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What are higher inductive types?

Higher inductive types: define types by describing constructors for
the points, paths, 2-paths (paths between paths), ...
Examples (spaces):

Inductive S! :=
| bases: : St
| loopg: : bases: = bases:

Inductive T2 =

| base : T2

| loopy,loop, : base = base

| surf : loop, e loop, = loop, ¢ loop,
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More Examples!

In general, one can have recursive constructors (both for the points
and paths).

Inductive Z, =

| Z: Z2

| S: Ty — 7o

| m:J[(x:7Z2),S(S(x)) = x

| ¢ [I(x: Z2),m(S(x)) =ap S (m(x))

Inductive ||A|| :=
| inc: A= ||Al
| trunc: J[(x,y - [|Al)(p,q: x=y),p=4q
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The terminology from the title

» Finitary: each constructor only has a finite number of
recursive arguments (arguments are described by a finitary
polynomial).
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recursive arguments (arguments are described by a finitary
polynomial). For example, Hj is finitary while Hy isn't.

Inductive H; :=
| Cc Hl X H1 — Hl
| pP1: H(Xay . H]_),Cl(X,y) = Cl(y7X)

Inductive H, :=

| C21(N—>H2)—>H2
| p2: TI(f : N = Ho), (f) = c2(An, f(n+ 1))
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Inductive H, :=
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» 1-truncated: a type X is 1-truncated if for all x,y : X,
p,g:x=y,and r,s: p=q we have r =s.
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The terminology from the title

» Finitary: each constructor only has a finite number of
recursive arguments (arguments are described by a finitary
polynomial). For example, Hj is finitary while H, isn't.

Inductive H; :=

| C1:H1XH1—)H1

e TGy s Hr),ai(x,y) = ailyx)
Inductive H, :=

| Cy : (N—>H2)—>H2
| p2: TI(f : N = Ho), (f) = c2(An, f(n+ 1))

» 1-truncated: a type X is 1-truncated if for all x,y : X,
p,g:x=y,and r,s: p=q we have r =s.

» Groupoid quotient: a HIT that takes a groupoid and turns it
into a 1-type (we will discuss it more formally later this talk)
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Problem Statement and the Main Theorem

Goal: reduce finitary 1-truncated HITs to simpler principles.
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Goal: reduce finitary 1-truncated HITs to simpler principles.
More specifically, we

» define inside of type theory the notion of a signature for HITs
(allows points, paths, and 2-path constructors)

> define the introduction, elimination, and computation rules for
each signature

HIT in 1-types: a 1-type that satisfies all these rules.
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Problem Statement and the Main Theorem

Goal: reduce finitary 1-truncated HITs to simpler principles.
More specifically, we

» define inside of type theory the notion of a signature for HITs
(allows points, paths, and 2-path constructors)
> define the introduction, elimination, and computation rules for

each signature

HIT in 1-types: a 1-type that satisfies all these rules.
Then we prove

Theorem
In a type theory with the groupoid quotient, each signature has a
HIT in 1-types.
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Formalization

All results in this talk are formalized over the UniMath library.

https://github.com/nmvdw/GrpdHITs
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https://github.com/nmvdw/GrpdHITs

The topics of this talk

v

As a starter, we look at the theorem in the set truncated case.

How to move from this case to the 1-truncated case?

The 1-truncated case:
» Signature for HITs
Bicategories of algebras (1-types and groupoids)
The groupoid quotient
Lifting the groupoid quotient to a biadjunction between
algebras

v

v

v vy

Conclusion and outlook

v
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How to construct set-truncated HITs

Goal: construct set-truncated HITs as a quotient.
For this construction, we

» Define signatures for set-truncated HITs
» Define categories of algebras in sets and setoids
» Prove initial algebra semantics: initiality implies induction

» Lift the quotient to a adjunction between the category of
algebras in sets and in setoids

» Construct the initial algebra in setoids
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How to construct set-truncated HITs

Goal: construct set-truncated HITs as a quotient.
For this construction, we

>

>

>

Define signatures for set-truncated HITs
Define categories of algebras in sets and setoids
Prove initial algebra semantics: initiality implies induction

Lift the quotient to a adjunction between the category of
algebras in sets and in setoids

Construct the initial algebra in setoids
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Scheme for set-truncated HITs

