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What are higher inductive types?

Higher inductive types: define types by describing constructors for
the points, paths, 2-paths (paths between paths), ...
Examples (spaces):

Inductive S1 :=
| baseS1 : S1

| loopS1 : baseS1 = baseS1

Inductive T 2 :=
| base : T 2

| loopl, loopr : base = base
| surf : loopl • loopr = loopr • loopl
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More Examples!

In general, one can have recursive constructors (both for the points
and paths).

Inductive Z2 :=
| Z : Z2

| S : Z2 → Z2

| m :
∏

(x : Z2),S(S(x)) = x
| c :

∏
(x : Z2),m(S(x)) = ap S (m(x))

Inductive ||A|| :=
| inc : A→ ||A||
| trunc :

∏
(x , y : ||A||)(p, q : x = y), p = q
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The terminology from the title

I Finitary: each constructor only has a finite number of
recursive arguments (arguments are described by a finitary
polynomial).

For example, H1 is finitary while H2 isn’t.

Inductive H1 :=
| c1 : H1 × H1 → H1

| p1 :
∏

(x , y : H1), c1(x , y) = c1(y , x)

Inductive H2 :=
| c2 : (N→ H2)→ H2

| p2 :
∏

(f : N→ H2), c2(f ) = c2(λn, f (n + 1))

I 1-truncated: a type X is 1-truncated if for all x , y : X ,
p, q : x = y , and r , s : p = q we have r = s.

I Groupoid quotient: a HIT that takes a groupoid and turns it
into a 1-type (we will discuss it more formally later this talk)
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Problem Statement and the Main Theorem

Goal: reduce finitary 1-truncated HITs to simpler principles.

More specifically, we

I define inside of type theory the notion of a signature for HITs
(allows points, paths, and 2-path constructors)

I define the introduction, elimination, and computation rules for
each signature

HIT in 1-types: a 1-type that satisfies all these rules.
Then we prove

Theorem
In a type theory with the groupoid quotient, each signature has a
HIT in 1-types.
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Formalization

All results in this talk are formalized over the UniMath library.

https://github.com/nmvdw/GrpdHITs
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The topics of this talk

I As a starter, we look at the theorem in the set truncated case.

I How to move from this case to the 1-truncated case?
I The 1-truncated case:

I Signature for HITs
I Bicategories of algebras (1-types and groupoids)
I The groupoid quotient
I Lifting the groupoid quotient to a biadjunction between

algebras

I Conclusion and outlook
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How to construct set-truncated HITs

Goal: construct set-truncated HITs as a quotient.
For this construction, we

I Define signatures for set-truncated HITs

I Define categories of algebras in sets and setoids

I Prove initial algebra semantics: initiality implies induction

I Lift the quotient to a adjunction between the category of
algebras in sets and in setoids

I Construct the initial algebra in setoids
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Scheme for set-truncated HITs

Our goal is to construct HITs of the following shape

Inductive H :=
| c : P(H)→ H
| p :

∏
(j : J)(x : Qj(H)), lj(x) = rj(x)

| t :
∏

(x , y : H)(p, q : x = y), p = q

What are P, Qj , lj , and rj?
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Signatures for Set-HITs: the point constructors

Definition (Polynomials)

The type P of finitary polynomials is inductively generated by

C(A) : P, I : P, P1 + P2 : P, P1 × P2 : P

where A is a set and P1 and P2 are arbitrary polynomials.

A polynomial represents a functor JPK on sets.
Given a polynomial P and a set X , we get a set P(X ).
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Signatures for Set-HITs: the path constructors

Definition (Path endpoints)

Let A, S , and T be polynomials The type EA(S ,T ) of path
endpoints with arguments A, source S , and target T is inductively
generated by the constructors given on the next slide.

