Game Semantics of Homotopy Type Theory

Norihiro Yamada
yamad041@umn.edu
University of Minnesota

Homotopy Type Theory Electronic Seminar Talks (HoTTEST)
Department of Mathematics, Western University
February 11, 2021

Background: MLTT vs. HoTT

Background: MLTT vs. HoTT

Just like axiomatic set theory is explained by sets in an informal sense, the conceptual foundation of Martin-Löf type theory (MLTT) is computations in an informal sense (a.k.a. the BHK-interpretation).

Background: MLTT vs. HoTT

Just like axiomatic set theory is explained by sets in an informal sense, the conceptual foundation of Martin-Löf type theory (MLTT) is computations in an informal sense (a.k.a. the BHK-interpretation).

- Proofs/objects as computations (e.g., succ : $\neg \max \mathbb{N}$);

Background: MLTT vs. HoTT

Just like axiomatic set theory is explained by sets in an informal sense, the conceptual foundation of Martin-Löf type theory (MLTT) is computations in an informal sense (a.k.a. the BHK-interpretation).

- Proofs/objects as computations (e.g., succ : $\neg \max \mathbb{N}$);
- MLTT as a foundation of constructive maths.

Background: MLTT vs. HoTT

Just like axiomatic set theory is explained by sets in an informal sense, the conceptual foundation of Martin-Löf type theory (MLTT) is computations in an informal sense (a.k.a. the BHK-interpretation).

- Proofs/objects as computations (e.g., succ : $\neg \max \mathbb{N}$);
- MLTT as a foundation of constructive maths.

On the other hand, homotopy type theory (HoTT) is motivated by the homotopical interpretation of MLTT.

Background: MLTT vs. HoTT

Just like axiomatic set theory is explained by sets in an informal sense, the conceptual foundation of Martin-Löf type theory (MLTT) is computations in an informal sense (a.k.a. the BHK-interpretation).

- Proofs/objects as computations (e.g., succ : $\neg \max \mathbb{N}$);
- MLTT as a foundation of constructive maths.

On the other hand, homotopy type theory (HoTT) is motivated by the homotopical interpretation of MLTT.

- HoTT = MLTT + univalence + higher inductive types (HITs);

Background: MLTT vs. HoTT

Just like axiomatic set theory is explained by sets in an informal sense, the conceptual foundation of Martin-Löf type theory (MLTT) is computations in an informal sense (a.k.a. the BHK-interpretation).

- Proofs/objects as computations (e.g., succ : $\neg \max \mathbb{N}$);
- MLTT as a foundation of constructive maths.

On the other hand, homotopy type theory (HoTT) is motivated by the homotopical interpretation of MLTT.

- HoTT = MLTT + univalence + higher inductive types (HITs);
- Homotopical interpretation: formulas as spaces, proofs/objects as points, and higher proofs/objects as paths/homotopies.

Motivation: computational understanding of HoTT

Motivation: computational understanding of HoTT

HoTT uncovers new connections between type theory, higher category theory and homotopy theory, and is a powerful foundation of maths.

Motivation: computational understanding of HoTT

HoTT uncovers new connections between type theory, higher category theory and homotopy theory, and is a powerful foundation of maths. On the other hand,

Motivation: computational understanding of HoTT

HoTT uncovers new connections between type theory, higher category theory and homotopy theory, and is a powerful foundation of maths. On the other hand,

The topological view is orthogonal to the BHK-interpretation.

Motivation: computational understanding of HoTT

HoTT uncovers new connections between type theory, higher category theory and homotopy theory, and is a powerful foundation of maths. On the other hand,

The topological view is orthogonal to the BHK-interpretation.
Moreover,

Motivation: computational understanding of HoTT

HoTT uncovers new connections between type theory, higher category theory and homotopy theory, and is a powerful foundation of maths. On the other hand,

The topological view is orthogonal to the BHK-interpretation.
Moreover,
Are proofs given by working mathematicians points in spaces?

Motivation: computational understanding of HoTT

HoTT uncovers new connections between type theory, higher category theory and homotopy theory, and is a powerful foundation of maths. On the other hand,

The topological view is orthogonal to the BHK-interpretation.
Moreover,
Are proofs given by working mathematicians points in spaces?

Motivation (The BHK-interpretation of HoTT)
To extend the BHK-interpretation of MLTT to HoTT so that one can better understand HoTT as a foundation of constructive maths.

Main results

Main results

Theorem (Game semantics of HoTT)

There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

Main results

Theorem (Game semantics of HoTT)

There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

My game semantics of HoTT interprets

Main results

Theorem (Game semantics of HoTT)

There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

My game semantics of HoTT interprets

- Types as games between Player and Opponent;

Main results

Theorem (Game semantics of HoTT)

There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

My game semantics of HoTT interprets

- Types as games between Player and Opponent;
- Terms as strategies (or algorithms for Player to play on games);

Main results

Theorem (Game semantics of HoTT)

There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

My game semantics of HoTT interprets

- Types as games between Player and Opponent;
- Terms as strategies (or algorithms for Player to play on games);
- Identity proofs as strategies that verify equality between strategies.

Main results

Theorem (Game semantics of HoTT)

There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

My game semantics of HoTT interprets

- Types as games between Player and Opponent;
- Terms as strategies (or algorithms for Player to play on games);
- Identity proofs as strategies that verify equality between strategies.

This model can be seen as a variant of the BHK-interpretation.

Main results

Theorem (Game semantics of HoTT)
There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

My game semantics of HoTT interprets

- Types as games between Player and Opponent;
- Terms as strategies (or algorithms for Player to play on games);
- Identity proofs as strategies that verify equality between strategies.

This model can be seen as a variant of the BHK-interpretation.
Corollary (Consistency and independence)

Main results

Theorem (Game semantics of HoTT)
There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

My game semantics of HoTT interprets

- Types as games between Player and Opponent;
- Terms as strategies (or algorithms for Player to play on games);
- Identity proofs as strategies that verify equality between strategies.

This model can be seen as a variant of the BHK-interpretation.
Corollary (Consistency and independence)
(1) Consistency of HoTT + strict univalence: $\operatorname{Id}_{U}(A, B) \equiv \operatorname{Eq}(A, B)$;

Main results

Theorem (Game semantics of HoTT)

There exists game semantics of HoTT (viz., MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as univalent universes).

My game semantics of HoTT interprets

- Types as games between Player and Opponent;
- Terms as strategies (or algorithms for Player to play on games);
- Identity proofs as strategies that verify equality between strategies.

This model can be seen as a variant of the BHK-interpretation.
Corollary (Consistency and independence)
(1) Consistency of HoTT + strict univalence: $\operatorname{Id}_{U}(A, B) \equiv \mathrm{Eq}(A, B)$;
(2) Independence of Markov's principle from this extended HoTT.

Why game semantics? (part $1 / 3$)

Why game semantics? (part $1 / 3$)

Nevertheless, one might wonder why I choose game semantics among computational models such as realisability.

Why game semantics? (part $1 / 3$)

Nevertheless, one might wonder why I choose game semantics among computational models such as realisability. My answer is the following advantages of game semantics:

Why game semantics? (part $1 / 3$)

Nevertheless, one might wonder why I choose game semantics among computational models such as realisability. My answer is the following advantages of game semantics:

- Effective for the study of type theory (e.g., independence of MP);

Why game semantics? (part $1 / 3$)

Nevertheless, one might wonder why I choose game semantics among computational models such as realisability. My answer is the following advantages of game semantics:

- Effective for the study of type theory (e.g., independence of MP);
- Semantics of computational effects and linear logic;

Why game semantics? (part $1 / 3$)

Nevertheless, one might wonder why I choose game semantics among computational models such as realisability. My answer is the following advantages of game semantics:

- Effective for the study of type theory (e.g., independence of MP);
- Semantics of computational effects and linear logic;
- Applications in program verification and model checking;

Why game semantics? (part $1 / 3$)

Nevertheless, one might wonder why I choose game semantics among computational models such as realisability. My answer is the following advantages of game semantics:

- Effective for the study of type theory (e.g., independence of MP);
- Semantics of computational effects and linear logic;
- Applications in program verification and model checking;
- Rich in higher structures by its intensionality.

Why game semantics? (part $1 / 3$)

Nevertheless, one might wonder why I choose game semantics among computational models such as realisability. My answer is the following advantages of game semantics:

- Effective for the study of type theory (e.g., independence of MP);
- Semantics of computational effects and linear logic;
- Applications in program verification and model checking;
- Rich in higher structures by its intensionality.

The last point is new, and so let me explain it in the next few slides.

Why game semantics? (part 2/3)

Why game semantics? (part 2/3)

Definition (Simplified games)

A game is a rooted dag whose vertices (or moves) have parity O / P, and paths from a root (or positions) have parity OPOP...

Why game semantics? (part 2/3)

Definition (Simplified games)

A game is a rooted dag whose vertices (or moves) have parity O / P, and paths from a root (or positions) have parity OPOP...

Why game semantics? (part 2/3)

Definition (Simplified games)

A game is a rooted dag whose vertices (or moves) have parity O / P, and paths from a root (or positions) have parity OPOP...

Why game semantics? (part 2/3)

Definition (Simplified games)

A game is a rooted dag whose vertices (or moves) have parity O / P, and paths from a root (or positions) have parity OPOP...

Why game semantics? (part 2/3)

Definition (Simplified games)

A game is a rooted dag whose vertices (or moves) have parity O / P, and paths from a root (or positions) have parity OPOP...

Why game semantics? (part 2/3)

Definition (Simplified games)

A game is a rooted dag whose vertices (or moves) have parity O / P, and paths from a root (or positions) have parity OPOP...

Definition (Simplified strategies)
A strategy σ on a game G, written $\sigma: G$, is a map
$\left\{\right.$ odd-length positions $m_{1} m_{2} \ldots m_{2 i+1}$ in $\left.G\right\} \rightarrow\{$ P-moves m in $G\}$ s.t. $m_{1} m_{2} \ldots m_{2 i+1} m$ is a position in G.

Why game semantics? (part 2/3)

Definition (Simplified games)

A game is a rooted dag whose vertices (or moves) have parity O / P, and paths from a root (or positions) have parity OPOP...