Our goal is to construct HITs of the following shape

Inductive H :=

| ¢c: P(H) = H

| p o LIG = Nx 2 Qi(H)), [i(x) = ri(x)
| t:[I0y:H)p,g:x=y),p=gq
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Scheme for set-truncated HITs

Our goal is to construct HITs of the following shape
Inductive H :=

| ¢c: P(H)—H

| P TIG - )(x = Qi(H)), [i(x) = ri(x)

| t: Iy H)(p.g:x=y),p=gq

What are P, Q;, /;, and r;?
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Signatures for Set-HITs: the point constructors

Definition (Polynomials)
The type P of finitary polynomials is inductively generated by

C(A)P, |ZP, P1+P2:P, PixPy:P

where A is a set and P; and P, are arbitrary polynomials.
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Signatures for Set-HITs: the point constructors

Definition (Polynomials)
The type P of finitary polynomials is inductively generated by

C(A)P, |ZP, P1+P2:P, PixPy:P

where A is a set and P; and P, are arbitrary polynomials.

A polynomial represents a functor [P] on sets.
Given a polynomial P and a set X, we get a set P(X).
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Signatures for Set-HITs: the path constructors

Definition (Path endpoints)

Let A, S, and T be polynomials The type EA(S, T) of path
endpoints with arguments A, source S, and target T is inductively
generated by the constructors given on the next slide.
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Signatures for Set-HITs: the path constructors

Definition (Path endpoints)

Let A, S, and T be polynomials The type EA(S, T) of path
endpoints with arguments A, source S, and target T is inductively
generated by the constructors given on the next slide.

Given X with ¢ : A(X) — X, a path endpoint e : EA(S, T)
represents a function S(X) — T(X) which can make use of c.
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Signatures for Set-HITs: some endpoints

P:P
ida : Ea(P, P)

P,Q,RZP el:EA(P,Q) e2:EA(Q,R)
e1-engA(P,R)

constr : Ex(A, 1)
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Signatures for Set-HITs: putting it together

Definition (HIT-signature (for set-truncated HITs))
A HIT-signature X consists of
» A polynomial A>
> A type J5 together with for each j : J5 a polynomial S} and
endpoints 1>, r> : Exx(S7, 1)
> represents the following HIT

Inductive H :=

| c:A*(H) — H

| P TIG : J5)(x : SF(H)). IF(x) = rF(x)
| t:[Ixy:H)p.g:x=y),p=gq
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A HIT-signature X consists of
» A polynomial A>
> A type J5 together with for each j : J5 a polynomial S} and
endpoints 1>, r> : Exx(S7, 1)
> represents the following HIT

Inductive H :=

| c:A*(H) — H

| P TIG : 5)(x : SH(H)). IF(x) = rF(x)
| t:[Ixy:H)p.g:x=y),p=gq
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Signatures for Set-HITs: putting it together

Definition (HIT-signature (for set-truncated HITs))
A HIT-signature X consists of
» A polynomial A>
> A type J5 together with for each j : J5 a polynomial S} and
endpoints I, r> - Exx(S7, 1)
> represents the following HIT

Inductive H :=

| c:A*(H) — H

| p:TIG : J5)(x : SF(H)). IF(x) = rF(x)
| t:[Ixy:H)p.g:x=y),p=gq
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Let us recall the structure of the argument

> Definesignaturesforset-truncatedHiTs

Define categories of algebras in sets and setoids

v

v

Prove initial algebra semantics: initiality implies induction

v

Lift the quotient to a adjunction between the category of
algebras in sets and in setoids

v

Construct the initial algebra in setoids
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Algebras for HITs

An algebra X for ¥ that describes

Inductive H :=
| c: AT(H) = H
| P TIG = 95)(x 2 SF(H)), I (x) = rF (%)
| t:[I(xy:H)(p.g:x=y),p=gq
consists of
> Aset X
» An operation X : AX(X) — X
> For each j: J5 and x : S¥(H), a path p : I¥(x) = r(x)
Goal: define a category of algebras.
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Algebras for HITs

An algebra X for ¥ that describes

Inductive H :=
| c:AY(H) = H
| s T1G < J5)(x < SE(H)), I5(x) = rF(x)
| t: ]I,y H)p,g:x=y),p=q
consists of
» Aset X
» An operation X : AX(X) — X
> For each j: J5 and x : S¥(H), a path p} : I¥(x) = r7(x)
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Algebras for HITs: Categorical Constructions

Defining the category of algebras is done in 2 steps.