Given X with c : A(X )→ X , a path endpoint e : EA(S ,T )
represents a function S(X )→ T (X ) which can make use of c.
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Signatures for Set-HITs: some endpoints

P : P
idA : EA(P,P)

P,Q,R : P e1 : EA(P,Q) e2 : EA(Q,R)

e1 · e2 : EA(P,R)

constr : EA(A, I)
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Signatures for Set-HITs: putting it together

Definition (HIT-signature (for set-truncated HITs))

A HIT-signature Σ consists of

I A polynomial AΣ

I A type JΣ
P together with for each j : JΣ

P a polynomial SΣ
j and

endpoints lΣj , r
Σ
j : EAΣ(SΣ

j , I)

Σ represents the following HIT

Inductive H :=

| c : AΣ(H)→ H

| p :
∏

(j : JΣ
P )(x : SΣ

j (H)), lΣj (x) = rΣ
j (x)

| t :
∏

(x , y : H)(p, q : x = y), p = q
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Let us recall the structure of the argument

I Define signatures for set-truncated HITs

I Define categories of algebras in sets and setoids

I Prove initial algebra semantics: initiality implies induction

I Lift the quotient to a adjunction between the category of
algebras in sets and in setoids

I Construct the initial algebra in setoids
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Algebras for HITs

An algebra X for Σ that describes

Inductive H :=

| c : AΣ(H)→ H

| p :
∏

(j : JΣ
P )(x : SΣ

j (H)), lΣj (x) = rΣ
j (x)

| t :
∏

(x , y : H)(p, q : x = y), p = q

consists of

I A set X

I An operation cX : AΣ(X )→ X

I For each j : JΣ
P and x : SΣ

j (H), a path pX
j : lΣj (x) = rΣ

j (x)

Goal: define a category of algebras.
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Algebras for HITs: Categorical Constructions

Defining the category of algebras is done in 2 steps.

Definition
Given a category C, an endofunctor F on C, we have a category
Falg(F ) whose objects are pairs X : C and f : F (X )→ X .

Definition
Given a category C and a predicate P on the objects of C, we have
a category FSub(C,P) whose objects are X with a proof of P(X ).

I Falg(F ) adds the point constructor

I FSub(C,P) adds the path constructor
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Algebras for HITs: the point constructor

Definition
Given a polynomial P, we get a functor JPK : Sets→ Sets.

Definition
Given a signature Σ, define the category PreAlg(Σ) of prealgebras
of Σ to be Falg(JAΣK).

Write U for the forgetful functor from PreAlg(Σ) to Sets.
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Algebras for HITs: the path constructor

Definition
Suppose, we have an endpoint e : EAΣ(S ,T ). Note that we have

PreAlg(Σ)
U // Sets

JSK
//

JT K
// Sets

Then we get a natural transformation JeK : JSK ◦ U ⇒ JT K ◦ U.

Definition
The category Alg(Σ) of algebras on Σ is define to be the full
subcategory of PreAlg(Σ) such that each object (X , c) satisfies:

for all j : JΣ
P and x : SΣ

j (X ) we have JlΣj Kx = JrΣ
j Kx

18/48
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Algebras for HITs: in setoids

Similarly, we define

I PreAlgSetoid(Σ): prealgebras in setoids

I AlgSetoid(Σ): algebras in setoids
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Let us recall the structure of the argument

I Define signatures for set-truncated HITs

I Define categories of algebras in sets and setoids

I Prove initial algebra semantics: initiality implies induction

I Lift the quotient to a adjunction between the category
of algebras in sets and in setoids

I Construct the initial algebra in setoids
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Recall the quotient type

Given a set X and an equivalence relation R on X , we define X/R
as the following HIT.

Inductive X/R :=
| class : X → X/R
| eqclass :

∏
(x , y : X ),R(x , y)→ class(x) = class(y)

| trunc :
∏

(x , y : H)(p, q : x = y), p = q
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The quotient gives an adjunction

Write

I Sets for the category of sets with functions

I Setoid for the category of setoids with functions that preserve
the relation

Then

I We have a functor Quot : Setoid→ Sets

I We have a functor PathSetoid : Sets→ Setoid

I We have an adjunction Quot a PathSetoid

(Rijke, Spitters, 2015)
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Lifting the quotient

Proposition (Hermida and Jacobs, 1998, Theorem 2.14)

We have

I a functor QuotPreAlg : PreAlgSetoid(Σ)→ PreAlg(Σ)

I a functor PathSetoidPreAlg : PreAlg(Σ)→ PreAlgSetoid(Σ)