Definition (Simplified strategies)
A strategy σ on a game G, written $\sigma: G$, is a map
$\left\{\right.$ odd-length positions $m_{1} m_{2} \ldots m_{2 i+1}$ in $\left.G\right\} \rightarrow\{$ P-moves m in $G\}$ s.t. $m_{1} m_{2} \ldots m_{2 i+1} m$ is a position in G. (E.g., $q \mapsto q ; q q n \mapsto n+1$.)

Why game semantics? (part 3/3)

Why game semantics? (part 3/3)

Strategies on $N \Rightarrow N$ computing constant zero:

Why game semantics? (part 3/3)

Strategies on $N \Rightarrow N$ computing constant zero:

Why game semantics? (part 3/3)

Strategies on $N \Rightarrow N$ computing constant zero:

$$
q \longleftarrow q
$$

$$
n \longrightarrow 0
$$

Why game semantics? (part 3/3)

Strategies on $N \Rightarrow N$ computing constant zero:

Why game semantics? (part 3/3)

Strategies on $N \Rightarrow N$ computing constant zero:

Why game semantics? (part 3/3)

Strategies on $N \Rightarrow N$ computing constant zero:

They are extensionally the same yet intensionally different.

Why game semantics? (part 3/3)

Strategies on $N \Rightarrow N$ computing constant zero:

They are extensionally the same yet intensionally different. Games $\operatorname{Id}_{N}(\underline{n}, \underline{m})$ and $\operatorname{Id}_{N \Rightarrow N}(\phi, \psi):=\Pi_{x: N} \operatorname{Id}_{N}(\phi \circ x, \psi \circ x)$:

Why game semantics? (part 3/3)

Strategies on $N \Rightarrow N$ computing constant zero:

They are extensionally the same yet intensionally different. Games $\operatorname{Id}_{N}(\underline{n}, \underline{m})$ and $\operatorname{Id}_{N \Rightarrow N}(\phi, \psi):=\Pi_{x: N} \operatorname{Id}_{N}(\phi \circ x, \psi \circ x)$:

Why game semantics? (part 3/3)

Strategies on $N \Rightarrow N$ computing constant zero:

They are extensionally the same yet intensionally different.
Games $\operatorname{Id}_{N}(\underline{n}, \underline{m})$ and $\operatorname{Id}_{N \Rightarrow N}(\phi, \psi):=\Pi_{x: N} \operatorname{Id}_{N}(\phi \circ x, \psi \circ x)$:

Why game semantics? (part 3/3)

Strategies on $N \Rightarrow N$ computing constant zero:

They are extensionally the same yet intensionally different. Games $\operatorname{Id}_{N}(\underline{n}, \underline{m})$ and $\operatorname{Id}_{N \Rightarrow N}(\phi, \psi):=\Pi_{x: N} \operatorname{Id}_{N}(\phi \circ x, \psi \circ x)$:

Id_{N} has at most one strategy, but not the case for $\operatorname{Id}_{N \Rightarrow N}$.

Why game semantics? (part 3/3)

Strategies on $N \Rightarrow N$ computing constant zero:

They are extensionally the same yet intensionally different. Games $\operatorname{Id}_{N}(\underline{n}, \underline{m})$ and $\operatorname{Id}_{N \Rightarrow N}(\phi, \psi):=\Pi_{x: N} \operatorname{Id}_{N}(\phi \circ x, \psi \circ x)$:

Id_{N} has at most one strategy, but not the case for $\mathrm{Id}_{N \Rightarrow N}$. In this way, the intensionality of games makes their higher structure nontrivial.

Related work and my contributions

Related work and my contributions

A pioneering constructive model of HoTT is cubical sets initiated by Bezem, Coquand and Huber, and developed by many others.

Related work and my contributions

A pioneering constructive model of HoTT is cubical sets initiated by Bezem, Coquand and Huber, and developed by many others.

- Homotopical in nature;

Related work and my contributions

A pioneering constructive model of HoTT is cubical sets initiated by Bezem, Coquand and Huber, and developed by many others.

- Homotopical in nature;
- Constructivity on the meta-theory.

Related work and my contributions

A pioneering constructive model of HoTT is cubical sets initiated by Bezem, Coquand and Huber, and developed by many others.

- Homotopical in nature;
- Constructivity on the meta-theory.

Other related work is cubical assemblies proposed by Uemura and higher dimensional meaning explanation by Angiuli and Harper.

Related work and my contributions

A pioneering constructive model of HoTT is cubical sets initiated by Bezem, Coquand and Huber, and developed by many others.

- Homotopical in nature;
- Constructivity on the meta-theory.

Other related work is cubical assemblies proposed by Uemura and higher dimensional meaning explanation by Angiuli and Harper.

- On cubical type theory;

Related work and my contributions

A pioneering constructive model of HoTT is cubical sets initiated by Bezem, Coquand and Huber, and developed by many others.

- Homotopical in nature;
- Constructivity on the meta-theory.

Other related work is cubical assemblies proposed by Uemura and higher dimensional meaning explanation by Angiuli and Harper.

- On cubical type theory;
- The unit interval, dimensional variables and path types.

Related work and my contributions

A pioneering constructive model of HoTT is cubical sets initiated by Bezem, Coquand and Huber, and developed by many others.

- Homotopical in nature;
- Constructivity on the meta-theory.

Other related work is cubical assemblies proposed by Uemura and higher dimensional meaning explanation by Angiuli and Harper.

- On cubical type theory;
- The unit interval, dimensional variables and path types.

My approach: BHK-interpretation of HoTT; based on globular sets

Overview of my approach

Overview of my approach

Throughout this work, ∞-groupoids refer to strict ∞-categories whose morphisms are weakly invertible in the sense of type equivalence.

Overview of my approach

Throughout this work, ∞-groupoids refer to strict ∞-categories whose morphisms are weakly invertible in the sense of type equivalence.

Definition (Game-semantic ∞-groupoids)
Define game-semantic ∞-groupoids to be ∞-groupoids internalised in the category \mathcal{G} of games (strictly, in the subcat $\check{\mathcal{G}} \hookrightarrow \mathcal{G}$, a topos).

Overview of my approach

Throughout this work, ∞-groupoids refer to strict ∞-categories whose morphisms are weakly invertible in the sense of type equivalence.

Definition (Game-semantic ∞-groupoids)
Define game-semantic ∞-groupoids to be ∞-groupoids internalised in the category \mathcal{G} of games (strictly, in the subcat $\check{\mathcal{G}} \hookrightarrow \mathcal{G}$, a topos).

Forenotice:

Overview of my approach

Throughout this work, ∞-groupoids refer to strict ∞-categories whose morphisms are weakly invertible in the sense of type equivalence.

Definition (Game-semantic ∞-groupoids)
Define game-semantic ∞-groupoids to be ∞-groupoids internalised in the category \mathcal{G} of games (strictly, in the subcat $\check{\mathcal{G}} \hookrightarrow \mathcal{G}$, a topos).

Forenotice:

- Warren's strict ∞-groupoid model modified and internalised in \mathcal{G};

Overview of my approach

Throughout this work, ∞-groupoids refer to strict ∞-categories whose morphisms are weakly invertible in the sense of type equivalence.

Definition (Game-semantic ∞-groupoids)
Define game-semantic ∞-groupoids to be ∞-groupoids internalised in the category \mathcal{G} of games (strictly, in the subcat $\check{\mathcal{G}} \hookrightarrow \mathcal{G}$, a topos).

Forenotice:

- Warren's strict ∞-groupoid model modified and internalised in \mathcal{G};
- Challenge: To recover Warren's method with weak inverses;

Overview of my approach

Throughout this work, ∞-groupoids refer to strict ∞-categories whose morphisms are weakly invertible in the sense of type equivalence.

Definition (Game-semantic ∞-groupoids)
Define game-semantic ∞-groupoids to be ∞-groupoids internalised in the category \mathcal{G} of games (strictly, in the subcat $\check{\mathcal{G}} \hookrightarrow \mathcal{G}$, a topos).

Forenotice:

- Warren's strict ∞-groupoid model modified and internalised in \mathcal{G};
- Challenge: To recover Warren's method with weak inverses;
- Mostly generalised to finitely complete $\mathrm{CwFs} \mathcal{M}$ with an NNO such that each type $A \in \mathrm{Ty}_{\mathcal{M}}(\Gamma)$ is a map $\mathcal{M}(1, \Gamma) \rightarrow \operatorname{Ob}(\mathcal{M})$.

Game-semantic ∞-groupoids (part 1/2)

Game-semantic ∞-groupoids (part $1 / 2$)

Explicitly, a game-semantic ∞-category G consists of

Game-semantic ∞-groupoids (part $1 / 2$)

Explicitly, a game-semantic ∞-category G consists of

- A diagram in $\check{\mathcal{G}}$

$$
\cdots \underset{t_{2}}{\stackrel{s_{2}}{\Longrightarrow}} G_{2} \underset{t_{1}}{\stackrel{s_{1}}{\Longrightarrow}} G_{1} \underset{t_{0}}{\stackrel{s_{0}}{\Longrightarrow}} G_{0}
$$

that satisfies $s_{n} \circ s_{n+1}=s_{n} \circ t_{n+1}$ and $t_{n} \circ s_{n+1}=t_{n} \circ t_{n+1}$;

Game-semantic ∞-groupoids (part $1 / 2$)

Explicitly, a game-semantic ∞-category G consists of

- A diagram in $\check{\mathcal{G}}$

$$
\cdots \underset{t_{2}}{\stackrel{s_{2}}{\Longrightarrow}} G_{2} \underset{t_{1}}{\stackrel{s_{1}}{\Longrightarrow}} G_{1} \xrightarrow[t_{0}]{\stackrel{s_{0}}{\Longrightarrow}} G_{0}
$$

that satisfies $s_{n} \circ s_{n+1}=s_{n} \circ t_{n+1}$ and $t_{n} \circ s_{n+1}=t_{n} \circ t_{n+1}$;

- A $\check{\mathcal{G}}$-morphism $*_{p}^{[n]}: G_{n} \times_{G_{p}} G_{n} \rightarrow G_{n}$ for each $0 \leqslant p<n$,

Game-semantic ∞-groupoids (part $1 / 2$)