Definition
Given a category C, an endofunctor F on C, we have a category
Falg(F) whose objects are pairs X : C and f : F(X) — X.
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Algebras for HITs: Categorical Constructions

Defining the category of algebras is done in 2 steps.

Definition
Given a category C, an endofunctor F on C, we have a category
Falg(F) whose objects are pairs X : C and f : F(X) — X.

Definition
Given a category C and a predicate P on the objects of C, we have

a category FSub(C, P) whose objects are X with a proof of P(X).

» Falg(F) adds the point constructor
» FSub(C, P) adds the path constructor
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Algebras for HITs: the point constructor

Definition

Given a polynomial P, we get a functor [P] : Sets — Sets.
Definition

Given a signature X, define the category PreAlg(X) of prealgebras
of ¥ to be Falg([AX]).

Write U for the forgetful functor from PreAlg(X) to Sets.
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Algebras for HITs: the path constructor

Definition
Suppose, we have an endpoint e : Eps(S, T). Note that we have

PreAlg(X) — Y, Sets Sets
(7]

Then we get a natural transformation [[e] : [S]o U = [T] o U.
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Algebras for HITs: the path constructor

Definition
Suppose, we have an endpoint e : Eps(S, T). Note that we have

PreAlg(X) — Y, Sets Sets
(7]
Then we get a natural transformation [[e] : [S]o U = [T] o U.
Definition
The category Alg(X) of algebras on X is define to be the full
subcategory of PreAlg(X) such that each object (X, c) satisfies:

for all j : J% and x : SJ-Z(X) we have [[ljz]]x = [[rjz]]x
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Algebras for HITs: in setoids

Similarly, we define
> PreAlgsetoiq(X): prealgebras in setoids
> Algseoiq(X): algebras in setoids
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Let us recall the structure of the argument

» Lift the quotient to a adjunction between the category
of algebras in sets and in setoids

» Construct the initial algebra in setoids
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Recall the quotient type

Given a set X and an equivalence relation R on X, we define X/R
as the following HIT.

Inductive X/R :=

| class: X — X/R

| eqclass : [[(x,y : X), R(x,y) — class(x) = class(y)
| trunc: [[(x,y : H)(p,g:x=y),p=gq
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The quotient gives an adjunction

Write
» Sets for the category of sets with functions

> Setoid for the category of setoids with functions that preserve
the relation

Then
» We have a functor Quot : Setoid — Sets
» We have a functor PathSetoid : Sets — Setoid
» We have an adjunction Quot - PathSetoid
(Rijke, Spitters, 2015)
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Lifting the quotient

Proposition (Hermida and Jacobs, 1998, Theorem 2.14)
We have
> a functor Quotprealg : PreAlgs.iiq(X) — PreAlg(X)
» a functor PathSetoidpealg : PreAlg(X) — PreAlgsqioiq(X)
> an adjunction Quotpealg - PathSetoidprealg

Use: polynomial functors commutes with quotients.
Needs: P is finitary! (Chapman, Uustalu, Veltri)
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Lifting the quotient

Proposition (Hermida and Jacobs, 1998, Theorem 2.14)
We have
> a functor Quotprealg : PreAlgseiiq(X) — PreAlg(X)
» a functor PathSetoidpealg : PreAlg(X) — PreAlgsqioiq(X)
> an adjunction Quotpealg - PathSetoidprealg
Use: polynomial functors commutes with quotients.
Needs: P is finitary! (Chapman, Uustalu, Veltri)
Proposition
We have
> a functor Quotajg : Algseroiq(X) — Alg(X)
» a functor PathSetoidpig : Alg(X) — Algsetoiq(X)
» an adjunction Quotajg - PathSetoidajg
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Concluding the set truncated case

PathSetoidag
I —
Alg(Z) <¥T/ AIgSetoid(z)
J Quotag l
PathSetoid
Sets— T " Setoid
Quot

To construct a HIT on X, we do
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Concluding the set truncated case

PathSetoidag
I —
Alg(Z) <¥T/ AIgSetoid(z)
J Quotag l
PathSetoid
Sets— T " Setoid
Quot

To construct a HIT on X, we do
» By initial algebra semantics, find initial object in Alg(X)
» By adjunction, find initial object in Alggeioiq(X)

» Technical, see formalization and (Moeneclaey, internship
report)

Hence:

Each signature ¥ has a HIT in sets.
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Now let's do this for 1-types

Recall our main theorem:

Theorem
In a type theory with the groupoid quotient, each signature has a

HIT in 1-types.

