Constructing 1-Truncated Finitary Higher Inductive Types as Groupoid Quotients

Niels van der Weide

Radboud University, Nijmegen, The Netherlands

February 6, 2020

What are higher inductive types?

Higher inductive types: define types by describing constructors for the points, paths, 2-paths (paths between paths), ...
Examples (spaces):

Inductive $S^{1}:=$
\mid base $_{S^{1}}: S^{1}$
loop $_{S^{1}}:$ base $_{S^{1}}=$ base $_{S^{1}}$
Inductive $\mathcal{T}^{2}:=$ base: \mathcal{T}^{2}
loop $_{\mathbf{l}}$, loop $_{r}$: base $=$ base
surf : loop $_{\boldsymbol{l}} \bullet$ loop $_{r}=$ loop $_{r} \bullet$ loop $_{\boldsymbol{l}}$

More Examples!

In general, one can have recursive constructors (both for the points and paths).

Inductive $\mathbb{Z}_{2}:=$

$$
\begin{aligned}
& \mathbf{Z}: \mathbb{Z}_{2} \\
& \mathbf{S}: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2} \\
& \mathbf{m}: \prod_{2}\left(x: \mathbb{Z}_{2}\right), \mathbf{S}(\mathbf{S}(x))=x \\
& \mathbf{c}: \prod\left(x: \mathbb{Z}_{2}\right), \mathbf{m}(\mathbf{S}(x))=\text { ap } \mathbf{S}(\mathbf{m}(x))
\end{aligned}
$$

Inductive $\|A\|:=$ inc : $A \rightarrow\|A\|$
trunc: $\Pi(x, y:\|A\|)(p, q: x=y), p=q$

The terminology from the title

- Finitary: each constructor only has a finite number of recursive arguments (arguments are described by a finitary polynomial).

The terminology from the title

- Finitary: each constructor only has a finite number of recursive arguments (arguments are described by a finitary polynomial). For example, H_{1} is finitary while H_{2} isn't.

```
Inductive \(H_{1}:=\)
    \(c_{1}: H_{1} \times H_{1} \rightarrow H_{1}\)
    \(p_{1}: \Pi\left(x, y: H_{1}\right), c_{1}(x, y)=c_{1}(y, x)\)
Inductive \(\mathrm{H}_{2}:=\)
\(c_{2}:\left(\mathbb{N} \rightarrow H_{2}\right) \rightarrow H_{2}\)
\(p_{2}: \prod\left(f: \mathbb{N} \rightarrow H_{2}\right), c_{2}(f)=c_{2}(\lambda n, f(n+1))\)
```


The terminology from the title

- Finitary: each constructor only has a finite number of recursive arguments (arguments are described by a finitary polynomial). For example, H_{1} is finitary while H_{2} isn't.

$$
\begin{aligned}
& \text { Inductive } H_{1}:= \\
& \left\lvert\, \begin{array}{c}
c_{1}: H_{1} \times H_{1} \rightarrow H_{1} \\
p_{1}: \prod\left(x, y: H_{1}\right), c_{1}(x, y)=c_{1}(y, x) \\
\text { Inductive } H_{2}:= \\
\left\lvert\, \begin{array}{c}
c_{2}
\end{array}\right.:\left(\mathbb{N} \rightarrow H_{2}\right) \rightarrow H_{2} \\
p_{2}: \prod\left(f: \mathbb{N} \rightarrow H_{2}\right), c_{2}(f)=c_{2}(\lambda n, f(n+1))
\end{array}\right.
\end{aligned}
$$

- 1-truncated: a type X is 1-truncated if for all $x, y: X$, $p, q: x=y$, and $r, s: p=q$ we have $r=s$.

The terminology from the title

- Finitary: each constructor only has a finite number of recursive arguments (arguments are described by a finitary polynomial). For example, H_{1} is finitary while H_{2} isn't.

```
Inductive \(H_{1}:=\)
    \(c_{1}: H_{1} \times H_{1} \rightarrow H_{1}\)
    \(p_{1}: \Pi\left(x, y: H_{1}\right), c_{1}(x, y)=c_{1}(y, x)\)
Inductive \(\mathrm{H}_{2}:=\)
    \(c_{2}:\left(\mathbb{N} \rightarrow H_{2}\right) \rightarrow H_{2}\)
    \(p_{2}: \prod\left(f: \mathbb{N} \rightarrow H_{2}\right), c_{2}(f)=c_{2}(\lambda n, f(n+1))\)
```

- 1-truncated: a type X is 1-truncated if for all $x, y: X$, $p, q: x=y$, and $r, s: p=q$ we have $r=s$.
- Groupoid quotient: a HIT that takes a groupoid and turns it into a 1-type (we will discuss it more formally later this talk)

Problem Statement and the Main Theorem

Goal: reduce finitary 1-truncated HITs to simpler principles.

Problem Statement and the Main Theorem

Goal: reduce finitary 1-truncated HITs to simpler principles. More specifically, we

- define inside of type theory the notion of a signature for HITs (allows points, paths, and 2-path constructors)
- define the introduction, elimination, and computation rules for each signature

HIT in 1-types: a 1-type that satisfies all these rules.

Problem Statement and the Main Theorem

Goal: reduce finitary 1-truncated HITs to simpler principles. More specifically, we

- define inside of type theory the notion of a signature for HITs (allows points, paths, and 2-path constructors)
- define the introduction, elimination, and computation rules for each signature

HIT in 1-types: a 1-type that satisfies all these rules.
Then we prove
Theorem
In a type theory with the groupoid quotient, each signature has a HIT in 1-types.

Formalization

All results in this talk are formalized over the UniMath library.
https://github.com/nmvdw/GrpdHITs

The topics of this talk

- As a starter, we look at the theorem in the set truncated case.
- How to move from this case to the 1-truncated case?
- The 1-truncated case:
- Signature for HITs
- Bicategories of algebras (1-types and groupoids)
- The groupoid quotient
- Lifting the groupoid quotient to a biadjunction between algebras
- Conclusion and outlook

How to construct set-truncated HITs

Goal: construct set-truncated HITs as a quotient.
For this construction, we

- Define signatures for set-truncated HITs
- Define categories of algebras in sets and setoids
- Prove initial algebra semantics: initiality implies induction
- Lift the quotient to a adjunction between the category of algebras in sets and in setoids
- Construct the initial algebra in setoids

How to construct set-truncated HITs

Goal: construct set-truncated HITs as a quotient.
For this construction, we

- Define signatures for set-truncated HITs
- Define categories of algebras in sets and setoids
- Prove initial algebra semantics: initiality implies induction
- Lift the quotient to a adjunction between the category of algebras in sets and in setoids
- Construct the initial algebra in setoids

Scheme for set-truncated HITs

Our goal is to construct HITs of the following shape

```
Inductive \(H:=\)
\(c: P(H) \rightarrow H\)
\(p: \Pi(j: J)\left(x: Q_{j}(H)\right), l_{j}(x)=r_{j}(x)\)
\(t: \Pi(x, y: H)(p, q: x=y), p=q\)
```


Scheme for set-truncated HITs

Our goal is to construct HITs of the following shape

```
Inductive \(H:=\)
\(c: P(H) \rightarrow H\)
\(p: \Pi(j: J)\left(x: Q_{j}(H)\right), l_{j}(x)=r_{j}(x)\)
\(t: \Pi(x, y: H)(p, q: x=y), p=q\)
```

What are P, Q_{j}, l_{j}, and r_{j} ?