Explicitly, a game-semantic ∞-category G consists of

- A diagram in $\check{\mathcal{G}}$

$$
\cdots \underset{t_{2}}{\stackrel{s_{2}}{\Longrightarrow}} G_{2} \underset{t_{1}}{\stackrel{s_{1}}{\Longrightarrow}} G_{1} \underset{t_{0}}{\stackrel{s_{0}}{\Longrightarrow}} G_{0}
$$

that satisfies $s_{n} \circ s_{n+1}=s_{n} \circ t_{n+1}$ and $t_{n} \circ s_{n+1}=t_{n} \circ t_{n+1}$;

- A $\check{\mathcal{G}}$-morphism $*_{p}^{[n]}: G_{n} \times{ }_{G_{p}} G_{n} \rightarrow G_{n}$ for each $0 \leqslant p<n$, where

$$
\begin{array}{rll}
G_{n} \times{ }_{G_{p}} G_{n} \xrightarrow{\pi_{2}} & G_{n} \\
\pi_{1} \mid & & t^{n-p} \\
\quad G_{n} & s^{n-p} & G_{p}
\end{array}
$$

Game-semantic ∞-groupoids (part $1 / 2$)

Explicitly, a game-semantic ∞-category G consists of

- A diagram in $\check{\mathcal{G}}$

$$
\cdots \underset{t_{2}}{\stackrel{s_{2}}{\Longrightarrow}} G_{2} \underset{t_{1}}{\stackrel{s_{1}}{\Longrightarrow}} G_{1} \underset{t_{0}}{\stackrel{s_{0}}{\Longrightarrow}} G_{0}
$$

that satisfies $s_{n} \circ s_{n+1}=s_{n} \circ t_{n+1}$ and $t_{n} \circ s_{n+1}=t_{n} \circ t_{n+1}$;

- A $\check{\mathcal{G}}$-morphism $*_{p}^{[n]}: G_{n} \times{ }_{G_{p}} G_{n} \rightarrow G_{n}$ for each $0 \leqslant p<n$, where

- A $\check{\mathcal{G}}$-morphism $i_{n}: G_{n} \rightarrow G_{n+1}$.

Game-semantic ∞-groupoids (part $2 / 2$)

Game-semantic ∞-groupoids (part $2 / 2$)

These data are required to satisfy the axioms of strict ∞-categories in terms of commutative diagrams in $\check{\mathcal{G}}$.

Game-semantic ∞-groupoids (part 2/2)

These data are required to satisfy the axioms of strict ∞-categories in terms of commutative diagrams in $\check{\mathcal{G}}$.
A game-semantic ∞-category G is a game-semantic ∞-groupoid if it is equipped with $\check{\mathcal{G}}$-morphisms with the 'expected' sources and targets

$$
G_{n} \xrightarrow{\operatorname{inv}_{n}} G_{n} \quad G_{n} \xrightarrow{\text { ret }_{n}} G_{n+1} \quad G_{n} \xrightarrow{\sec _{n}} G_{n+1} \quad G_{n} \xrightarrow{\text { tri }_{n}} G_{n+2}
$$

that are functorial (on the nose).

Game-semantic \propto-groupoids (part 2/2)

These data are required to satisfy the axioms of strict ∞-categories in terms of commutative diagrams in $\check{\mathcal{G}}$.
A game-semantic ∞-category G is a game-semantic ∞-groupoid if it is equipped with $\check{\mathcal{G}}$-morphisms with the 'expected' sources and targets

$$
G_{n} \xrightarrow{\mathrm{inv}_{n}} G_{n} \quad G_{n} \xrightarrow{\text { ret }_{n}} G_{n+1} \quad G_{n} \xrightarrow{\text { sec }_{n}} G_{n+1} \quad G_{n} \xrightarrow{\text { tri }_{n}} G_{n+2}
$$

that are functorial (on the nose).
'Expected' sources and targets:

Game-semantic ∞-groupoids (part 2/2)

These data are required to satisfy the axioms of strict ∞-categories in terms of commutative diagrams in $\check{\mathcal{G}}$.
A game-semantic ∞-category G is a game-semantic ∞-groupoid if it is equipped with $\check{\mathcal{G}}$-morphisms with the 'expected' sources and targets

$$
G_{n} \xrightarrow{\mathrm{inv}_{n}} G_{n} \quad G_{n} \xrightarrow{\mathrm{ret}_{n}} G_{n+1} \quad G_{n} \xrightarrow{\sec _{n}} G_{n+1} \quad G_{n} \xrightarrow{\text { tri }_{n}} G_{n+2}
$$

that are functorial (on the nose).
'Expected' sources and targets: Given an n-cell $f \in \mathcal{G}\left(1, G_{n}\right)$, one gets

$$
\begin{gathered}
f^{-1}:=\operatorname{inv} \circ f: t \circ f \rightarrow s \circ f \quad \eta_{f}:=\operatorname{ret} \circ f: f^{-1} * f \rightarrow i \circ s \circ f \\
\epsilon_{f}:=\sec \circ f: f * f^{-1} \rightarrow i \circ t \circ f \quad \delta_{f}:=\operatorname{tri} \circ f:(i \circ f) * \eta_{f} \rightarrow \epsilon_{f} *(i \circ f)
\end{gathered}
$$

Game-semantic ∞-groupoids (part 2/2)

These data are required to satisfy the axioms of strict ∞-categories in terms of commutative diagrams in $\check{\mathcal{G}}$.
A game-semantic ∞-category G is a game-semantic ∞-groupoid if it is equipped with $\check{\mathcal{G}}$-morphisms with the 'expected' sources and targets

$$
G_{n} \xrightarrow{\mathrm{inv}_{n}} G_{n} \quad G_{n} \xrightarrow{\mathrm{ret}_{n}} G_{n+1} \quad G_{n} \xrightarrow{\sec _{n}} G_{n+1} \quad G_{n} \xrightarrow{\text { tri }_{n}} G_{n+2}
$$

that are functorial (on the nose).
'Expected' sources and targets: Given an n-cell $f \in \mathcal{G}\left(1, G_{n}\right)$, one gets

$$
\begin{gathered}
f^{-1}:=\operatorname{inv} \circ f: t \circ f \rightarrow s \circ f \quad \eta_{f}:=\operatorname{ret} \circ f: f^{-1} * f \rightarrow i \circ s \circ f \\
\epsilon_{f}:=\sec \circ f: f * f^{-1} \rightarrow i \circ t \circ f \quad \delta_{f}:=\operatorname{tri} \circ f:(i \circ f) * \eta_{f} \rightarrow \epsilon_{f} *(i \circ f)
\end{gathered}
$$

They correspond to type equivalence so that we model univalence.

Game-semantic ∞-functors

Game-semantic ∞-functors

Define a (set-theoretic) ∞-groupoid $|G|$ by $|G|_{n}:=\mathcal{G}\left(1, G_{n}\right)$.

Game-semantic ∞-functors

Define a (set-theoretic) ∞-groupoid $|G|$ by $|G|_{n}:=\mathcal{G}\left(1, G_{n}\right)$.
Definition (Game-semantic ∞-functors)
Define game-semantic ∞-functors between game-semantic ∞-groupoids G and H to be strategies $\phi \in \operatorname{Tm}_{\mathcal{G}}\left(N, H^{G}\right)$, where $H^{G}(\underline{n}):=H_{n}^{G_{n}}$, s.t. $\phi^{\star}:=\left(\phi_{n}^{\star}:=\phi \circ \underline{n}: H_{n}^{G_{n}}\right)_{\underline{n} \in \mathcal{G}(1, N)}$ forms ∞-functors $|G| \rightarrow|H|$ internalised in \mathcal{G} that preserve the data of inverses.

Game-semantic ∞-functors

Define a (set-theoretic) ∞-groupoid $|G|$ by $|G|_{n}:=\mathcal{G}\left(1, G_{n}\right)$.
Definition (Game-semantic ∞-functors)
Define game-semantic ∞-functors between game-semantic ∞-groupoids G and H to be strategies $\phi \in \operatorname{Tm}_{\mathcal{G}}\left(N, H^{G}\right)$, where $H^{G}(\underline{n}):=H_{n}^{G_{n}}$, s.t. $\phi^{\star}:=\left(\phi_{n}^{\star}:=\phi \circ \underline{n}: H_{n}^{G_{n}}\right)_{\underline{n} \in \mathcal{G}(1, N)}$ forms ∞-functors $|G| \rightarrow|H|$ internalised in \mathcal{G} that preserve the data of inverses.

Explicitly, the functoriality of the family ϕ^{\star} means: $s_{n} \circ \phi_{n+1}^{\star}=\phi_{n}^{\star} \circ s_{n}$, $t_{n} \circ \phi_{n+1}^{\star}=\phi_{n}^{\star} \circ t_{n}, \phi_{n}^{\star} \circ *_{p}^{[n]}=*_{p}^{[n]} \circ\left(\phi_{n}^{\star} \times_{B_{p}} \phi_{n}^{\star}\right)$ and $\phi_{n+1}^{\star} \circ i_{n}=i_{n} \circ \phi_{n}^{\star}$.

Game-semantic ∞-functors

Define a (set-theoretic) ∞-groupoid $|G|$ by $|G|_{n}:=\mathcal{G}\left(1, G_{n}\right)$.
Definition (Game-semantic ∞-functors)
Define game-semantic ∞-functors between game-semantic ∞-groupoids G and H to be strategies $\phi \in \operatorname{Tm}_{\mathcal{G}}\left(N, H^{G}\right)$, where $H^{G}(\underline{n}):=H_{n}^{G_{n}}$, s.t. $\phi^{\star}:=\left(\phi_{n}^{\star}:=\phi \circ \underline{n}: H_{n}^{G_{n}}\right)_{\underline{n} \in \mathcal{G}(1, N)}$ forms ∞-functors $|G| \rightarrow|H|$ internalised in \mathcal{G} that preserve the data of inverses.

Explicitly, the functoriality of the family ϕ^{\star} means: $s_{n} \circ \phi_{n+1}^{\star}=\phi_{n}^{\star} \circ s_{n}$, $t_{n} \circ \phi_{n+1}^{\star}=\phi_{n}^{\star} \circ t_{n}, \phi_{n}^{\star} \circ *_{p}^{[n]}=*_{p}^{[n]} \circ\left(\phi_{n}^{\star} \times_{B_{p}} \phi_{n}^{\star}\right)$ and $\phi_{n+1}^{\star} \circ i_{n}=i_{n} \circ \phi_{n}^{\star}$.