I an adjunction QuotPreAlg a PathSetoidPreAlg

Use: polynomial functors commutes with quotients.
Needs: P is finitary! (Chapman, Uustalu, Veltri)

Proposition

We have

I a functor QuotAlg : AlgSetoid(Σ)→ Alg(Σ)

I a functor PathSetoidAlg : Alg(Σ)→ AlgSetoid(Σ)
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Concluding the set truncated case

Alg(Σ) >

PathSetoidAlg
--

��

AlgSetoid(Σ)
QuotAlg

mm

��

Sets >
PathSetoid

--
Setoid

Quot

ll

To construct a HIT on Σ, we do

I By initial algebra semantics, find initial object in Alg(Σ)

I By adjunction, find initial object in AlgSetoid(Σ)

I Technical, see formalization and (Moeneclaey, internship
report)

Hence:

Each signature Σ has a HIT in sets.
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Now let’s do this for 1-types

Recall our main theorem:

Theorem
In a type theory with the groupoid quotient, each signature has a
HIT in 1-types.

We use a similar approach.
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Sets versus 1-Types

To translate our argument for sets to 1-types, we use the following
table

Sets 1-types

Setoids Groupoids
Quotient Groupoid quotient
Category Bicategory
Initial object Biinitial object
Functor Pseudofunctor
Natural transformation Pseudotransformation
Adjunction Biadjunction

Recall:

I the bicategory 1-Type: 1-types with functions and paths
between functions

I the bicategory Grpd of groupoids

26/48
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The approach for set-truncated HITs

This construction is done as follows:

I Define signatures for set-truncated HITs

I Define categories of algebras in sets and setoids

I Prove initial algebra semantics: initiality implies induction

I Lift the quotient to a adjunction between the category of
algebras in sets and in setoids

I Construct the initial algebra in setoids
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The HITs we consider

Similar to Dybjer, Moeneclaey, 2018.

Inductive H :=
| c : A(H)→ H
| p :

∏
(j : JP)(x : Sj(H)), lj(x) = rj(x)

| s :
∏

(j : JH)(x : Rj(H))(r : aj(x) = bj(x)),

pj(x , r) = qj(x , r)

| t :
∏

(x , y : H)(p, q : x = y)(r , s : p = q), r = s

Note: a part is similar to set-truncated HITs
What are aj , bj , pj , and qj?
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The path argument

In general, a 2-path constructor could have any finite number of
path arguments

Inductive ||A|| :=
| inc : A→ ||A||
| trunc :

∏
(x , y : ||A||)(p, q : x = y), p = q

However, it suffices to assume there is 1 path argument.

Inductive ||A|| :=
| inc : A→ ||A||
| trunc :

∏
(x , y : ||A||)(p : (x , x) = (y , y)), ap π1 p = ap π2 q

So: we represent the path argument by two path endpoints.
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Signatures for 1-Truncated HITs : Homotopy Endpoints

Inductive H :=
| c : A(H)→ H
| p :

∏
(j : JP)(x : Sj(H)), lj(x) = rj(x)

| s :
∏

(j : JH)(x : Rj(H))(r : aj(x) = bj(x)),
pj(x , r) = qj(x , r)

| t :
∏

(x , y : H)(p, q : x = y)(r , s : p = q), r = s

The type of homotopy endpoints depends on

I a polynomial A

I a type JP

I for each j : JP a polynomial Sj and path endpoints lj and rj
I a polynomial R

I a polynomial T and path endpoints a, b : EA(R,T )

I path endpoints s, t : EA(R, I)
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Signatures for 1-Truncated HITs : Homotopy Endpoints

Given

I a polynomial A

I a type JP

I for each j : JP a polynomial Sj and path endpoints lj and rj
I a polynomial R

I a polynomial T and path endpoints a, b : EA(R,T )

I path endpoints s, t : EA(R, I)

we define the type Hlj ,rj ,a,b
(s, t) inductively.