Signatures for Set-HITs: the point constructors

Definition (Polynomials)

The type P of finitary polynomials is inductively generated by

$$
\mathbf{C}(A): \mathrm{P}, \quad \mathrm{I}: \mathrm{P}, \quad P_{1}+P_{2}: \mathrm{P}, \quad P_{1} \times P_{2}: \mathrm{P}
$$

where A is a set and P_{1} and P_{2} are arbitrary polynomials.

Signatures for Set-HITs: the point constructors

Definition (Polynomials)
The type P of finitary polynomials is inductively generated by

$$
\mathbf{C}(A): \mathrm{P}, \quad \mathrm{I}: \mathrm{P}, \quad P_{1}+P_{2}: \mathrm{P}, \quad P_{1} \times P_{2}: \mathrm{P}
$$

where A is a set and P_{1} and P_{2} are arbitrary polynomials.
A polynomial represents a functor $\llbracket P \rrbracket$ on sets.
Given a polynomial P and a set X, we get a set $P(X)$.

Signatures for Set-HITs: the path constructors

Definition (Path endpoints)
Let A, S, and T be polynomials The type $\mathrm{E}_{A}(S, T)$ of path endpoints with arguments A, source S, and target T is inductively generated by the constructors given on the next slide.

Signatures for Set-HITs: the path constructors

Definition (Path endpoints)
Let A, S, and T be polynomials The type $\mathrm{E}_{A}(S, T)$ of path endpoints with arguments A, source S, and target T is inductively generated by the constructors given on the next slide.
Given X with $c: A(X) \rightarrow X$, a path endpoint $e: \mathrm{E}_{A}(S, T)$ represents a function $S(X) \rightarrow T(X)$ which can make use of c.

Signatures for Set-HITs: some endpoints

$$
\begin{array}{cc}
& \frac{P: \mathrm{P}}{\mathbf{i d}_{A}: \mathrm{E}_{A}(P, P)} \\
P, Q, R: \mathrm{P} & e_{1}: \mathrm{E}_{A}(P, Q) \\
\hline & e_{1} \cdot \mathrm{e}_{2}: \mathrm{E}_{A}(P, R) \\
& \text { constr }: \mathrm{E}_{A}(A, \mathrm{I})
\end{array}
$$

Signatures for Set-HITs: putting it together

Definition (HIT-signature (for set-truncated HITs))
A HIT-signature Σ consists of

- A polynomial A^{Σ}
- A type J_{P}^{Σ} together with for each $j: J_{\mathrm{P}}^{\Sigma}$ a polynomial S_{j}^{Σ} and endpoints $\mathrm{I}_{j}^{\Sigma}, \mathrm{r}_{j}^{\Sigma}: \mathrm{E}_{\mathrm{A}^{\Sigma}}\left(\mathrm{S}_{j}^{\Sigma}, \mathrm{I}\right)$
Σ represents the following HIT
Inductive $H:=$
$c: A^{\Sigma}(H) \rightarrow H$
$p: \Pi\left(j: J_{\mathrm{P}}^{\Sigma}\right)\left(x: \mathrm{S}_{j}^{\Sigma}(H)\right),\left.\right|_{j} ^{\Sigma}(x)=\mathrm{r}_{j}^{\Sigma}(x)$
$t: \Pi(x, y: H)(p, q: x=y), p=q$

Signatures for Set-HITs: putting it together

Definition (HIT-signature (for set-truncated HITs))
A HIT-signature Σ consists of

- A polynomial A^{Σ}
- A type J_{P}^{Σ} together with for each $j: J_{\mathrm{P}}^{\Sigma}$ a polynomial S_{j}^{Σ} and endpoints $\mathrm{I}_{j}^{\Sigma}, \mathrm{r}_{j}^{\Sigma}: \mathrm{E}_{\mathrm{A}^{\Sigma}}\left(\mathrm{S}_{j}^{\Sigma}, \mathrm{I}\right)$
Σ represents the following HIT
Inductive $H:=$

$$
\begin{aligned}
& c: \mathrm{A}^{\Sigma}(H) \rightarrow H \\
& p: \prod(j: J \overline{\mathrm{P}})\left(x: \mathrm{S}_{j}^{\Sigma}(H)\right),\left.\right|_{j} ^{\Sigma}(x)=\mathrm{r}_{j}^{\Sigma}(x) \\
& t: \prod(x, y: H)(p, q: x=y), p=q
\end{aligned}
$$

Signatures for Set-HITs: putting it together

Definition (HIT-signature (for set-truncated HITs))
A HIT-signature Σ consists of

- A polynomial A^{Σ}
- A type J_{P}^{Σ} together with for each $j: J_{\mathrm{P}}^{\Sigma}$ a polynomial S_{j}^{Σ} and endpoints $\mathrm{I}_{j}^{\Sigma}, \mathrm{r}_{j}^{\Sigma}: \mathrm{E}_{\mathrm{A}^{\Sigma}}\left(\mathrm{S}_{j}^{\Sigma}, \mathrm{I}\right)$
Σ represents the following HIT
Inductive $H:=$
$c: A^{\Sigma}(H) \rightarrow H$
$p: \Pi\left(j: J J_{\mathrm{P}}^{\Sigma}\right)\left(x: S_{j}^{\Sigma}(H)\right),\left.\right|_{j} ^{\Sigma}(x)=\mathrm{r}_{j}^{\Sigma}(x)$
$t: \Pi(x, y: H)(p, q: x=y), p=q$

Signatures for Set-HITs: putting it together

Definition (HIT-signature (for set-truncated HITs))
A HIT-signature Σ consists of

- A polynomial A^{Σ}
- A type J_{P}^{Σ} together with for each $j: J_{\mathrm{P}}^{\Sigma}$ a polynomial S_{j}^{\sum} and endpoints $\mathrm{I}_{j}^{\Sigma}, \mathrm{r}_{j}^{\Sigma}: \mathrm{E}_{\mathrm{A}^{\Sigma}}\left(\mathrm{S}_{j}^{\Sigma}, \mathrm{I}\right)$
Σ represents the following HIT
Inductive $H:=$
$c: A^{\Sigma}(H) \rightarrow H$
$p: \Pi\left(j: J_{\mathrm{P}}^{\Sigma}\right)\left(x: S_{j}^{\Sigma}(H)\right),\left.\right|_{j} ^{\Sigma}(x)=r_{j}^{\Sigma}(x)$
$t: \Pi(x, y: H)(p, q: x=y), p=q$