Lemma (∞-category of game-semantic ∞-categories)
The category $\infty \mathcal{G} \mathrm{Gpd}$ of game-semantic ∞-groupoids and ∞-functors gives rise to a (set-theoretic) ∞-category.

Game-semantic ∞-functors

Define a (set-theoretic) ∞-groupoid $|G|$ by $|G|_{n}:=\mathcal{G}\left(1, G_{n}\right)$.
Definition (Game-semantic ∞-functors)
Define game-semantic ∞-functors between game-semantic ∞-groupoids G and H to be strategies $\phi \in \operatorname{Tm}_{\mathcal{G}}\left(N, H^{G}\right)$, where $H^{G}(\underline{n}):=H_{n}^{G_{n}}$, s.t. $\phi^{\star}:=\left(\phi_{n}^{\star}:=\phi \circ \underline{n}: H_{n}^{G_{n}}\right)_{\underline{n} \in \mathcal{G}(1, N)}$ forms ∞-functors $|G| \rightarrow|H|$ internalised in \mathcal{G} that preserve the data of inverses.

Explicitly, the functoriality of the family ϕ^{\star} means: $s_{n} \circ \phi_{n+1}^{\star}=\phi_{n}^{\star} \circ s_{n}$, $t_{n} \circ \phi_{n+1}^{\star}=\phi_{n}^{\star} \circ t_{n}, \phi_{n}^{\star} \circ *_{p}^{[n]}=*_{p}^{[n]} \circ\left(\phi_{n}^{\star} \times_{B_{p}} \phi_{n}^{\star}\right)$ and $\phi_{n+1}^{\star} \circ i_{n}=i_{n} \circ \phi_{n}^{\star}$.

Lemma (∞-category of game-semantic ∞-categories)
The category $\infty \mathcal{G}$ Gpd of game-semantic ∞-groupoids and ∞-functors gives rise to a (set-theoretic) ∞-category.

The map $|-|$ extends to a functor $\infty \mathcal{G} \mathrm{Gpd} \rightarrow \infty \mathrm{Gpd}:=\infty$ SetGpd.

Game-semantic transformations

Game-semantic transformations

This functor $|-|: \infty \mathcal{G}$ Gpd $\rightarrow \infty$ Gpd sends game-semantic ∞-functors $\phi: G \rightarrow H$ to the (set-theoretic) ∞-functors $|\phi|:|G| \rightarrow|H|$ given by

$$
|\phi|_{n}: \gamma \in \mathcal{G}\left(1, G_{n}\right) \mapsto \phi_{n}^{\star} \circ \gamma \in \mathcal{G}\left(1, H_{n}\right) .
$$

Game-semantic transformations

This functor $|-|: \infty \mathcal{G}$ Gpd $\rightarrow \infty$ Gpd sends game-semantic ∞-functors $\phi: G \rightarrow H$ to the (set-theoretic) ∞-functors $|\phi|:|G| \rightarrow|H|$ given by

$$
|\phi|_{n}: \gamma \in \mathcal{G}\left(1, G_{n}\right) \mapsto \phi_{n}^{\star} \circ \gamma \in \mathcal{G}\left(1, H_{n}\right) .
$$

In $\infty \mathcal{G G p d}, n$-cells $(n>1)$ are game-semantic $(n-1)$-transformations:

Game-semantic transformations

This functor $\left.\right|_{-}: \infty \mathcal{G}$ Gpd $\rightarrow \infty$ Gpd sends game-semantic ∞-functors $\phi: G \rightarrow H$ to the (set-theoretic) ∞-functors $|\phi|:|G| \rightarrow|H|$ given by

$$
|\phi|_{n}: \gamma \in \mathcal{G}\left(1, G_{n}\right) \mapsto \phi_{n}^{\star} \circ \gamma \in \mathcal{G}\left(1, H_{n}\right) .
$$

In $\infty \mathcal{G G p d}, n$-cells $(n>1)$ are game-semantic $(n-1)$-transformations:
Definition (Game-semantic transformations)
Define game-semantic transformations between game-semantic ∞-functors $\phi, \psi: G \rightarrow H$ to be transformations $|\phi| \rightarrow|\psi|$ internalised in \mathcal{G}, and similarly game-semantic \boldsymbol{n}-transformations for all $n>0$.

Game-semantic transformations

This functor $\left.\right|_{-}: \infty \mathcal{G}$ Gpd $\rightarrow \infty$ Gpd sends game-semantic ∞-functors $\phi: G \rightarrow H$ to the (set-theoretic) ∞-functors $|\phi|:|G| \rightarrow|H|$ given by

$$
|\phi|_{n}: \gamma \in \mathcal{G}\left(1, G_{n}\right) \mapsto \phi_{n}^{\star} \circ \gamma \in \mathcal{G}\left(1, H_{n}\right)
$$

In $\infty \mathcal{G G p d}, n$-cells $(n>1)$ are game-semantic ($n-1$)-transformations:
Definition (Game-semantic transformations)
Define game-semantic transformations between game-semantic ∞-functors $\phi, \psi: G \rightarrow H$ to be transformations $|\phi| \rightarrow|\psi|$ internalised in \mathcal{G}, and similarly game-semantic \boldsymbol{n}-transformations for all $n>0$.

Explicitly, a game-semantic 1-transformation $\phi \rightarrow \psi$ is a \mathcal{G}-morphism $\alpha: G_{0} \rightarrow H_{1}$ with $s \circ \alpha=\phi_{0}^{\star}, t \circ \alpha=\psi_{0}^{\star}$ and naturality.

Game-semantic transformations

This functor $\left.\right|_{-}: \infty \mathcal{G}$ Gpd $\rightarrow \infty$ Gpd sends game-semantic ∞-functors $\phi: G \rightarrow H$ to the (set-theoretic) ∞-functors $|\phi|:|G| \rightarrow|H|$ given by

$$
|\phi|_{n}: \gamma \in \mathcal{G}\left(1, G_{n}\right) \mapsto \phi_{n}^{\star} \circ \gamma \in \mathcal{G}\left(1, H_{n}\right)
$$

In $\infty \mathcal{G G p d}, n$-cells $(n>1)$ are game-semantic ($n-1$)-transformations:
Definition (Game-semantic transformations)
Define game-semantic transformations between game-semantic ∞-functors $\phi, \psi: G \rightarrow H$ to be transformations $|\phi| \rightarrow|\psi|$ internalised in \mathcal{G}, and similarly game-semantic \boldsymbol{n}-transformations for all $n>0$.

Explicitly, a game-semantic 1-transformation $\phi \rightarrow \psi$ is a \mathcal{G}-morphism $\alpha: G_{0} \rightarrow H_{1}$ with $s \circ \alpha=\phi_{0}^{\star}, t \circ \alpha=\psi_{0}^{\star}$ and naturality.
The functor $|-|$ extends to an ∞-functor $\infty \mathcal{G} \mathrm{Gpd} \rightarrow \infty \mathrm{Gpd}$ by

$$
|\alpha|_{\gamma}:=\alpha \circ \gamma \in \mathcal{G}\left(1, H_{n+1}\right) \quad\left(\gamma \in \mathcal{G}\left(1, G_{0}\right)\right) .
$$

Overview of the interpretation

Overview of the interpretation

Now, one can sketch the game semantics $\llbracket-\rrbracket_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G} \mathrm{Gpd}$:

Overview of the interpretation

Now, one can sketch the game semantics $\llbracket-\rrbracket_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G} \mathrm{Gpd}$:

- $\vdash \Gamma \mathrm{ctx} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \mathrm{Gpd}_{0} ;$

Overview of the interpretation

Now, one can sketch the game semantics $\llbracket-\rrbracket_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}$ Gpd:

- $\vdash \Gamma \mathrm{ctx} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \mathrm{Gpd}_{0} ;$
- $\Gamma \vdash A$ ty $\mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \operatorname{Gpd}_{1}\left(\left|\llbracket \Gamma \rrbracket_{\mathcal{G}}\right|, \infty \mathcal{G} \mathrm{Gpd}\right)$,

Overview of the interpretation

Now, one can sketch the game semantics $\llbracket-\rrbracket_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G} \mathrm{Gpd}$:

- $\vdash \Gamma \mathrm{ctx} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{0}$;
- $\Gamma \vdash A$ ty $\mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \operatorname{Gpd}_{1}\left(\left|\llbracket \Gamma \rrbracket_{\mathcal{G}}\right|, \infty \mathcal{G} \mathrm{Gpd}\right)$, where we later extend the ∞-category $\infty \mathcal{G} \mathrm{Gpd}$ to an ∞-groupoid;

Overview of the interpretation

Now, one can sketch the game semantics $\llbracket-\rrbracket_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}$ Gpd:

- $\vdash \Gamma \mathrm{ctx} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \mathrm{Gpd}_{0}$;
- $\Gamma \vdash A$ ty $\mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \operatorname{Gpd}_{1}\left(\left|\llbracket \Gamma \rrbracket_{\mathcal{G}}\right|, \infty \mathcal{G} \mathrm{Gpd}\right)$, where we later extend the ∞-category $\infty \mathcal{G} \mathrm{Gpd}$ to an ∞-groupoid;
- $\Gamma \vdash a: A \mapsto \llbracket a \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{1}\left(\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket \Gamma \rrbracket_{\mathcal{G}} \cdot \llbracket A \rrbracket_{\mathcal{G}}\right)$ that is a section of the first projection $\llbracket \Gamma \rrbracket_{\mathcal{G}} \cdot \llbracket A \rrbracket_{\mathcal{G}} \rightarrow \llbracket \Gamma \rrbracket_{\mathcal{G}}$ (of Grothendieck const.);

Overview of the interpretation

Now, one can sketch the game semantics $\llbracket-\rrbracket_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}$ Gpd:

- $\vdash \Gamma \mathrm{ctx} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \mathrm{Gpd}_{0}$;
- $\Gamma \vdash A$ ty $\mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \operatorname{Gpd}_{1}\left(\left|\llbracket \Gamma \rrbracket_{\mathcal{G}}\right|, \infty \mathcal{G} \mathrm{Gpd}\right)$, where we later extend the ∞-category $\infty \mathcal{G} \mathrm{Gpd}$ to an ∞-groupoid;
- $\Gamma \vdash a: A \mapsto \llbracket a \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{1}\left(\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket \Gamma \rrbracket_{\mathcal{G}} \cdot \llbracket A \rrbracket_{\mathcal{G}}\right)$ that is a section of the first projection $\llbracket \Gamma \rrbracket_{\mathcal{G}} \cdot \llbracket A \rrbracket_{\mathcal{G}} \rightarrow \llbracket \Gamma \rrbracket_{\mathcal{G}}$ (of Grothendieck const.);
- $\Gamma \vdash p: a_{1}={ }_{A} a_{2} \mapsto \llbracket p \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{2}\left(\llbracket a_{1} \rrbracket_{\mathcal{G}}, \llbracket a_{2} \rrbracket_{\mathcal{G}}\right)$;

Overview of the interpretation

Now, one can sketch the game semantics $\llbracket-\rrbracket_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}$ Gpd:

- $\vdash \Gamma \mathrm{ctx} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \mathrm{Gpd}_{0}$;
- $\Gamma \vdash A$ ty $\mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \operatorname{Gpd}_{1}\left(\left|\llbracket \Gamma \rrbracket_{\mathcal{G}}\right|, \infty \mathcal{G} \mathrm{Gpd}\right)$, where we later extend the ∞-category $\infty \mathcal{G} \mathrm{Gpd}$ to an ∞-groupoid;
- $\Gamma \vdash a: A \mapsto \llbracket a \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{1}\left(\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket \Gamma \rrbracket_{\mathcal{G}} \cdot \llbracket A \rrbracket_{\mathcal{G}}\right)$ that is a section of the first projection $\llbracket \Gamma \rrbracket_{\mathcal{G}} \cdot \llbracket A \rrbracket_{\mathcal{G}} \rightarrow \llbracket \Gamma \rrbracket_{\mathcal{G}}$ (of Grothendieck const.);
- $\Gamma \vdash p: a_{1}={ }_{A} a_{2} \mapsto \llbracket p \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{2}\left(\llbracket a_{1} \rrbracket_{\mathcal{G}}, \llbracket a_{2} \rrbracket_{\mathcal{G}}\right)$;
- $\Gamma \vdash q: p_{1}={ }_{a_{1}={ }_{A} a_{2}} p_{2} \mapsto \llbracket q \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{3}\left(\llbracket p_{1} \rrbracket_{\mathcal{G}}, \llbracket p_{2} \rrbracket_{\mathcal{G}}\right)$,

Overview of the interpretation

Now, one can sketch the game semantics $\llbracket-\rrbracket_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}$ Gpd:

- $\vdash \Gamma \mathrm{ctx} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \mathrm{Gpd}_{0}$;
- $\Gamma \vdash A$ ty $\mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \operatorname{Gpd}_{1}\left(\left|\llbracket \Gamma \rrbracket_{\mathcal{G}}\right|, \infty \mathcal{G} \mathrm{Gpd}\right)$, where we later extend the ∞-category $\infty \mathcal{G} \mathrm{Gpd}$ to an ∞-groupoid;
- $\Gamma \vdash a: A \mapsto \llbracket a \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{1}\left(\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket \Gamma \rrbracket_{\mathcal{G}} \cdot \llbracket A \rrbracket_{\mathcal{G}}\right)$ that is a section of the first projection $\llbracket \Gamma \rrbracket_{\mathcal{G}} \cdot \llbracket A \rrbracket_{\mathcal{G}} \rightarrow \llbracket \Gamma \rrbracket_{\mathcal{G}}$ (of Grothendieck const.);
- $\Gamma \vdash p: a_{1}={ }_{A} a_{2} \mapsto \llbracket p \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{2}\left(\llbracket a_{1} \rrbracket_{\mathcal{G}}, \llbracket a_{2} \rrbracket_{\mathcal{G}}\right)$;
- $\Gamma \vdash q: p_{1}={ }_{a_{1}={ }_{A} a_{2}} p_{2} \mapsto \llbracket q \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{3}\left(\llbracket p_{1} \rrbracket_{\mathcal{G}}, \llbracket p_{2} \rrbracket_{\mathcal{G}}\right)$, and so on.

Overview of the interpretation

Now, one can sketch the game semantics $\llbracket-\rrbracket_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}$ Gpd:

- $\vdash \Gamma \mathrm{ctx} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \mathrm{Gpd}_{0}$;
- $\Gamma \vdash A$ ty $\mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \operatorname{Gpd}_{1}\left(\left|\llbracket \Gamma \rrbracket_{\mathcal{G}}\right|, \infty \mathcal{G} \mathrm{Gpd}\right)$, where we later extend the ∞-category $\infty \mathcal{G G p d}$ to an ∞-groupoid;
- $\Gamma \vdash a: A \mapsto \llbracket a \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{1}\left(\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket \Gamma \rrbracket_{\mathcal{G}} \cdot \llbracket A \rrbracket_{\mathcal{G}}\right)$ that is a section of the first projection $\llbracket \Gamma \rrbracket_{\mathcal{G}} \cdot \llbracket A \rrbracket_{\mathcal{G}} \rightarrow \llbracket \Gamma \rrbracket_{\mathcal{G}}$ (of Grothendieck const.);
- $\Gamma \vdash p: a_{1}={ }_{A} a_{2} \mapsto \llbracket p \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{2}\left(\llbracket a_{1} \rrbracket_{\mathcal{G}}, \llbracket a_{2} \rrbracket_{\mathcal{G}}\right)$;
- $\Gamma \vdash q: p_{1}={ }_{a_{1}={ }_{A} a_{2}} p_{2} \mapsto \llbracket q \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{3}\left(\llbracket p_{1} \rrbracket_{\mathcal{G}}, \llbracket p_{2} \rrbracket_{\mathcal{G}}\right)$, and so on. We interpret One-, Zero- and N-types by discrete game-semantic ∞-groupoids,

Overview of the interpretation

Now, one can sketch the game semantics $\llbracket-\rrbracket_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G}$ Gpd:

- $\vdash \Gamma \mathrm{ctx} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{0}$;
- $\Gamma \vdash A$ ty $\mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \operatorname{Gpd}_{1}\left(\left|\llbracket \Gamma \rrbracket_{\mathcal{G}}\right|, \infty \mathcal{G} \mathrm{Gpd}\right)$, where we later extend the ∞-category $\infty \mathcal{G} \mathrm{Gpd}$ to an ∞-groupoid;
- $\Gamma \vdash a: A \mapsto \llbracket a \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{1}\left(\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket \Gamma \rrbracket_{\mathcal{G}} \cdot \llbracket A \rrbracket_{\mathcal{G}}\right)$ that is a section of the first projection $\llbracket \Gamma \rrbracket_{\mathcal{G}} \cdot \llbracket A \rrbracket_{\mathcal{G}} \rightarrow \llbracket \Gamma \rrbracket_{\mathcal{G}}$ (of Grothendieck const.);
- $\Gamma \vdash p: a_{1}={ }_{A} a_{2} \mapsto \llbracket p \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{2}\left(\llbracket a_{1} \rrbracket_{\mathcal{G}}, \llbracket a_{2} \rrbracket_{\mathcal{G}}\right)$;
- $\Gamma \vdash q: p_{1}={ }_{a_{1}={ }_{A} a_{2}} p_{2} \mapsto \llbracket q \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{3}\left(\llbracket p_{1} \rrbracket_{\mathcal{G}}, \llbracket p_{2} \rrbracket_{\mathcal{G}}\right)$, and so on.

We interpret One-, Zero- and N-types by discrete game-semantic ∞-groupoids, and Id-type by $\operatorname{Id}_{A}\left(\gamma, \alpha_{1}, \alpha_{2}\right):=A(\gamma)\left(\alpha_{1}, \alpha_{2}\right) \hookrightarrow A(\gamma)$.

Overview of the interpretation

Now, one can sketch the game semantics $\llbracket-\rrbracket_{\mathcal{G}}$ of HoTT in $\infty \mathcal{G} G \mathrm{Gd}$:

- $\vdash \Gamma \mathrm{ctx} \mapsto \llbracket \Gamma \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \mathrm{Gpd}_{0}$;
- $\Gamma \vdash A$ ty $\mapsto \llbracket A \rrbracket_{\mathcal{G}} \in \infty \operatorname{Gpd}_{1}\left(\left|\llbracket \Gamma \rrbracket_{\mathcal{G}}\right|, \infty \mathcal{G} \mathrm{Gpd}\right)$, where we later extend the ∞-category $\infty \mathcal{G} \mathrm{Gpd}$ to an ∞-groupoid;
- $\Gamma \vdash a: A \mapsto \llbracket a \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{1}\left(\llbracket \Gamma \rrbracket_{\mathcal{G}}, \llbracket \Gamma \rrbracket_{\mathcal{G}} \cdot \llbracket A \rrbracket_{\mathcal{G}}\right)$ that is a section of the first projection $\llbracket \Gamma \rrbracket_{\mathcal{G}} \cdot \llbracket A \rrbracket_{\mathcal{G}} \rightarrow \llbracket \Gamma \rrbracket_{\mathcal{G}}$ (of Grothendieck const.);
- $\Gamma \vdash p: a_{1}={ }_{A} a_{2} \mapsto \llbracket p \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{2}\left(\llbracket a_{1} \rrbracket_{\mathcal{G}}, \llbracket a_{2} \rrbracket_{\mathcal{G}}\right)$;
- $\Gamma \vdash q: p_{1}={ }_{a_{1}={ }_{A} a_{2}} p_{2} \mapsto \llbracket q \rrbracket_{\mathcal{G}} \in \infty \mathcal{G} \operatorname{Gpd}_{3}\left(\llbracket p_{1} \rrbracket_{\mathcal{G}}, \llbracket p_{2} \rrbracket_{\mathcal{G}}\right)$, and so on.