We use a similar approach.
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Sets versus 1-Types

To translate our argument for sets to 1-types, we use the following

table

Sets 1-types

Setoids Groupoids
Quotient Groupoid quotient
Category Bicategory

Initial object Biinitial object
Functor Pseudofunctor

Natural transformation
Adjunction

Pseudotransformation
Biadjunction
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Sets versus 1-Types

To translate our argument for sets to 1-types, we use the following

table
Sets 1-types
Setoids Groupoids
Quotient Groupoid quotient
Category Bicategory
Initial object Biinitial object
Functor Pseudofunctor
Natural transformation | Pseudotransformation
Adjunction Biadjunction

Recall:

> the bicategory 1-Type: 1-types with functions and paths

between functions

> the bicategory Grpd of groupoids
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The approach for set-truncated HITs

This construction is done as follows:
» Define signatures for set-truncated HITs
» Define categories of algebras in sets and setoids
» Prove initial algebra semantics: initiality implies induction

Lift the quotient to a adjunction between the category of
algebras in sets and in setoids

v

Construct the initial algebra in setoids

v
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The approach for 1-truncated HITs

This construction is done as follows:
» Define signatures for 1-truncated HITs
» Define bicategories of algebras in 1-types and groupoids

» Prove biinitial algebra semantics: biinitiality implies
induction

» Lift the groupoid quotient to a biadjunction between the
bicategory of algebras in 1-types and in groupoids

» Construct the biinitial algebra in groupoids
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The HITs we consider

Similar to Dybjer, Moeneclaey, 2018.

Inductive H :=

| c:A(H) — H
) j )
| s TIG = ) 0c s RA(H))(r = 3;(x) = by (x)),

pj(X,r)qu(X,r) J
| t: ]I,y H)p,g:x=y)r,s:p=gq),r=s
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The HITs we consider

Similar to Dybjer, Moeneclaey, 2018.

Inductive H :=

| c:A(H) = H
| p:TIG J p)(x 1 S;(H)), 1;(x) = r;(x)
| s TG = Ju)(x s Ri(H))(r 2 25(x) = by(x)),

pj(x r)_qJ(x r)
| t: ]I,y H)p,g:x=y)r,s:p=gq),r=s

Note: a part is similar to set-truncated HITs
What are aj, b P and qj?
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The path argument

In general, a 2-path constructor could have any finite number of
path arguments

Inductive ||A|| :=
| inc: A— Al
| trunc: [[(x,y - [|Al)(p,q: x=y),p=gq
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The path argument

In general, a 2-path constructor could have any finite number of
path arguments

Inductive ||A|| :=
| inc: A— A
| trunc: [[(x,y - [|Al)(p,q: x=y),p=gq

However, it suffices to assume there is 1 path argument.

Inductive ||A|| :=
| inc: A—||A|l
| trunc: [[(x,y : [|AID(p: (x,x) = (y,y)),ap m1 p=ap m ¢
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The path argument

In general, a 2-path constructor could have any finite number of
path arguments

Inductive ||A|| :=

| inc: A—||A]l

| trunc: [[(x,y - [|Al)(p,q: x=y),p=gq

However, it suffices to assume there is 1 path argument.