Signatures for Set-HITs: putting it together

Definition (HIT-signature (for set-truncated HITs))
A HIT-signature Σ consists of

- A polynomial A^{Σ}
- A type J_{P}^{Σ} together with for each $j: J_{\mathrm{P}}^{\Sigma}$ a polynomial S_{j}^{Σ} and endpoints $\mathrm{I}_{j}^{\Sigma}, \mathrm{r}_{j}^{\Sigma}: \mathrm{E}_{\mathrm{A}^{\Sigma}}\left(\mathrm{S}_{j}^{\Sigma}, \mathrm{I}\right)$
Σ represents the following HIT
Inductive $H:=$
$c: A^{\Sigma}(H) \rightarrow H$
$p: \Pi\left(j: J_{\mathrm{P}}^{\Sigma}\right)\left(x: \mathrm{S}_{j}^{\Sigma}(H)\right),\left.\right|_{j} ^{\Sigma}(x)=r_{j}^{\Sigma}(x)$
$t: \Pi(x, y: H)(p, q: x=y), p=q$

Let us recall the structure of the argument

- Define signatures for set-truncated HITs
- Define categories of algebras in sets and setoids
- Prove initial algebra semantics: initiality implies induction
- Lift the quotient to a adjunction between the category of algebras in sets and in setoids
- Construct the initial algebra in setoids

Algebras for HITs

An algebra X for Σ that describes
Inductive $H:=$
|c: $\mathrm{A}^{\Sigma}(H) \rightarrow H$
$p: \Pi\left(j: J_{\mathrm{P}}^{\Sigma}\right)\left(x: \mathrm{S}_{j}^{\Sigma}(H)\right),\left.\right|_{j} ^{\Sigma}(x)=\mathrm{r}_{j}^{\Sigma}(x)$
$t: \Pi(x, y: H)(p, q: x=y), p=q$
consists of

- A set X
- An operation $\mathrm{c}^{\mathrm{X}}: \mathrm{A}^{\Sigma}(X) \rightarrow X$
- For each $j: J_{\mathrm{P}}^{\Sigma}$ and $x: S_{j}^{\Sigma}(H)$, a path $\mathrm{p}_{j}^{X}:\left.\right|_{j} ^{\Sigma}(x)=\mathrm{r}_{j}^{\Sigma}(x)$

Goal: define a category of algebras.

Algebras for HITs

An algebra X for Σ that describes
Inductive H :=

$$
\begin{aligned}
& c: A^{\Sigma}(H) \rightarrow H \\
& p: \prod\left(j: J_{P}^{\Sigma}\right)\left(x: S_{j}^{\Sigma}(H)\right),\left.\right|_{j} ^{\Sigma}(x)=r_{j}^{\Sigma}(x) \\
& t: \prod(x, y: H)(p, q: x=y), p=q
\end{aligned}
$$

consists of

- A set X
- An operation $c^{X}: A^{\Sigma}(X) \rightarrow X$
- For each $j: J_{\mathrm{P}}^{\Sigma}$ and $x: S_{j}^{\Sigma}(H)$, a path $\mathrm{p}_{j}^{X}:\left.\right|_{j} ^{\Sigma}(x)=\mathrm{r}_{j}^{\Sigma}(x)$

Goal: define a category of algebras.

Algebras for HITs

An algebra X for Σ that describes
Inductive H :=
|c: $\mathrm{A}^{\Sigma}(H) \rightarrow H$
$p: \Pi\left(j: J_{\mathrm{P}}^{\Sigma}\right)\left(x: S_{j}^{\Sigma}(H)\right),\left.\right|_{j} ^{\Sigma}(x)=r_{j}^{\Sigma}(x)$
$t: \Pi(x, y: H)(p, q: x=y), p=q$
consists of

- A set X
- An operation $\mathrm{c}^{\mathrm{X}}: \mathrm{A}^{\Sigma}(X) \rightarrow X$
- For each $j: J_{\mathrm{P}}^{\Sigma}$ and $x: S_{j}^{\Sigma}(H)$, a path $\mathrm{p}_{j}^{X}:\left.\right|_{j} ^{\Sigma}(x)=\mathrm{r}_{j}^{\Sigma}(x)$

Goal: define a category of algebras.

Algebras for HITs

An algebra X for Σ that describes
Inductive H :=
$c: \mathrm{A}^{\Sigma}(H) \rightarrow H$
$p: \Pi\left(j: J_{\mathrm{P}}^{\Sigma}\right)\left(x: \mathrm{S}_{j}^{\Sigma}(H)\right),\left.\right|_{j} ^{\Sigma}(x)=\mathrm{r}_{j}^{\Sigma}(x)$
$t: \Pi(x, y: H)(p, q: x=y), p=q$
consists of

- A set X
- An operation $\mathrm{c}^{\mathrm{X}}: \mathrm{A}^{\Sigma}(X) \rightarrow X$
- For each $j: J_{\mathrm{P}}^{\Sigma}$ and $x: S_{j}^{\Sigma}(H)$, a path $\mathrm{p}_{j}^{X}:\left.\right|_{j} ^{\Sigma}(x)=\mathrm{r}_{j}^{\Sigma}(x)$

Goal: define a category of algebras.

Algebras for HITs: Categorical Constructions

Defining the category of algebras is done in 2 steps.
Definition
Given a category C, an endofunctor F on C, we have a category Falg (F) whose objects are pairs $X: C$ and $f: F(X) \rightarrow X$.

Algebras for HITs: Categorical Constructions

Defining the category of algebras is done in 2 steps.

Definition

Given a category C, an endofunctor F on C, we have a category Falg (F) whose objects are pairs $X: C$ and $f: F(X) \rightarrow X$.

Definition
Given a category C and a predicate P on the objects of C, we have a category $\operatorname{FSub}(\mathrm{C}, P)$ whose objects are X with a proof of $P(X)$.

Algebras for HITs: Categorical Constructions

Defining the category of algebras is done in 2 steps.

Definition

Given a category C, an endofunctor F on C, we have a category Falg (F) whose objects are pairs $X: C$ and $f: F(X) \rightarrow X$.

Definition
Given a category C and a predicate P on the objects of C, we have a category $\operatorname{FSub}(C, P)$ whose objects are X with a proof of $P(X)$.

- Falg (F) adds the point constructor
- $\operatorname{FSub}(\mathrm{C}, P)$ adds the path constructor

Algebras for HITs: the point constructor

Definition

Given a polynomial P, we get a functor $\llbracket P \rrbracket$: Sets \rightarrow Sets.
Definition
Given a signature Σ, define the category $\operatorname{PreAlg}(\Sigma)$ of prealgebras of Σ to be $\operatorname{Falg}\left(\llbracket A^{\Sigma} \rrbracket\right)$.
Write U for the forgetful functor from $\operatorname{PreAlg}(\Sigma)$ to Sets.

