

The ∗p-composition of composable n-cells (α, β, η, ε, δ) and
(α′, β′, η′, ε′, δ′) is the quintuple

(α′, β′, η′, ε′, δ′) ∗p (α, β, η, ε, δ)

:=

{
(α′ ∗n α, β ∗n β′, η ∗n+1 (i(β) ∗n η′ ∗n i(α)), . . . ) if p = n− 1;

(α′ ∗p α, β′ ∗p β, η′ ∗p η, ε′ ∗p ε, δ′ ∗p δ) if p < n− 1,

For
(
µ : Γ0 → U0

)
⇔
(
fun(µ) ∈ TyG(Γ)0

)
, define the game U0 by

N

q

](N)
?

Σ(A,B)

q

A � ](Σ)
?

- B

IdA(α1, α2)

q - ](Id)

A
�

α1 : A
?

α2 : A

-

N. Yamada (Univ. of Minnesota) Game semantics of HoTT Feb. 11, 2021, Western 19 / 19



Game semantics of HoTT

Game semantics of univalent universes (part 3/3)

The ∗p-composition of composable n-cells (α, β, η, ε, δ) and
(α′, β′, η′, ε′, δ′) is the quintuple

(α′, β′, η′, ε′, δ′) ∗p (α, β, η, ε, δ)

:=

{
(α′ ∗n α, β ∗n β′, η ∗n+1 (i(β) ∗n η′ ∗n i(α)), . . . ) if p = n− 1;

(α′ ∗p α, β′ ∗p β, η′ ∗p η, ε′ ∗p ε, δ′ ∗p δ) if p < n− 1,

For
(
µ : Γ0 → U0

)
⇔
(
fun(µ) ∈ TyG(Γ)0

)
, define the game U0 by

N

q

](N)
?

Σ(A,B)

q

A � ](Σ)
?

- B

IdA(α1, α2)

q - ](Id)

A
�

α1 : A
?

α2 : A

-

N. Yamada (Univ. of Minnesota) Game semantics of HoTT Feb. 11, 2021, Western 19 / 19



Game semantics of HoTT

Game semantics of univalent universes (part 3/3)

The ∗p-composition of composable n-cells (α, β, η, ε, δ) and
(α′, β′, η′, ε′, δ′) is the quintuple

(α′, β′, η′, ε′, δ′) ∗p (α, β, η, ε, δ)

:=

{
(α′ ∗n α, β ∗n β′, η ∗n+1 (i(β) ∗n η′ ∗n i(α)), . . . ) if p = n− 1;

(α′ ∗p α, β′ ∗p β, η′ ∗p η, ε′ ∗p ε, δ′ ∗p δ) if p < n− 1,

For
(
µ : Γ0 → U0

)
⇔
(
fun(µ) ∈ TyG(Γ)0

)
, define the game U0 by

N

q

](N)
?

Σ(A,B)

q

A � ](Σ)
?

- B

IdA(α1, α2)

q - ](Id)

A
�

α1 : A
?

α2 : A

-

N. Yamada (Univ. of Minnesota) Game semantics of HoTT Feb. 11, 2021, Western 19 / 19



Game semantics of HoTT

Game semantics of univalent universes (part 3/3)

The ∗p-composition of composable n-cells (α, β, η, ε, δ) and
(α′, β′, η′, ε′, δ′) is the quintuple

(α′, β′, η′, ε′, δ′) ∗p (α, β, η, ε, δ)

:=

{
(α′ ∗n α, β ∗n β′, η ∗n+1 (i(β) ∗n η′ ∗n i(α)), . . . ) if p = n− 1;

(α′ ∗p α, β′ ∗p β, η′ ∗p η, ε′ ∗p ε, δ′ ∗p δ) if p < n− 1,

For
(
µ : Γ0 → U0

)
⇔
(
fun(µ) ∈ TyG(Γ)0

)
, define the game U0 by

N

q

](N)
?

Σ(A,B)

q

A � ](Σ)
?

- B

IdA(α1, α2)

q - ](Id)

A
�

α1 : A
?

α2 : A

-

N. Yamada (Univ. of Minnesota) Game semantics of HoTT Feb. 11, 2021, Western 19 / 19



Game semantics of HoTT

Game semantics of univalent universes (part 3/3)

The ∗p-composition of composable n-cells (α, β, η, ε, δ) and
(α′, β′, η′, ε′, δ′) is the quintuple

(α′, β′, η′, ε′, δ′) ∗p (α, β, η, ε, δ)

:=

{
(α′ ∗n α, β ∗n β′, η ∗n+1 (i(β) ∗n η′ ∗n i(α)), . . . ) if p = n− 1;

(α′ ∗p α, β′ ∗p β, η′ ∗p η, ε′ ∗p ε, δ′ ∗p δ) if p < n− 1,

For
(
µ : Γ0 → U0

)
⇔
(
fun(µ) ∈ TyG(Γ)0

)
, define the game U0 by

N

q

](N)
?

Σ(A,B)

q

A � ](Σ)
?

- B

IdA(α1, α2)

q - ](Id)

A
�

α1 : A
?

α2 : A

-

N. Yamada (Univ. of Minnesota) Game semantics of HoTT Feb. 11, 2021, Western 19 / 19


	Introduction
	Game-semantic -groupoids, -functors and transformations
	Game semantics of HoTT