We interpret One-, Zero- and N-types by discrete game-semantic ∞-groupoids, and Id-type by $\operatorname{Id}_{A}\left(\gamma, \alpha_{1}, \alpha_{2}\right):=A(\gamma)\left(\alpha_{1}, \alpha_{2}\right) \hookrightarrow A(\gamma)$. In the rest of the talk, I focus on Pi-type and univalent universes.

Game semantics of Pi-type (part 1/2)

Game semantics of Pi-type (part $1 / 2$)

In the following, I omit the semantic bracket $\llbracket-\|_{\mathcal{G}}$.

Game semantics of Pi-type (part $1 / 2$)

In the following, I omit the semantic bracket $\llbracket-\|_{\mathcal{G}}$. I interpret Pi-type by $\Pi(\Gamma, A) \in \infty \mathcal{G} \mathrm{Gpd}_{0}$:

Game semantics of Pi-type (part $1 / 2$)

In the following, I omit the semantic bracket $\llbracket-\|_{\mathcal{G}}$. I interpret Pi-type by $\Pi(\Gamma, A) \in \infty \mathcal{G} \mathrm{Gpd}_{0}$:

- 0-cells are sections $\Gamma \rightarrow \Gamma . A$ of the projection $\Gamma . A \rightarrow \Gamma$;

Game semantics of Pi-type (part $1 / 2$)

In the following, I omit the semantic bracket $\llbracket-\|_{\mathcal{G}}$.
I interpret Pi-type by $\Pi(\Gamma, A) \in \infty \mathcal{G} \mathrm{Gpd}_{0}$:

- 0-cells are sections $\Gamma \rightarrow \Gamma . A$ of the projection $\Gamma . A \rightarrow \Gamma$;
- n-cells $\sigma \rightarrow \tau(n>0)$ are game-semantic n-transformations $\sigma \rightarrow \tau$;

Game semantics of Pi-type (part 1/2)

In the following, I omit the semantic bracket $\llbracket-\rrbracket_{\mathcal{G}}$.
I interpret Pi-type by $\Pi(\Gamma, A) \in \infty \mathcal{G} \mathrm{Gpd}_{0}$:

- 0-cells are sections $\Gamma \rightarrow \Gamma . A$ of the projection $\Gamma . A \rightarrow \Gamma$;
- n-cells $\sigma \rightarrow \tau(n>0)$ are game-semantic n-transformations $\sigma \rightarrow \tau$;
- The composition $*_{p}: \Pi(\Gamma, A)_{n} \times_{\Pi(\Gamma, A)_{p}} \Pi(\Gamma, A)_{n} \rightarrow \Pi(\Gamma, A)_{n}$ internalises the following algorithm in \mathcal{G} :

Game semantics of Pi-type (part $1 / 2$)

In the following, I omit the semantic bracket $\llbracket-\rrbracket_{\mathcal{G}}$.
I interpret Pi-type by $\Pi(\Gamma, A) \in \infty \mathcal{G} \mathrm{Gpd}_{0}$:

- 0-cells are sections $\Gamma \rightarrow \Gamma . A$ of the projection $\Gamma . A \rightarrow \Gamma$;
- n-cells $\sigma \rightarrow \tau(n>0)$ are game-semantic n-transformations $\sigma \rightarrow \tau$;
- The composition $*_{p}: \Pi(\Gamma, A)_{n} \times_{\Pi(\Gamma, A)_{p}} \Pi(\Gamma, A)_{n} \rightarrow \Pi(\Gamma, A)_{n}$ internalises the following algorithm in \mathcal{G} :

$$
\left(\Gamma_{0} \xrightarrow{\sigma, \tau}(\Gamma \cdot A)_{n}\right) \mapsto\left(\Gamma_{0} \xrightarrow{\Delta} \Gamma_{0}^{2} \xrightarrow{\sigma \times \tau}(\Gamma \cdot A)_{n}^{2} \xrightarrow{*_{p}}(\Gamma . A)_{n}\right) ;
$$

Game semantics of Pi-type (part $1 / 2$)

In the following, I omit the semantic bracket $\llbracket-\rrbracket_{\mathcal{G}}$.
I interpret Pi-type by $\Pi(\Gamma, A) \in \infty \mathcal{G} \mathrm{Gpd}_{0}$:

- 0-cells are sections $\Gamma \rightarrow \Gamma . A$ of the projection $\Gamma . A \rightarrow \Gamma$;
- n-cells $\sigma \rightarrow \tau(n>0)$ are game-semantic n-transformations $\sigma \rightarrow \tau$;
- The composition $*_{p}: \Pi(\Gamma, A)_{n} \times_{\Pi(\Gamma, A)_{p}} \Pi(\Gamma, A)_{n} \rightarrow \Pi(\Gamma, A)_{n}$ internalises the following algorithm in \mathcal{G} :

$$
\left(\Gamma_{0} \xrightarrow{\sigma, \tau}(\Gamma . A)_{n}\right) \mapsto\left(\Gamma_{0} \xrightarrow{\Delta} \Gamma_{0}^{2} \xrightarrow{\sigma \times \tau}(\Gamma . A)_{n}^{2} \xrightarrow{*_{p}}(\Gamma . A)_{n}\right) ;
$$

- The identity $i_{n}: \Pi(\Gamma, A)_{n} \rightarrow \Pi(\Gamma, A)_{n+1}$ internalises the following algorithm in \mathcal{G} :

Game semantics of Pi-type (part $1 / 2$)

In the following, I omit the semantic bracket $\llbracket-\rrbracket_{\mathcal{G}}$.
I interpret Pi-type by $\Pi(\Gamma, A) \in \infty \mathcal{G} \mathrm{Gpd}_{0}$:

- 0-cells are sections $\Gamma \rightarrow \Gamma . A$ of the projection $\Gamma . A \rightarrow \Gamma$;
- n-cells $\sigma \rightarrow \tau(n>0)$ are game-semantic n-transformations $\sigma \rightarrow \tau$;
- The composition $*_{p}: \Pi(\Gamma, A)_{n} \times_{\Pi(\Gamma, A)_{p}} \Pi(\Gamma, A)_{n} \rightarrow \Pi(\Gamma, A)_{n}$ internalises the following algorithm in \mathcal{G} :

$$
\left(\Gamma_{0} \xrightarrow{\sigma, \tau}(\Gamma \cdot A)_{n}\right) \mapsto\left(\Gamma_{0} \xrightarrow{\Delta} \Gamma_{0}^{2} \xrightarrow{\sigma \times \tau}(\Gamma \cdot A)_{n}^{2} \xrightarrow{*_{p}}(\Gamma . A)_{n}\right) ;
$$

- The identity $i_{n}: \Pi(\Gamma, A)_{n} \rightarrow \Pi(\Gamma, A)_{n+1}$ internalises the following algorithm in \mathcal{G} :

$$
\left(\Gamma_{0} \xrightarrow{\sigma}(\Gamma \cdot A)_{n}\right) \mapsto\left(\Gamma_{0} \xrightarrow{\sigma}(\Gamma \cdot A)_{n} \xrightarrow{i_{n}}(\Gamma \cdot A)_{n+1}\right),
$$

Game semantics of Pi-type (part $1 / 2$)

In the following, I omit the semantic bracket $\llbracket-\rrbracket_{\mathcal{G}}$.
I interpret Pi-type by $\Pi(\Gamma, A) \in \infty \mathcal{G} \mathrm{Gpd}_{0}$:

- 0-cells are sections $\Gamma \rightarrow \Gamma . A$ of the projection $\Gamma . A \rightarrow \Gamma$;
- n-cells $\sigma \rightarrow \tau(n>0)$ are game-semantic n-transformations $\sigma \rightarrow \tau$;
- The composition $*_{p}: \Pi(\Gamma, A)_{n} \times_{\Pi(\Gamma, A)_{p}} \Pi(\Gamma, A)_{n} \rightarrow \Pi(\Gamma, A)_{n}$ internalises the following algorithm in \mathcal{G} :

$$
\left(\Gamma_{0} \xrightarrow{\sigma, \tau}(\Gamma \cdot A)_{n}\right) \mapsto\left(\Gamma_{0} \xrightarrow{\Delta} \Gamma_{0}^{2} \xrightarrow{\sigma \times \tau}(\Gamma \cdot A)_{n}^{2} \xrightarrow{*_{p}}(\Gamma . A)_{n}\right) ;
$$

- The identity $i_{n}: \Pi(\Gamma, A)_{n} \rightarrow \Pi(\Gamma, A)_{n+1}$ internalises the following algorithm in \mathcal{G} :

$$
\left(\Gamma_{0} \xrightarrow{\sigma}(\Gamma \cdot A)_{n}\right) \mapsto\left(\Gamma_{0} \xrightarrow{\sigma}(\Gamma \cdot A)_{n} \xrightarrow{i_{n}}(\Gamma \cdot A)_{n+1}\right),
$$

and similarly for the data of inverses: $\operatorname{inv}_{n}, \operatorname{ret}_{n}, \sec _{n}$ and tri_{n}.

Game semantics of Pi-type (part 2/2)

Game semantics of Pi-type (part 2/2)

Game-semantic trans. make sense as identity proofs in Pi-type.

Game semantics of Pi-type (part 2/2)

Game-semantic trans. make sense as identity proofs in Pi-type.

where fun $(\phi):=\left\{(n, m) \in \mathbb{N}^{2} \mid \phi \circ \underline{n}=\underline{m}\right\}$, and similarly for fun (ψ).

Game semantics of Pi-type (part 2/2)

Game-semantic trans. make sense as identity proofs in Pi-type.

where fun $(\phi):=\left\{(n, m) \in \mathbb{N}^{2} \mid \phi \circ \underline{n}=\underline{m}\right\}$, and similarly for fun (ψ).

- Validates strict funext: $\operatorname{Id}_{\Pi(\Gamma, A)}(\phi, \psi)=\Pi_{x: \Gamma} \operatorname{Id}_{A(x)}(\phi(x), \psi(x))$;

Game semantics of Pi-type (part 2/2)

Game-semantic trans. make sense as identity proofs in Pi-type.

where fun $(\phi):=\left\{(n, m) \in \mathbb{N}^{2} \mid \phi \circ \underline{n}=\underline{m}\right\}$, and similarly for fun (ψ).