Algebras for HITs: the path constructor

Definition

Suppose, we have an endpoint e: $\mathrm{E}_{\mathrm{A}^{\Sigma}}(S, T)$. Note that we have

$$
\operatorname{PreAlg}(\Sigma) \xrightarrow{U} \text { Sets } \xrightarrow[\llbracket T \rrbracket]{\llbracket S \rrbracket} \text { Sets }
$$

Then we get a natural transformation $\llbracket e \rrbracket: \llbracket S \rrbracket \circ U \Rightarrow \llbracket T \rrbracket \circ U$.

Algebras for HITs: the path constructor

Definition

Suppose, we have an endpoint $e: \mathrm{E}_{\mathrm{A}^{\Sigma}}(S, T)$. Note that we have

$$
\operatorname{PreAlg}(\Sigma) \xrightarrow{U} \text { Sets } \xrightarrow[\llbracket T \rrbracket]{\llbracket S \rrbracket} \text { Sets }
$$

Then we get a natural transformation $\llbracket e \rrbracket: \llbracket S \rrbracket \circ U \Rightarrow \llbracket T \rrbracket \circ U$.

Definition

The category $\operatorname{Alg}(\Sigma)$ of algebras on Σ is define to be the full subcategory of $\operatorname{PreAlg}(\Sigma)$ such that each object (X, c) satisfies:

$$
\text { for all } j: J_{\mathrm{P}}^{\Sigma} \text { and } x: \mathrm{S}_{j}^{\Sigma}(X) \text { we have } \llbracket 1_{j}^{\Sigma} \rrbracket x=\llbracket \mathrm{r}_{j}^{\Sigma} \rrbracket x
$$

Algebras for HITs: in setoids

Similarly, we define

- PreAlg ${ }_{\text {Setoid }}(\Sigma)$: prealgebras in setoids
- $\operatorname{Alg}_{\text {Setoid }}(\Sigma)$: algebras in setoids

Let us recall the structure of the argument

- Define signatures for set-truncated HITs
- Define categories of algebras in sets and setoids
- Prove initial algebra semantics: initiality implies induction
- Lift the quotient to a adjunction between the category of algebras in sets and in setoids
- Construct the initial algebra in setoids

Recall the quotient type

Given a set X and an equivalence relation R on X, we define X / R as the following HIT.
Inductive $X / R:=$
class: $X \rightarrow X / R$
eqclass: $\Pi(x, y: X), R(x, y) \rightarrow \operatorname{class}(x)=\operatorname{class}(y)$
trunc : $\Pi(x, y: H)(p, q: x=y), p=q$

The quotient gives an adjunction

Write

- Sets for the category of sets with functions
- Setoid for the category of setoids with functions that preserve the relation
Then
- We have a functor Quot: Setoid \rightarrow Sets
- We have a functor PathSetoid: Sets \rightarrow Setoid
- We have an adjunction Quot \dashv PathSetoid
(Rijke, Spitters, 2015)

Lifting the quotient

Proposition (Hermida and Jacobs, 1998, Theorem 2.14)
We have

- a functor Quot PreAlg : $\operatorname{PreAlg}_{\text {Setoid }(\Sigma) \rightarrow \operatorname{PreAlg}(\Sigma)}^{(\Sigma)}$
- a functor PathSetoidPreAlg $: \operatorname{PreAlg}(\Sigma) \rightarrow \operatorname{PreAlg}_{\text {Setoid }}(\Sigma)$
- an adjunction Quot ${ }_{\text {PreAlg }} \dashv$ PathSetoidPreAlg

Use: polynomial functors commutes with quotients.
Needs: P is finitary! (Chapman, Uustalu, Veltri)

Lifting the quotient

Proposition (Hermida and Jacobs, 1998, Theorem 2.14)
We have

- a functor Quot ${ }_{\text {PreAlg }}: \operatorname{PreAlg}_{\text {Setoid }(\Sigma) \rightarrow \operatorname{PreAlg}(\Sigma)}$
- a functor PathSetoidPreAlg $: \operatorname{PreAlg}(\Sigma) \rightarrow \operatorname{PreAlg}_{\text {Setoid }}(\Sigma)$
- an adjunction Quot ${ }_{\text {PreAlg }} \dashv$ PathSetoidPreAlg

Use: polynomial functors commutes with quotients.
Needs: P is finitary! (Chapman, Uustalu, Veltri)
Proposition
We have

- a functor Quot $_{\text {Alg }}: \operatorname{Alg}_{\text {Setoid }(\Sigma) \rightarrow \operatorname{Alg}(\Sigma)}$
- a functor PathSetoid ${ }_{\text {Alg }}: \operatorname{Alg}(\Sigma) \rightarrow \operatorname{Alg}_{\text {Setoid }}(\Sigma)$
- an adjunction $^{\text {Quot }}{ }_{\text {Alg }} \dashv$ PathSetoid $_{\text {Alg }}$

Concluding the set truncated case

To construct a HIT on Σ, we do

Concluding the set truncated case

To construct a HIT on Σ, we do

- By initial algebra semantics, find initial object in $\operatorname{Alg}(\Sigma)$

Concluding the set truncated case

To construct a HIT on Σ, we do

- By initial algebra semantics, find initial object in $\operatorname{Alg}(\Sigma)$
- By adjunction, find initial object in $\operatorname{Alg}_{\text {Setoid }}(\Sigma)$

Concluding the set truncated case

To construct a HIT on Σ, we do

- By initial algebra semantics, find initial object in $\operatorname{Alg}(\Sigma)$
- By adjunction, find initial object in $\operatorname{Alg}_{\text {Setoid }}(\Sigma)$
- Technical, see formalization and (Moeneclaey, internship report)

Concluding the set truncated case

To construct a HIT on Σ, we do

- By initial algebra semantics, find initial object in $\operatorname{Alg}(\Sigma)$
- By adjunction, find initial object in $\operatorname{Alg}_{\text {Setoid }}(\Sigma)$
- Technical, see formalization and (Moeneclaey, internship report)
Hence:
Each signature Σ has a HIT in sets.

Now let's do this for 1-types

Recall our main theorem:
Theorem
In a type theory with the groupoid quotient, each signature has a HIT in 1-types.

We use a similar approach.