Inductive ||A|| :=
| inc: A—||A|l
| trunc: [[(x,y : [|AID(p: (x,x) = (y,y)),ap m1 p=ap m ¢

So: we represent the path argument by two path endpoints.
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Signatures for 1-Truncated HITs : Homotopy Endpoints

Inductive H =

| c:A(H)—H

| P TIG = Ip)(x = $5(H)), 1(x) = rj(x)

| s TIG - Jn)(x = Ri(H))(r = aj(x) = bj(x)),
p;(x,r) =q;(x,r)

| t:TI(x,y: H)p,g:x=y)(r,s:p=q),r=s

The type of homotopy endpoints depends on

> a polynomial A

31/48



Signatures for 1-Truncated HITs : Homotopy Endpoints

Inductive H =

| c:A(H)—H

| P TIG = Jp)(x = $5(H)), 1(x) = rj(x)

| s TIG - Jn)(x = Ri(H))(r = aj(x) = bj(x)),
pj(x7 r) = qj(X7 r)

|t [I0Gy H)(pog:x=y)(r,s:p=q),r=s

The type of homotopy endpoints depends on
> a polynomial A

> atype Jp

31/48



Signatures for 1-Truncated HITs : Homotopy Endpoints

Inductive H =

| c:A(H)—H

| p:TIG = Jp)(x: Sj(H))a lj(X) = x)

| s TIG - Jn)(x = Ri(H))(r = aj(x) = bj(x)),
pj(x7 r) = qj(X7 r)
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The type of homotopy endpoints depends on
> a polynomial A
> atype Jp

> for each j : Jp a polynomial S; and path endpoints |; and r;
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Signatures for 1-Truncated HITs : Homotopy Endpoints

Inductive H :=

| c:A(H) = H
| P TI0  Jp)(x = S;(H)), 1i(x) = ri(x)
| s TG = Ju)(x R( ))(r = aj(x) = bj(x)),

pj(x r)= q; (x,r)
|t 10y H)(p,q:xzy)(r,s:pz q),r=s
The type of homotopy endpoints depends on
> a polynomial A

> atype Jp

v

for each j : J, a polynomial Sj and path endpoints Ij and r
> a polynomial R
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Signatures for 1-Truncated HITs : Homotopy Endpoints

Inductive H =

| c:A(H)—H

| P TIG = Ip)(x = $5(H)), 1(x) = rj(x)

| s TIG - Jn)(x = Ri(H))(r = aj(x) = bj(x)),
pj(x7 r) = qj(X7 r)

| t:TI(x,y: H)p,g:x=y)(r,s:p=q),r=s

The type of homotopy endpoints depends on
> a polynomial A

> atype Jp

v

for each j : J, a polynomial SJ- and path endpoints |; and r;
> a polynomial R

» a polynomial T and path endpoints a,b : EA(R, T)

path endpoints s, t : EA(R, 1)

v
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Signatures for 1-Truncated HITs : Homotopy Endpoints

Given
> a polynomial A

> atype Jp

v

for each j : J, a polynomial Sj and path endpoints |; and r;
> a polynomial R

» a polynomial T and path endpoints a,b : EA(R, T)

path endpoints s,t : EA(R, 1)

v

we define the type Hlj,rj,a,b(sat) inductively.
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Signatures for 1-Truncated HITs : Homotopy Endpoints

Given
> a polynomial A

> atype Jp

v

for each j : J, a polynomial Sj and path endpoints |; and r;
> a polynomial R

» a polynomial T and path endpoints a,b : EA(R, T)

path endpoints s,t : EA(R, 1)

v

we define the type Hlj,rj,a,b(sat) inductively.
Given x : R(X) and w : a(x) = b(x), a homotopy endpoint
h: H|j,rj,a,b(s,t) represents a path

[Al(x, w) = s(x) = t(x)
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Defining Bicategories of Algebras

» Type of algebras is an iterated > -type

» We want to construct the biadjunction on each component
separately

» Displayed bicategories allow us to do that
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Displayed Bicategories

Definition
Let B be a bicategory.
A displayed bicategory D over B consists of

» For each x : B a type D(x) of objects over x

» Foreach f:x — y, x:D(x) and y : D(y), a type?i>)70f
1-cells over f;

‘h\
=
OQ\
S,

> Foreach§: f=g f: x5y, andg:x 5y, a
2-cells over 6.