- Validates strict funext: $\operatorname{Id}_{\Pi(\Gamma, A)}(\phi, \psi)=\Pi_{x: \Gamma} \operatorname{Id}_{A(x)}(\phi(x), \psi(x))$;
- Nontrivial computations that verify fun $(\phi)=$ fun (ψ);

Game semantics of Pi-type (part 2/2)

Game-semantic trans. make sense as identity proofs in Pi-type.

where fun $(\phi):=\left\{(n, m) \in \mathbb{N}^{2} \mid \phi \circ \underline{n}=\underline{m}\right\}$, and similarly for fun (ψ).

- Validates strict funext: $\operatorname{Id}_{\Pi(\Gamma, A)}(\phi, \psi)=\Pi_{x: \Gamma} \operatorname{Id}_{A(x)}(\phi(x), \psi(x))$;
- Nontrivial computations that verify fun $(\phi)=$ fun (ψ);
- The oracle O is crucial to handle the infinitary domain N.

Game semantics of Pi-type (part 2/2)

Game-semantic trans. make sense as identity proofs in Pi-type.

where fun $(\phi):=\left\{(n, m) \in \mathbb{N}^{2} \mid \phi \circ \underline{n}=\underline{m}\right\}$, and similarly for fun (ψ).

- Validates strict funext: $\operatorname{Id}_{\Pi(\Gamma, A)}(\phi, \psi)=\Pi_{x: \Gamma} \operatorname{Id}_{A(x)}(\phi(x), \psi(x))$;
- Nontrivial computations that verify fun $(\phi)=$ fun (ψ);
- The oracle O is crucial to handle the infinitary domain N.

Some higher cells in $\Pi(\Gamma, A)$ are only weakly invertible, and so we must weaken the strict invertibility anyway (not only for univalence).

Game semantics of Pi-type (part 2/2)

Game-semantic trans. make sense as identity proofs in Pi-type.

where fun $(\phi):=\left\{(n, m) \in \mathbb{N}^{2} \mid \phi \circ \underline{n}=\underline{m}\right\}$, and similarly for fun (ψ).

- Validates strict funext: $\operatorname{Id}_{\Pi(\Gamma, A)}(\phi, \psi)=\Pi_{x: \Gamma} \operatorname{Id}_{A(x)}(\phi(x), \psi(x))$;
- Nontrivial computations that verify fun $(\phi)=$ fun (ψ);
- The oracle O is crucial to handle the infinitary domain N.

Some higher cells in $\Pi(\Gamma, A)$ are only weakly invertible, and so we must weaken the strict invertibility anyway (not only for univalence).

- Identities in $\Pi(\Gamma, A)$ never visit the domain N;

Game semantics of Pi-type (part 2/2)

Game-semantic trans. make sense as identity proofs in Pi-type.

where fun $(\phi):=\left\{(n, m) \in \mathbb{N}^{2} \mid \phi \circ \underline{n}=\underline{m}\right\}$, and similarly for fun (ψ).

- Validates strict funext: $\operatorname{Id}_{\Pi(\Gamma, A)}(\phi, \psi)=\Pi_{x: \Gamma} \operatorname{Id}_{A(x)}(\phi(x), \psi(x))$;
- Nontrivial computations that verify fun $(\phi)=$ fun (ψ);
- The oracle O is crucial to handle the infinitary domain N.

Some higher cells in $\Pi(\Gamma, A)$ are only weakly invertible, and so we must weaken the strict invertibility anyway (not only for univalence).

- Identities in $\Pi(\Gamma, A)$ never visit the domain N;
- Compositions in $\Pi(\Gamma, A)$ cannot undo a visit to the domain N.

Game semantics of univalent universes (part 1/3)

Game semantics of univalent universes (part 1/3)

(1) Extend the (set-theoretic) ∞-category $\infty \mathcal{G}$ Gpd to an ∞-groupoid, in which higher cells are type equivalence;

Game semantics of univalent universes (part 1/3)

(1) Extend the (set-theoretic) ∞-category $\infty \mathcal{G}$ Gpd to an ∞-groupoid, in which higher cells are type equivalence;
(2) Internalise $\mathcal{U} \hookrightarrow \infty \mathcal{G} \mathrm{Gpd}$ in \mathcal{G}, where plays on \mathcal{U}_{0} encode freely generated objects in $\infty \mathcal{G} \mathrm{Gpd}_{0}$, and $\mathcal{U}_{n}(n>0)$ restricts $\infty \mathcal{G} \mathrm{Gpd}_{n}$.

Game semantics of univalent universes (part 1/3)

(1) Extend the (set-theoretic) ∞-category $\infty \mathcal{G}$ Gpd to an ∞-groupoid, in which higher cells are type equivalence;
(2) Internalise $\mathcal{U} \hookrightarrow \infty \mathcal{G} \mathrm{Gpd}$ in \mathcal{G}, where plays on \mathcal{U}_{0} encode freely generated objects in $\infty \mathcal{G} \mathrm{Gpd}_{0}$, and $\mathcal{U}_{n}(n>0)$ restricts $\infty \mathcal{G} \mathrm{Gpd}_{n}$.

Lemma (∞-groupoid of game-semantic ∞-groupoids)
The following extends the ∞-category $\infty \mathcal{G} \mathrm{Gpd}$ to an ∞-groupoid.

Game semantics of univalent universes (part 1/3)

(1) Extend the (set-theoretic) ∞-category $\infty \mathcal{G}$ Gpd to an ∞-groupoid, in which higher cells are type equivalence;
(2) Internalise $\mathcal{U} \hookrightarrow \infty \mathcal{G} \mathrm{Gpd}$ in \mathcal{G}, where plays on \mathcal{U}_{0} encode freely generated objects in $\infty \mathcal{G} \mathrm{Gpd}_{0}$, and $\mathcal{U}_{n}(n>0)$ restricts $\infty \mathcal{G} \mathrm{Gpd}_{n}$.

Lemma (∞-groupoid of game-semantic ∞-groupoids)
The following extends the ∞-category $\infty \mathcal{G} \mathrm{Gpd}$ to an ∞-groupoid.

- 0-cells are game-semantic ∞-groupoids;

Game semantics of univalent universes (part 1/3)

(1) Extend the (set-theoretic) ∞-category $\infty \mathcal{G}$ Gpd to an ∞-groupoid, in which higher cells are type equivalence;
(2) Internalise $\mathcal{U} \hookrightarrow \infty \mathcal{G} \mathrm{Gpd}$ in \mathcal{G}, where plays on \mathcal{U}_{0} encode freely generated objects in $\infty \mathcal{G} \mathrm{Gpd}_{0}$, and $\mathcal{U}_{n}(n>0)$ restricts $\infty \mathcal{G} \mathrm{Gpd}_{n}$.

Lemma (∞-groupoid of game-semantic ∞-groupoids)
The following extends the ∞-category $\infty \mathcal{G} \mathrm{Gpd}$ to an ∞-groupoid.

- 0-cells are game-semantic ∞-groupoids;
- A 1-cell $(\phi, \psi, \sigma, \tau, \mu): G \rightarrow H$ consists of game-semantic ∞-functors $\phi: G \rightarrow H$ and $\psi: H \rightarrow G$, trans. $\sigma: \psi * \phi \rightarrow i(G)$ and $\tau: \phi * \psi \rightarrow i(H)$, and 2-trans. $\mu: i(\phi) * \sigma \rightarrow \tau * i(\psi)$;

Game semantics of univalent universes (part 1/3)

(1) Extend the (set-theoretic) ∞-category $\infty \mathcal{G}$ Gpd to an ∞-groupoid, in which higher cells are type equivalence;
(2) Internalise $\mathcal{U} \hookrightarrow \infty \mathcal{G} \mathrm{Gpd}$ in \mathcal{G}, where plays on \mathcal{U}_{0} encode freely generated objects in $\infty \mathcal{G} \mathrm{Gpd}_{0}$, and $\mathcal{U}_{n}(n>0)$ restricts $\infty \mathcal{G} \mathrm{Gpd}_{n}$.

Lemma (∞-groupoid of game-semantic ∞-groupoids)
The following extends the ∞-category $\infty \mathcal{G} \mathrm{Gpd}$ to an ∞-groupoid.

- 0-cells are game-semantic ∞-groupoids;
- A 1-cell $(\phi, \psi, \sigma, \tau, \mu): G \rightarrow H$ consists of game-semantic ∞-functors $\phi: G \rightarrow H$ and $\psi: H \rightarrow G$, trans. $\sigma: \psi * \phi \rightarrow i(G)$ and $\tau: \phi * \psi \rightarrow i(H)$, and 2-trans. $\mu: i(\phi) * \sigma \rightarrow \tau * i(\psi)$;
- $(n>1)$ An n-cell $(\alpha, \beta, \eta, \epsilon, \delta):(\phi, \psi, \sigma, \tau, \mu) \rightarrow\left(\phi^{\prime}, \psi^{\prime}, \sigma^{\prime}, \tau^{\prime}, \mu^{\prime}\right)$ consists of game-semantic ($n-1$)-trans. $\alpha: \phi \rightarrow \phi^{\prime}$ and $\beta: \phi^{\prime} \rightarrow \phi, n$-trans. $\eta: \beta * \alpha \rightarrow i(\phi)$ and $\epsilon: \alpha * \beta \rightarrow i\left(\phi^{\prime}\right)$, and an $(n+1)$-trans. $\delta: i(\alpha) * \eta \rightarrow \epsilon * i(\alpha)$;

Game semantics of univalent universes (part 2/3)

Game semantics of univalent universes (part 2/3)

- The inverse of each n-cell $(\alpha, \beta, \eta, \epsilon, \delta)$ is the quadruple

$$
\operatorname{inv}(\alpha, \beta, \eta, \epsilon, \delta):=(\beta, \alpha, \epsilon, \eta, \operatorname{dual}(\delta))
$$

where dual $(\mu): i(\beta) * \epsilon \rightarrow \eta * i(\beta)$ is too technical to present here;

Game semantics of univalent universes (part 2/3)