Sets versus 1-Types

To translate our argument for sets to 1-types, we use the following table

Sets	1-types
Setoids	Groupoids
Quotient	Groupoid quotient
Category	Bicategory
Initial object	Biinitial object
Functor	Pseudofunctor
Natural transformation	Pseudotransformation
Adjunction	Biadjunction

Sets versus 1-Types

To translate our argument for sets to 1-types, we use the following table

Sets	1-types
Setoids	Groupoids
Quotient	Groupoid quotient
Category	Bicategory
Initial object	Biinitial object
Functor	Pseudofunctor
Natural transformation	Pseudotransformation
Adjunction	Biadjunction

Recall:

- the bicategory 1-Type: 1-types with functions and paths between functions
- the bicategory Grpd of groupoids

The approach for set-truncated HITs

This construction is done as follows:

- Define signatures for set-truncated HITs
- Define categories of algebras in sets and setoids
- Prove initial algebra semantics: initiality implies induction
- Lift the quotient to a adjunction between the category of algebras in sets and in setoids
- Construct the initial algebra in setoids

The approach for 1-truncated HITs

This construction is done as follows:

- Define signatures for 1-truncated HITs
- Define bicategories of algebras in 1-types and groupoids
- Prove biinitial algebra semantics: biinitiality implies induction
- Lift the groupoid quotient to a biadjunction between the bicategory of algebras in 1-types and in groupoids
- Construct the biinitial algebra in groupoids

The approach for 1-truncated HITs

This construction is done as follows:

- Define signatures for 1-truncated HITs
- Define bicategories of algebras in 1-types and groupoids
- Prove biinitial algebra semantics: biinitiality implies induction
- Lift the groupoid quotient to a biadjunction between the bicategory of algebras in 1-types and in groupoids
- Construct the biinitial algebra in groupoids

The HITs we consider

Similar to Dybjer, Moeneclaey, 2018.

```
Inductive \(H:=\)
| \(c: \mathrm{A}(H) \rightarrow H\)
    \(p: \Pi\left(j: \mathrm{J}_{\mathrm{P}}\right)\left(x: \mathrm{S}_{\mathrm{j}}(H)\right), \mathrm{l}_{j}(x)=\mathrm{r}_{j}(x)\)
    \(s: \prod\left(j: J_{\mathrm{H}}\right)\left(x: \mathrm{R}_{j}(H)\right)\left(r: \mathrm{a}_{j}(x)=\mathrm{b}_{j}(x)\right)\),
    \(\mathrm{p}_{j}(x, r)=\mathrm{q}_{j}(x, r)\)
    \(t: \Pi(x, y: H)(p, q: x=y)(r, s: p=q), r=s\)
```


The HITs we consider

Similar to Dybjer, Moeneclaey, 2018.

```
Inductive \(H:=\)
| \(c: A(H) \rightarrow H\)
    \(p: \prod\left(j: \mathrm{J}_{\mathrm{P}}\right)\left(x: \mathrm{S}_{j}(H)\right), \mathrm{l}_{j}(x)=\mathrm{r}_{j}(x)\)
    \(s: \prod\left(j: J_{\mathrm{H}}\right)\left(x: \mathrm{R}_{j}(H)\right)\left(r: \mathrm{a}_{j}(x)=\mathrm{b}_{j}(x)\right)\),
    \(\mathrm{p}_{j}(x, r)=\mathrm{q}_{j}(x, r)\)
    \(t: \prod(x, y: H)(p, q: x=y)(r, s: p=q), r=s\)
```

Note: a part is similar to set-truncated HITs

The HITs we consider

Similar to Dybjer, Moeneclaey, 2018.
Inductive $H:=$
c: $\mathrm{A}(H) \rightarrow H$
$p: \prod\left(j: J_{\mathrm{P}}\right)\left(x: \mathrm{S}_{j}(H)\right), \mathrm{l}_{j}(x)=\mathrm{r}_{j}(x)$
$s: \prod\left(j: \mathrm{J}_{\mathrm{H}}\right)\left(x: \mathrm{R}_{j}(H)\right)\left(r: \mathrm{a}_{j}(x)=\mathrm{b}_{j}(x)\right)$,
$\mathrm{p}_{j}(x, r)=\mathrm{q}_{j}(x, r)$
$t: \prod(x, y: H)(p, q: x=y)(r, s: p=q), r=s$
Note: a part is similar to set-truncated HITs What are $\mathrm{a}_{j}, \mathrm{~b}_{j}, \mathrm{p}_{j}$, and a_{j} ?

The path argument

In general, a 2-path constructor could have any finite number of path arguments

Inductive $\|A\|:=$
inc : $A \rightarrow\|A\|$
trunc : $\Pi(x, y:\|A\|)(p, q: x=y), p=q$

The path argument

In general, a 2-path constructor could have any finite number of path arguments

```
Inductive \(\|A\|:=\)
    inc : \(A \rightarrow\|A\|\)
    trunc: \(\Pi(x, y:\|A\|)(p, q: x=y), p=q\)
```

However, it suffices to assume there is 1 path argument.

```
Inductive \(\|A\|:=\)
    inc : \(A \rightarrow\|A\|\)
    trunc: \(\Pi(x, y:\|A\|)(p:(x, x)=(y, y))\), ap \(\pi_{1} p=a p \pi_{2} q\)
```


The path argument

In general, a 2-path constructor could have any finite number of path arguments

```
Inductive \(\|A\|:=\)
    inc : \(A \rightarrow\|A\|\)
    trunc: \(\Pi(x, y:\|A\|)(p, q: x=y), p=q\)
```

However, it suffices to assume there is 1 path argument.

```
Inductive \(\|A\|:=\)
    inc : \(A \rightarrow\|A\|\)
    trunc: \(\Pi(x, y:\|A\|)(p:(x, x)=(y, y))\), ap \(\pi_{1} p=a p \pi_{2} q\)
```

So: we represent the path argument by two path endpoints.

Signatures for 1-Truncated HITs: Homotopy Endpoints

```
Inductive \(H:=\)
    \(c: \mathrm{A}(H) \rightarrow H\)
    \(p: \prod\left(j: \mathrm{J}_{\mathrm{P}}\right)\left(x: \mathrm{S}_{\mathrm{j}}(H)\right), \mathrm{l}_{j}(x)=\mathrm{r}_{j}(x)\)
    \(s: \prod\left(j: \mathrm{J}_{\mathrm{H}}\right)\left(x: \mathrm{R}_{j}(H)\right)\left(r: \mathrm{a}_{j}(x)=\mathrm{b}_{j}(x)\right)\),
    \(\mathrm{p}_{j}(x, r)=\mathrm{q}_{j}(x, r)\)
    \(t: \prod(x, y: H)(p, q: x=y)(r, s: p=q), r=s\)
```

The type of homotopy endpoints depends on

- a polynomial A

Signatures for 1-Truncated HITs: Homotopy Endpoints

```
Inductive \(H:=\)
    \(c: \mathrm{A}(H) \rightarrow H\)
    \(p: \prod\left(j: J_{P}\right)\left(x: \mathrm{S}_{j}(H)\right), \mathrm{l}_{j}(x)=\mathrm{r}_{j}(x)\)
    \(s: \prod\left(j: \mathrm{J}_{\mathrm{H}}\right)\left(x: \mathrm{R}_{j}(H)\right)\left(r: \mathrm{a}_{j}(x)=\mathrm{b}_{j}(x)\right)\),
    \(\mathrm{p}_{j}(x, r)=\mathrm{q}_{j}(x, r)\)
    \(t: \prod(x, y: H)(p, q: x=y)(r, s: p=q), r=s\)
```