Details: Ahrens, Frumin, Maggesi, Veltri, Van der Weide
For the categorical case: see Ahrens and Lumsdaine
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Total Bicategory

Definition
Let D be a displayed bicategory on B.
Define the total bicategory [D

> Objects are pairs (x,X) with x : B and X : D(x)

» 1-cells are pairs (f,f) with f : x = y and f : X 5 y
» 2-cells are pairs (6,0) with 0 : f = g and 0 : f 4 g
Note: there is a projection pseudofunctor 7p : [D — B
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Examples of Displayed Bicategory

Recall the HITs we consider

Inductive H :=
| c:A(H)—H
| P TIG  Jp)(x - Si(
|s:H(j:JH)(X:Rj(
| t: [0y H)(p,q: x

We define three displayed bicategories:

)7 - 25(x) = by(x)). py(x. ) = q(x. 1)
y) ,s:p:q),r:s

I
-
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Examples of Displayed Bicategory

Recall the HITs we consider

Inductive H :=

| c:A(H)—H

| p 2 116 < Jp)(x = S;(H)), 1i(x) = ri(x)

| s TI0 - Ju)(x: ( ))( say(x ) b;j(x)), p;(x,r) = a;(x,r)
|t TGy s H)(p.a:x=y)(rs: p=a)r=s

We define three displayed bicategories:

~ O

» One that adds structure for the point constructor
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Examples of Displayed Bicategory

Recall the HITs we consider

Inductive H :=
| c:A(H)—H
p: 110 - Jp)(x = S;(H)), 1i(x) = rj(x)
STIG = 3O Ri(H))(r = a(x) = bj(x)), py(x, ) = q(x, r)
TGy s H)pog:x=y)(r,s:p=q),r=s
We define three displayed bicategories:
» One that adds structure for the point constructor

» One that adds structure for the path constructor

%)

~
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Examples of Displayed Bicategory

Recall the HITs we consider

Inductive H :=

| c:A(H)—H

STIG : Ip)(xc Sj(H)), |J-(X) =r x)

CTTG = 3 (s Ry(H))(r = aj(x) = bj(x)), p;(x, r) = a;(x,r)

|
|
| :H(x,y:H)(p,q:x:y)r,s:p:q),r:s

~ U0 T

We define three displayed bicategories:
» One that adds structure for the point constructor
» One that adds structure for the path constructor

» One that adds structure for the 2-path constructor
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Algebras on a Pseudofunctor
Note: a polynomial P gives a pseudofunctor
[P] : 1-Type — 1-Type.
Definition

Let B be a bicategory and let F : B — B be a pseudofunctor.
Define a displayed bicategory DFalg(F) over B such that

» objects over x : B are 1-cells hy : F(x) — x;
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Algebras on a Pseudofunctor

Note: a polynomial P gives a pseudofunctor

[P] : 1-Type — 1-Type.

Definition
Let B be a bicategory and let F : B — B be a pseudofunctor.
Define a displayed bicategory DFalg(F) over B such that

» objects over x : B are 1-cells hy : F(x) — x;
» l-cells over f : x — y from hy to hy, are invertible 2-cells
7F : he- £ = F(f) - hy;

» 2-cells over 0 : f = g from 7¢ to 75 are equalities

he <0 o1y =10 F(8) > hy.
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A Brief Intermezzo: endpoints

Note that we have

[S]
—

—
7]

TDFalg([A]

) 1-Type

| DFalg([A]) 1-Type

An endpoint e : Eo(S, T) gives rise to a pseudotransformation

le] : [S] o moraig(gay) = [T] © Toraig(a])-
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Adding 2-cells to the structure

Definition

Let D be a displayed bicategory over B.

Suppose that we have pseudofunctors S, T : B — B and
pseudotransformations I,r : Sonwp = T o 7p.

Define a displayed bicategory DFcell(/, r) over [D such that

> the objects over x are 2-cells vy : /(x) = r(x);
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Adding 2-cells to the structure

Definition

Let D be a displayed bicategory over B.

Suppose that we have pseudofunctors S, T : B — B and
pseudotransformations I,r : Sonwp = T o 7p.