- The inverse of each n-cell $(\alpha, \beta, \eta, \epsilon, \delta)$ is the quadruple

$$
\operatorname{inv}(\alpha, \beta, \eta, \epsilon, \delta):=(\beta, \alpha, \epsilon, \eta, \operatorname{dual}(\delta))
$$

where dual $(\mu): i(\beta) * \epsilon \rightarrow \eta * i(\beta)$ is too technical to present here;

- The identity on each 0-cell G is the quintuple

$$
i(G):=\left(i(G), i(G), i^{2}(G), i^{2}(G), i^{3}(G)\right)
$$

Game semantics of univalent universes (part 2/3)

- The inverse of each n-cell $(\alpha, \beta, \eta, \epsilon, \delta)$ is the quadruple

$$
\operatorname{inv}(\alpha, \beta, \eta, \epsilon, \delta):=(\beta, \alpha, \epsilon, \eta, \operatorname{dual}(\delta))
$$

where dual $(\mu): i(\beta) * \epsilon \rightarrow \eta * i(\beta)$ is too technical to present here;

- The identity on each 0-cell G is the quintuple

$$
i(G):=\left(i(G), i(G), i^{2}(G), i^{2}(G), i^{3}(G)\right)
$$

- $(n>0)$ The identity on each n-cell $(\alpha, \beta, \eta, \epsilon, \delta)$ is the quintuple

$$
i(\alpha, \beta, \eta, \epsilon, \delta):=\left(i(\alpha), i(\alpha), i^{2}(\alpha), i^{2}(\alpha), i^{3}(\alpha)\right)
$$

Game semantics of univalent universes (part 2/3)

- The inverse of each n-cell $(\alpha, \beta, \eta, \epsilon, \delta)$ is the quadruple

$$
\operatorname{inv}(\alpha, \beta, \eta, \epsilon, \delta):=(\beta, \alpha, \epsilon, \eta, \operatorname{dual}(\delta))
$$

where dual $(\mu): i(\beta) * \epsilon \rightarrow \eta * i(\beta)$ is too technical to present here;

- The identity on each 0-cell G is the quintuple

$$
i(G):=\left(i(G), i(G), i^{2}(G), i^{2}(G), i^{3}(G)\right)
$$

- $(n>0)$ The identity on each n-cell $(\alpha, \beta, \eta, \epsilon, \delta)$ is the quintuple

$$
i(\alpha, \beta, \eta, \epsilon, \delta):=\left(i(\alpha), i(\alpha), i^{2}(\alpha), i^{2}(\alpha), i^{3}(\alpha)\right)
$$

- $\operatorname{ret}(\alpha, \beta, \eta, \epsilon, \delta):=(\eta$, inv $\circ \eta$, ret $\circ \eta, \sec \circ \eta$, tri $\circ \eta)$, and similarly for $\sec (\alpha, \beta, \eta, \epsilon, \delta)$ and $\operatorname{tri}(\alpha, \beta, \eta, \epsilon, \delta)$;

Game semantics of univalent universes (part 3/3)

Game semantics of univalent universes (part 3/3)

- The $*_{p}$-composition of composable n-cells $(\alpha, \beta, \eta, \epsilon, \delta)$ and $\left(\alpha^{\prime}, \beta^{\prime}, \eta^{\prime}, \epsilon^{\prime}, \delta^{\prime}\right)$ is the quintuple

$$
\begin{aligned}
& \left(\alpha^{\prime}, \beta^{\prime}, \eta^{\prime}, \epsilon^{\prime}, \delta^{\prime}\right) *_{p}(\alpha, \beta, \eta, \epsilon, \delta) \\
:= & \begin{cases}\left(\alpha^{\prime} *_{n} \alpha, \beta *_{n} \beta^{\prime}, \eta *_{n+1}\left(i(\beta) *_{n} \eta^{\prime} *_{n} i(\alpha)\right), \ldots\right) & \text { if } p=n-1 \\
\left(\alpha^{\prime} *_{p} \alpha, \beta^{\prime} *_{p} \beta, \eta^{\prime} *_{p} \eta, \epsilon^{\prime} *_{p} \epsilon, \delta^{\prime} *_{p} \delta\right) & \text { if } p<n-1,\end{cases}
\end{aligned}
$$

Game semantics of univalent universes (part 3/3)

- The $*_{p}$-composition of composable n-cells $(\alpha, \beta, \eta, \epsilon, \delta)$ and $\left(\alpha^{\prime}, \beta^{\prime}, \eta^{\prime}, \epsilon^{\prime}, \delta^{\prime}\right)$ is the quintuple

$$
\begin{aligned}
& \left(\alpha^{\prime}, \beta^{\prime}, \eta^{\prime}, \epsilon^{\prime}, \delta^{\prime}\right) *_{p}(\alpha, \beta, \eta, \epsilon, \delta) \\
:= & \begin{cases}\left(\alpha^{\prime} *_{n} \alpha, \beta *_{n} \beta^{\prime}, \eta *_{n+1}\left(i(\beta) *_{n} \eta^{\prime} *_{n} i(\alpha)\right), \ldots\right) & \text { if } p=n-1 \\
\left(\alpha^{\prime} *_{p} \alpha, \beta^{\prime} *_{p} \beta, \eta^{\prime} *_{p} \eta, \epsilon^{\prime} *_{p} \epsilon, \delta^{\prime} *_{p} \delta\right) & \text { if } p<n-1,\end{cases}
\end{aligned}
$$

For $\left(\mu: \Gamma_{0} \rightarrow \mathcal{U}_{0}\right) \Leftrightarrow\left(\operatorname{fun}(\mu) \in \mathrm{Ty}_{\mathcal{G}}(\Gamma)_{0}\right)$, define the game \mathcal{U}_{0} by

Game semantics of univalent universes (part 3/3)

- The $*_{p}$-composition of composable n-cells $(\alpha, \beta, \eta, \epsilon, \delta)$ and $\left(\alpha^{\prime}, \beta^{\prime}, \eta^{\prime}, \epsilon^{\prime}, \delta^{\prime}\right)$ is the quintuple

$$
\begin{aligned}
& \left(\alpha^{\prime}, \beta^{\prime}, \eta^{\prime}, \epsilon^{\prime}, \delta^{\prime}\right) *_{p}(\alpha, \beta, \eta, \epsilon, \delta) \\
:= & \begin{cases}\left(\alpha^{\prime} *_{n} \alpha, \beta *_{n} \beta^{\prime}, \eta *_{n+1}\left(i(\beta) *_{n} \eta^{\prime} *_{n} i(\alpha)\right), \ldots\right) & \text { if } p=n-1 \\
\left(\alpha^{\prime} *_{p} \alpha, \beta^{\prime} *_{p} \beta, \eta^{\prime} *_{p} \eta, \epsilon^{\prime} *_{p} \epsilon, \delta^{\prime} *_{p} \delta\right) & \text { if } p<n-1,\end{cases}
\end{aligned}
$$

For $\left(\mu: \Gamma_{0} \rightarrow \mathcal{U}_{0}\right) \Leftrightarrow\left(\operatorname{fun}(\mu) \in \mathrm{Ty}_{\mathcal{G}}(\Gamma)_{0}\right)$, define the game \mathcal{U}_{0} by

$$
\begin{gathered}
\underline{N} \\
q \\
\downarrow \\
\sharp(N)
\end{gathered}
$$

Game semantics of univalent universes (part 3/3)

- The $*_{p}$-composition of composable n-cells $(\alpha, \beta, \eta, \epsilon, \delta)$ and $\left(\alpha^{\prime}, \beta^{\prime}, \eta^{\prime}, \epsilon^{\prime}, \delta^{\prime}\right)$ is the quintuple

$$
\begin{aligned}
& \left(\alpha^{\prime}, \beta^{\prime}, \eta^{\prime}, \epsilon^{\prime}, \delta^{\prime}\right) *_{p}(\alpha, \beta, \eta, \epsilon, \delta) \\
:= & \begin{cases}\left(\alpha^{\prime} *_{n} \alpha, \beta *_{n} \beta^{\prime}, \eta *_{n+1}\left(i(\beta) *_{n} \eta^{\prime} *_{n} i(\alpha)\right), \ldots\right) & \text { if } p=n-1 \\
\left(\alpha^{\prime} *_{p} \alpha, \beta^{\prime} *_{p} \beta, \eta^{\prime} *_{p} \eta, \epsilon^{\prime} *_{p} \epsilon, \delta^{\prime} *_{p} \delta\right) & \text { if } p<n-1,\end{cases}
\end{aligned}
$$

For $\left(\mu: \Gamma_{0} \rightarrow \mathcal{U}_{0}\right) \Leftrightarrow\left(\operatorname{fun}(\mu) \in \mathrm{Ty}_{\mathcal{G}}(\Gamma)_{0}\right)$, define the game \mathcal{U}_{0} by

Game semantics of univalent universes (part 3/3)

- The $*_{p}$-composition of composable n-cells $(\alpha, \beta, \eta, \epsilon, \delta)$ and $\left(\alpha^{\prime}, \beta^{\prime}, \eta^{\prime}, \epsilon^{\prime}, \delta^{\prime}\right)$ is the quintuple

$$
\begin{aligned}
& \left(\alpha^{\prime}, \beta^{\prime}, \eta^{\prime}, \epsilon^{\prime}, \delta^{\prime}\right) *_{p}(\alpha, \beta, \eta, \epsilon, \delta) \\
:= & \begin{cases}\left(\alpha^{\prime} *_{n} \alpha, \beta *_{n} \beta^{\prime}, \eta *_{n+1}\left(i(\beta) *_{n} \eta^{\prime} *_{n} i(\alpha)\right), \ldots\right) & \text { if } p=n-1 \\
\left(\alpha^{\prime} *_{p} \alpha, \beta^{\prime} *_{p} \beta, \eta^{\prime} *_{p} \eta, \epsilon^{\prime} *_{p} \epsilon, \delta^{\prime} *_{p} \delta\right) & \text { if } p<n-1,\end{cases}
\end{aligned}
$$

For $\left(\mu: \Gamma_{0} \rightarrow \mathcal{U}_{0}\right) \Leftrightarrow\left(\operatorname{fun}(\mu) \in \mathrm{Ty}_{\mathcal{G}}(\Gamma)_{0}\right)$, define the game \mathcal{U}_{0} by
\underline{N}
q
\downarrow
$\sharp(N)$