The type of homotopy endpoints depends on

- a polynomial A
- a type J_{P}

Signatures for 1-Truncated HITs: Homotopy Endpoints

```
Inductive \(H:=\)
    \(c: \mathrm{A}(H) \rightarrow H\)
    \(p: \prod\left(j: J_{P}\right)\left(x: S_{j}(H)\right), l_{j}(x)=r_{j}(x)\)
    \(s: \prod\left(j: \mathrm{J}_{\mathrm{H}}\right)\left(x: \mathrm{R}_{j}(H)\right)\left(r: \mathrm{a}_{j}(x)=\mathrm{b}_{j}(x)\right)\),
    \(\mathrm{p}_{j}(x, r)=\mathrm{q}_{j}(x, r)\)
    \(t: \prod(x, y: H)(p, q: x=y)(r, s: p=q), r=s\)
```

The type of homotopy endpoints depends on

- a polynomial A
- a type J_{P}
- for each $j: J_{P}$ a polynomial S_{j} and path endpoints I_{j} and r_{j}

Signatures for 1-Truncated HITs: Homotopy Endpoints

```
Inductive \(H:=\)
    \(c: \mathrm{A}(H) \rightarrow H\)
    \(p: \prod\left(j: \mathrm{J}_{\mathrm{P}}\right)\left(x: \mathrm{S}_{\mathrm{j}}(H)\right), \mathrm{l}_{j}(x)=\mathrm{r}_{j}(x)\)
    \(s: \prod\left(j: \mathrm{J}_{\mathrm{H}}\right)\left(x: \mathrm{R}_{j}(H)\right)\left(r: \mathrm{a}_{j}(x)=\mathrm{b}_{j}(x)\right)\),
    \(\mathrm{p}_{j}(x, r)=\mathrm{q}_{j}(x, r)\)
    \(t: \prod(x, y: H)(p, q: x=y)(r, s: p=q), r=s\)
```

The type of homotopy endpoints depends on

- a polynomial A
- a type J_{P}
- for each j : J_{P} a polynomial S_{j} and path endpoints I_{j} and r_{j}
- a polynomial R

Signatures for 1-Truncated HITs: Homotopy Endpoints

$$
\begin{aligned}
& \text { Inductive } H:= \\
& \mid c: \mathrm{A}(H) \rightarrow H \\
& p: \prod\left(j: \mathrm{J}_{\mathrm{P}}\right)\left(x: \mathrm{S}_{j}(H)\right), \mathrm{I}_{j}(x)=\mathrm{r}_{j}(x) \\
& \mathrm{s}: \prod\left(j: \mathrm{J}_{\mathrm{H}}\right)\left(x: \mathrm{R}_{j}(H)\right)\left(r: \mathrm{a}_{j}(x)=\mathrm{b}_{j}(x)\right), \\
& \mathrm{p}_{j}(x, r)=\mathrm{q}_{j}(x, r) \\
& t: \prod(x, y: H)(p, q: x=y)(r, s: p=q), r=s
\end{aligned}
$$

The type of homotopy endpoints depends on

- a polynomial A
- a type J_{P}
- for each $j: J_{P}$ a polynomial S_{j} and path endpoints I_{j} and r_{j}
- a polynomial R
- a polynomial T and path endpoints $\mathrm{a}, \mathrm{b}: \mathrm{E}_{\mathrm{A}}(\mathrm{R}, T)$

Signatures for 1-Truncated HITs : Homotopy Endpoints

```
Inductive \(H:=\)
    \(c: \mathrm{A}(H) \rightarrow H\)
    \(p: \Pi\left(j: J_{P}\right)\left(x: S_{j}(H)\right), l_{j}(x)=r_{j}(x)\)
    \(s: \prod\left(j: \mathrm{J}_{\mathrm{H}}\right)\left(x: \mathrm{R}_{j}(H)\right)\left(r: \mathrm{a}_{j}(x)=\mathrm{b}_{j}(x)\right)\),
    \(\mathrm{p}_{j}(x, r)=\mathrm{q}_{j}(x, r)\)
    \(t: \Pi(x, y: H)(p, q: x=y)(r, s: p=q), r=s\)
```

The type of homotopy endpoints depends on

- a polynomial A
- a type J_{P}
- for each $j: J_{P}$ a polynomial S_{j} and path endpoints I_{j} and r_{j}
- a polynomial R
- a polynomial T and path endpoints $a, b: \mathrm{E}_{\mathrm{A}}(\mathrm{R}, T)$
- path endpoints $s, t: E_{A}(R, I)$

Signatures for 1-Truncated HITs: Homotopy Endpoints

Given

- a polynomial A
- a type J_{P}
- for each j : J_{P} a polynomial S_{j} and path endpoints I_{j} and r_{j}
- a polynomial R
- a polynomial T and path endpoints $\mathrm{a}, \mathrm{b}: \mathrm{E}_{\mathrm{A}}(\mathrm{R}, T)$
- path endpoints $s, t: E_{A}(R, I)$
we define the type $H_{l_{j}, r_{j}, a, b}(s, t)$ inductively.

Signatures for 1-Truncated HITs : Homotopy Endpoints

Given

- a polynomial A
- a type J_{P}
- for each j : J_{P} a polynomial S_{j} and path endpoints I_{j} and r_{j}
- a polynomial R
- a polynomial T and path endpoints $\mathrm{a}, \mathrm{b}: \mathrm{E}_{\mathrm{A}}(\mathrm{R}, T)$
- path endpoints $s, t: E_{A}(R, I)$
we define the type $H_{l_{j}, r_{j}, a, b}(s, t)$ inductively.
Given $x: \mathrm{R}(X)$ and $w: \mathrm{a}(x)=\mathrm{b}(x)$, a homotopy endpoint $h: \mathrm{H}_{\mathrm{l}_{j}, \mathrm{r}_{j}, \mathrm{a}, \mathrm{b}}(\mathrm{s}, \mathrm{t})$ represents a path

$$
\llbracket h \rrbracket(x, w): \mathrm{s}(x)=\mathrm{t}(x)
$$

Defining Bicategories of Algebras

- Type of algebras is an iterated \sum-type
- We want to construct the biadjunction on each component separately
- Displayed bicategories allow us to do that

Displayed Bicategories

Definition

Let B be a bicategory.
A displayed bicategory D over B consists of

- For each x : B a type $\mathrm{D}(x)$ of objects over x;
- For each $f: x \rightarrow y, \bar{x}: \mathrm{D}(x)$ and $\bar{y}: \mathrm{D}(y)$, a type $\bar{x} \xrightarrow{f} \bar{y}$ of 1-cells over f;
- For each $\theta: f \Rightarrow g, \bar{f}: \bar{x} \xrightarrow{f} \bar{y}$, and $\bar{g}: \bar{x} \xrightarrow{g} \bar{y}$, a set $\bar{f} \stackrel{\theta}{\Rightarrow} \bar{g}$ of 2-cells over θ.