Define a displayed bicategory DFcell(/, r) over [D such that

> the objects over x are 2-cells vy : /(x) = r(x);
> the 1-cells over f : x — y from 7, to 7, are equalities

(7x > T(wp(F))) & r(f) = I(f) & (S(7D(F)) < y);

> the 2-cells over 6 : f = g are inhabitants of the unit type.
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The full subbicategory

Definition
Let B be a bicategory and let P be a family of propositions on the
objects of B. Define a displayed bicategory FSub(P) over B

» objects over x are proofs of P(x)

» the displayed 1-cells and 2-cells are inhabitants of the unit

type

The total bicategory [FSub(P) is the full subbicategory of B
whose objects satisfy P.
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Putting it together (1-types)

For a signature X, we get the following bicategories
» PreAlg(X) (via DFalg). Objects (prealgebras) consist of
> a l-type X
» a function X : A(X) — X
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Putting it together (1-types)

For a signature X, we get the following bicategories

» PreAlg(X) (via DFalg). Objects (prealgebras) consist of
> a l-type X
» a function X : A(X) — X

» PathAlg(X) (via DFcell). Objects (path algebras) consist of
> a l-type X
» a function X : A(X) — X
> for each j : Jp and x : 5;(X) a path pj-((x) 1160 = [rd(x);
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Putting it together (1-types)

For a signature X, we get the following bicategories
» PreAlg(X) (via DFalg). Objects (prealgebras) consist of
> a l-type X
» a function X : A(X) — X
» PathAlg(X) (via DFcell). Objects (path algebras) consist of
> a l-type X
» a function X : A(X) — X
> for each j : Jp and x : 5;(X) a path pj-((x) 1160 = [rd(x);
» Alg(X) (via FSub). Objects (algebras) consist of
> a l-type X
» a function X : A(X) — X
> for each j: Jp and x : S;(X) a path pX(x) : [I;]
» for each j: Jy, x : R(X) and w : [a/](x) = [[a,]]

h¥ : [Pl (x, w) = [all(x, w)
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Putting it together (groupoids)

For a signature ¥, we get the following bicategories
> PreAlge,,q(X) (via DFalg).
» PathAlgg,,q(X) (via DFcell).
> Alggpa(X) (via FSub).
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The Groupoid Quotient

The groupoid quotient is the following HIT:

Inductive GQuot (G : Grpd) :=

| gcl: G — GQuot(G)

| geleq : T1(x.y : G)(F : G(x,y)), gel(x) = gel(y)

| ge: [](x: G),gcleq(id(x)) = idpath(x)

| geoncat : [[(x,y,z: G)(f: G(x,y))(g: G(y,2)),
geleq(f - g) = geleq(f) o geleq(g)

| gtrunc : [](x,y : GQuot(G))(p,q: x =y)(r,s:p=q),
r=s
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The Groupoid Quotient is a Biadjunction

The groupoid quotient gives to a pseudofunctor
GQuot : Grpd — 1-Type
We also have a pseudofunctor
PathGrpd : 1-Type — Grpd

(takes fundamental groupoid)

Proposition
We have: GQuot - PathGrpd.
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How to lift the biadjunction?

Again we want a biadjunction between Alg(X) and Algg,,4(%)
» Disadvantage of direct approach: requires reconstruction
> Instead we construct the biadjunction in a layered fashion

To do so, we use displayed biadjunctions
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Displayed Biadjunctions: the idea

Situation:
» Displayed bicategories D; and D, over B; and B
» A biadjunction L 4 R with L: B; — B>
Displayed biadjunctions give a way to
» construct biadjunctions between the totals [D; and [D>
> on the first coordinate, it is given by L 4 R

» the displayed biadjunction specifies the second coordinate
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Concluding the construction

PathGrpdye
—_— >
Alg(z) &T/ AlgGrpd(Z)
GQIJOtA|g
J( PathGrpd J{
1-Type T —Grpd
GQuot

To construct a HIT on X, we do
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Concluding the construction

PathGrpdye
—_— >
Alg(z) &T/ AlgGrpd(Z)
GQIJOtA|g
J( PathGrpd J{
1-Type T —Grpd
GQuot

To construct a HIT on X, we do

» By biinitial algebra semantics, find biinitial object in Alg(X)
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Concluding the construction

PathGrpdye
—_— >
Alg(z) &T/ AlgGrpd(Z)
GQUOtNg
J( PathGrpd l
1-Type T —Grpd
GQuot

To construct a HIT on X, we do
» By biinitial algebra semantics, find biinitial object in Alg(X)
» By biadjunction, find biinitial object in Algg,,4(¥)

» Technical, see formalization and (Dybjer, Moeneclaey, 2018)
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Future Work

» More permissive syntax (HIITs by Kaposi, Kovacs, 2018)
> Generalize this construction to the non-truncated case
> Use the notion of HIT signature to do algebra in bicategories
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