Details: Ahrens, Frumin, Maggesi, Veltri, Van der Weide For the categorical case: see Ahrens and Lumsdaine

Total Bicategory

Definition

Let D be a displayed bicategory on B .
Define the total bicategory $\int D$

- Objects are pairs (x, \bar{x}) with $x: \mathrm{B}$ and $\bar{x}: D(x)$
- 1-cells are pairs (f, \bar{f}) with $f: x \rightarrow y$ and $\bar{f}: \bar{x} \xrightarrow{f} \bar{y}$
- 2-cells are pairs $(\theta, \bar{\theta})$ with $\theta: f \Rightarrow g$ and $\bar{\theta}: \bar{f} \stackrel{\theta}{\Rightarrow} \bar{g}$

Note: there is a projection pseudofunctor $\pi_{D}: \int D \rightarrow B$.

Examples of Displayed Bicategory

Recall the HITs we consider

```
Inductive \(H\) :=
\(c: \mathrm{A}(H) \rightarrow H\)
\(p: \Pi\left(j: J_{\mathrm{P}}\right)\left(x: \mathrm{S}_{j}(H)\right), \mathrm{l}_{j}(x)=\mathrm{r}_{\mathrm{j}}(x)\)
\(s: \Pi\left(j: J_{\mathrm{H}}\right)\left(x: \mathrm{R}_{j}(H)\right)\left(r: \mathrm{a}_{j}(x)=\mathrm{b}_{j}(x)\right), \mathrm{p}_{j}(x, r)=\mathrm{q}_{j}(x, r)\)
\(t: \prod(x, y: H)(p, q: x=y)(r, s: p=q), r=s\)
```

We define three displayed bicategories:

Examples of Displayed Bicategory

Recall the HITs we consider

```
Inductive \(H\) :=
| \(c: A(H) \rightarrow H\)
    \(p: \Pi\left(j: \mathrm{J}_{\mathrm{P}}\right)\left(x: \mathrm{S}_{\mathrm{j}}(H)\right), \mathrm{l}_{j}(x)=\mathrm{r}_{\mathrm{j}}(x)\)
    \(s: \Pi\left(j: J_{\mathrm{H}}\right)\left(x: \mathrm{R}_{j}(H)\right)\left(r: \mathrm{a}_{j}(x)=\mathrm{b}_{j}(x)\right), \mathrm{p}_{j}(x, r)=\mathrm{q}_{j}(x, r)\)
    \(t: \prod(x, y: H)(p, q: x=y)(r, s: p=q), r=s\)
```

We define three displayed bicategories:

- One that adds structure for the point constructor

Examples of Displayed Bicategory

Recall the HITs we consider

```
Inductive \(H\) :=
| \(c: \mathrm{A}(H) \rightarrow H\)
    \(p: \Pi\left(j: J_{P}\right)\left(x: S_{j}(H)\right), l_{j}(x)=r_{j}(x)\)
    \(s: \Pi\left(j: J_{H}\right)\left(x: \mathrm{R}_{j}(H)\right)\left(r: \mathrm{a}_{j}(x)=\mathrm{b}_{j}(x)\right), \mathrm{p}_{j}(x, r)=\mathrm{q}_{j}(x, r)\)
    \(t: \prod(x, y: H)(p, q: x=y)(r, s: p=q), r=s\)
```

We define three displayed bicategories:

- One that adds structure for the point constructor
- One that adds structure for the path constructor

Examples of Displayed Bicategory

Recall the HITs we consider

$$
\begin{aligned}
& \text { Inductive } H:= \\
& \mid c: \mathrm{A}(H) \rightarrow \boldsymbol{H} \\
& p: \prod\left(j: \mathrm{J}_{\mathrm{P}}\right)\left(x: \mathrm{S}_{j}(H)\right), \mathrm{I}_{j}(x)=\mathrm{r}_{j}(x) \\
& s: \prod\left(j: \mathrm{J}_{H}\right)\left(x: \mathrm{R}_{j}(H)\right)\left(r: \mathrm{a}_{j}(x)=\mathrm{b}_{j}(x)\right), \mathrm{p}_{j}(x, r)=\mathrm{q}_{j}(x, r) \\
& t: \prod(x, y: H)(p, q: x=y)(r, s: p=q), r=s
\end{aligned}
$$

We define three displayed bicategories:

- One that adds structure for the point constructor
- One that adds structure for the path constructor
- One that adds structure for the 2-path constructor

Algebras on a Pseudofunctor

Note: a polynomial P gives a pseudofunctor

$$
\llbracket P \rrbracket: 1 \text {-Type } \rightarrow \text { 1-Type. }
$$

Definition

Let B be a bicategory and let $F: B \rightarrow B$ be a pseudofunctor. Define a displayed bicategory DFalg (F) over B such that

- objects over $x:$ B are 1-cells $h_{x}: F(x) \rightarrow x$;

Algebras on a Pseudofunctor

Note: a polynomial P gives a pseudofunctor

$$
\llbracket P \rrbracket: 1 \text {-Type } \rightarrow \text { 1-Type. }
$$

Definition

Let B be a bicategory and let $F: B \rightarrow B$ be a pseudofunctor. Define a displayed bicategory DFalg (F) over B such that

- objects over $x:$ B are 1-cells $h_{x}: F(x) \rightarrow x$;
- 1-cells over $f: x \rightarrow y$ from h_{x} to h_{y} are invertible 2-cells $\tau_{f}: h_{x} \cdot f \Rightarrow F(f) \cdot h_{y}$;
- 2-cells over $\theta: f \Rightarrow g$ from τ_{f} to τ_{g} are equalities

$$
h_{x} \triangleleft \theta \bullet \tau_{g}=\tau_{f} \bullet F(\theta) \triangleright h_{y}
$$

A Brief Intermezzo: endpoints

Note that we have

$$
\int \mathrm{DFalg}(\llbracket A \rrbracket) \xrightarrow{\pi_{\mathrm{DFalg}(\llbracket A \rrbracket)}} 1 \text {-Type } \xrightarrow[\llbracket T \rrbracket]{\stackrel{\llbracket S \rrbracket}{\longrightarrow}} 1 \text {-Type }
$$

An endpoint e : $\mathrm{E}_{A}(S, T)$ gives rise to a pseudotransformation

$$
\llbracket e \rrbracket: \llbracket S \rrbracket \circ \pi_{\mathrm{DFalg}(\llbracket A \rrbracket)} \Rightarrow \llbracket T \rrbracket \circ \pi_{\mathrm{DFalg}(\llbracket A \rrbracket)} .
$$

Adding 2-cells to the structure

Definition

Let D be a displayed bicategory over B .
Suppose that we have pseudofunctors $S, T: B \rightarrow B$ and pseudotransformations $I, r: S \circ \pi_{D} \Rightarrow T \circ \pi_{D}$.
Define a displayed bicategory $\operatorname{DFcell}(I, r)$ over $\int D$ such that

- the objects over x are 2-cells $\gamma_{x}: I(x) \Rightarrow r(x)$;

Adding 2-cells to the structure

Definition

Let D be a displayed bicategory over B .
Suppose that we have pseudofunctors $S, T: B \rightarrow B$ and pseudotransformations $I, r: S \circ \pi_{D} \Rightarrow T \circ \pi_{D}$.
Define a displayed bicategory $\operatorname{DFcell}(I, r)$ over $\int D$ such that

- the objects over x are 2-cells $\gamma_{x}: I(x) \Rightarrow r(x)$;
- the 1-cells over $f: x \rightarrow y$ from γ_{x} to γ_{y} are equalities

$$
\left(\gamma_{x} \triangleright T\left(\pi_{D}(f)\right)\right) \bullet r(f)=I(f) \bullet\left(S\left(\pi_{D}(f)\right) \triangleleft \gamma_{y}\right) ;
$$

- the 2-cells over $\theta: f \Rightarrow g$ are inhabitants of the unit type.

The full subbicategory

Definition

Let B be a bicategory and let P be a family of propositions on the objects of B . Define a displayed bicategory FSub (P) over B

- objects over x are proofs of $P(x)$
- the displayed 1-cells and 2-cells are inhabitants of the unit type
The total bicategory $\int F \operatorname{Fub}(P)$ is the full subbicategory of B whose objects satisfy P.

Putting it together (1-types)

For a signature Σ, we get the following bicategories

- PreAlg(Σ) (via DFalg). Objects (prealgebras) consist of
- a 1-type X
- a function $\mathrm{c}^{X}: \mathrm{A}(X) \rightarrow X$

Putting it together (1-types)

For a signature Σ, we get the following bicategories

- PreAlg(Σ) (via DFalg). Objects (prealgebras) consist of
- a 1-type X
- a function $\mathrm{c}^{X}: \mathrm{A}(X) \rightarrow X$
- Path $\operatorname{Alg}(\Sigma)$ (via DFcell). Objects (path algebras) consist of
- a 1-type X
- a function $\mathrm{c}^{X}: \mathrm{A}(X) \rightarrow X$
- for each $j: J_{\mathrm{P}}$ and $x: \mathrm{S}_{j}(X)$ a path $\mathrm{p}_{j}^{X}(x): \llbracket \llbracket_{j} \rrbracket(x)=\llbracket \mathrm{r}_{j} \rrbracket(x)$;

Putting it together (1-types)

For a signature Σ, we get the following bicategories

- PreAlg(Σ) (via DFalg). Objects (prealgebras) consist of
- a 1-type X
- a function $\mathrm{c}^{X}: \mathrm{A}(X) \rightarrow X$
- PathAlg(Σ) (via DFcell). Objects (path algebras) consist of
- a 1-type X
- a function $\mathrm{c}^{X}: \mathrm{A}(X) \rightarrow X$
- for each $j: J_{\mathrm{P}}$ and $x: \mathrm{S}_{j}(X)$ a path $\mathrm{p}_{j}^{X}(x): \llbracket \iota_{j} \rrbracket(x)=\llbracket \mathrm{r}_{j} \rrbracket(x)$;
- $\operatorname{Alg}(\Sigma)$ (via FSub). Objects (algebras) consist of
- a 1-type X
- a function $\mathrm{c}^{X}: \mathrm{A}(X) \rightarrow X$
- for each $j: J_{\mathrm{P}}$ and $x: \mathrm{S}_{j}(X)$ a path $\mathrm{p}_{j}^{X}(x): \llbracket 1_{j} \rrbracket(x)=\llbracket \mathrm{r}_{j} \rrbracket(x)$;
- for each $j: J_{\mathrm{H}}, x: \mathrm{R}(X)$ and $w: \llbracket a_{\imath} \rrbracket(x)=\llbracket a_{r} \rrbracket(x)$, a 2-path

$$
\mathrm{h}_{j}^{X}: \llbracket \mathfrak{p} \rrbracket(x, w)=\llbracket \mathrm{q} \rrbracket(x, w)
$$

Putting it together (groupoids)

For a signature Σ, we get the following bicategories

- PreAlg ${ }_{\text {Grpd }}(\Sigma)$ (via DFalg).
- PathAlg ${ }_{\text {Grpd }}(\Sigma)$ (via DFcell).
- $\operatorname{Alg}_{\text {Grpd }}(\Sigma)$ (via FSub).

The Groupoid Quotient

The groupoid quotient is the following HIT:
Inductive GQuot (G:Grpd) := gcl : $G \rightarrow$ GQuot (G)
gcleq : $\Pi(x, y: G)(f: G(x, y)), \operatorname{gcl}(x)=\operatorname{gcl}(y)$
ge : $\Pi(x: G)$, gcleq $(i d(x))=$ idpath (x)
gconcat : $\Pi(x, y, z: G)(f: G(x, y))(g: G(y, z))$,
$\operatorname{gcleq}(f \cdot g)=\operatorname{gcleq}(f) \bullet \operatorname{gcleq}(g)$
gtrunc : $\Pi(x, y: \operatorname{GQuot}(G))(p, q: x=y)(r, s: p=q)$,
$r=s$

The Groupoid Quotient is a Biadjunction

The groupoid quotient gives to a pseudofunctor

$$
\text { GQuot : Grpd } \rightarrow \text { 1-Type }
$$

We also have a pseudofunctor

$$
\text { PathGrpd : 1-Type } \rightarrow \text { Grpd }
$$

(takes fundamental groupoid)
Proposition
We have: GQuot \dashv PathGrpd.

How to lift the biadjunction?

Again we want a biadjunction between $\operatorname{Alg}(\Sigma)$ and $\operatorname{Alg}_{G r p d}(\Sigma)$

- Disadvantage of direct approach: requires reconstruction
- Instead we construct the biadjunction in a layered fashion

To do so, we use displayed biadjunctions

Displayed Biadjunctions: the idea

Situation:

- Displayed bicategories D_{1} and D_{2} over B_{1} and B_{2}
- A biadjunction $L \dashv R$ with $L: \mathrm{B}_{1} \rightarrow \mathrm{~B}_{2}$

Displayed biadjunctions give a way to

- construct biadjunctions between the totals $\int D_{1}$ and $\int D_{2}$
- on the first coordinate, it is given by $L \dashv R$
- the displayed biadjunction specifies the second coordinate

Concluding the construction

To construct a HIT on Σ, we do

Concluding the construction

To construct a HIT on Σ, we do

- By biinitial algebra semantics, find biinitial object in $\operatorname{Alg}(\Sigma)$

Concluding the construction

To construct a HIT on Σ, we do

- By biinitial algebra semantics, find biinitial object in $\operatorname{Alg}(\Sigma)$
- By biadjunction, find biinitial object in $\operatorname{Alg}_{G r p d}(\Sigma)$

Concluding the construction

To construct a HIT on Σ, we do

- By biinitial algebra semantics, find biinitial object in $\operatorname{Alg}(\Sigma)$
- By biadjunction, find biinitial object in $\operatorname{Alg}_{\text {Grpd }}(\Sigma)$
- Technical, see formalization and (Dybjer, Moeneclaey, 2018)

Future Work

- More permissive syntax (HIITs by Kaposi, Kovács, 2018)
- Generalize this construction to the non-truncated case
- Use the notion of HIT signature to do algebra in bicategories