Given x : R(X ) and w : a(x) = b(x), a homotopy endpoint
h : Hlj ,rj ,a,b

(s, t) represents a path

JhK(x ,w) : s(x) = t(x)
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Defining Bicategories of Algebras

I Type of algebras is an iterated
∑

-type

I We want to construct the biadjunction on each component
separately

I Displayed bicategories allow us to do that
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Displayed Bicategories

Definition
Let B be a bicategory.
A displayed bicategory D over B consists of

I For each x : B a type D(x) of objects over x ;

I For each f : x → y , x : D(x) and y : D(y), a type x
f−→ y of

1-cells over f ;

I For each θ : f ⇒ g , f : x
f−→ y , and g : x

g−→ y , a set f
θ

=⇒ g of
2-cells over θ.

Details: Ahrens, Frumin, Maggesi, Veltri, Van der Weide
For the categorical case: see Ahrens and Lumsdaine
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Total Bicategory

Definition
Let D be a displayed bicategory on B.
Define the total bicategory

∫
D

I Objects are pairs (x , x) with x : B and x : D(x)

I 1-cells are pairs (f , f ) with f : x → y and f : x
f−→ y

I 2-cells are pairs (θ, θ) with θ : f ⇒ g and θ : f
θ

=⇒ g

Note: there is a projection pseudofunctor πD :
∫
D → B.
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Examples of Displayed Bicategory

Recall the HITs we consider

Inductive H :=
| c : A(H)→ H
| p :

∏
(j : JP)(x : Sj(H)), lj(x) = rj(x)

| s :
∏

(j : JH)(x : Rj(H))(r : aj(x) = bj(x)), pj(x , r) = qj(x , r)

| t :
∏

(x , y : H)(p, q : x = y)(r , s : p = q), r = s

We define three displayed bicategories:

I One that adds structure for the point constructor

I One that adds structure for the path constructor

I One that adds structure for the 2-path constructor
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Algebras on a Pseudofunctor

Note: a polynomial P gives a pseudofunctor

JPK : 1-Type→ 1-Type.

Definition
Let B be a bicategory and let F : B→ B be a pseudofunctor.
Define a displayed bicategory DFalg(F ) over B such that

I objects over x : B are 1-cells hx : F (x)→ x ;

I 1-cells over f : x → y from hx to hy are invertible 2-cells
τf : hx · f ⇒ F (f ) · hy ;

I 2-cells over θ : f ⇒ g from τf to τg are equalities

hx C θ • τg = τf • F (θ) B hy .
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A Brief Intermezzo: endpoints

Note that we have

∫
DFalg(JAK)

πDFalg(JAK)
// 1-Type

JSK
//

JT K
// 1-Type

An endpoint e : EA(S ,T ) gives rise to a pseudotransformation

JeK : JSK ◦ πDFalg(JAK) ⇒ JT K ◦ πDFalg(JAK).
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Adding 2-cells to the structure

Definition
Let D be a displayed bicategory over B.
Suppose that we have pseudofunctors S ,T : B→ B and
pseudotransformations l , r : S ◦ πD ⇒ T ◦ πD .
Define a displayed bicategory DFcell(l , r) over

∫
D such that

I the objects over x are 2-cells γx : l(x)⇒ r(x);

I the 1-cells over f : x → y from γx to γy are equalities

(γx B T (πD(f ))) • r(f ) = l(f ) • (S(πD(f )) C γy );

I the 2-cells over θ : f ⇒ g are inhabitants of the unit type.
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The full subbicategory

Definition
Let B be a bicategory and let P be a family of propositions on the
objects of B. Define a displayed bicategory FSub(P) over B

I objects over x are proofs of P(x)

I the displayed 1-cells and 2-cells are inhabitants of the unit
type

The total bicategory
∫

FSub(P) is the full subbicategory of B
whose objects satisfy P.
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Putting it together (1-types)

For a signature Σ, we get the following bicategories
I PreAlg(Σ) (via DFalg). Objects (prealgebras) consist of

I a 1-type X
I a function cX : A(X )→ X

I PathAlg(Σ) (via DFcell). Objects (path algebras) consist of
I a 1-type X
I a function cX : A(X )→ X
I for each j : JP and x : Sj(X ) a path pX

j (x) : JljK(x) = JrjK(x);

I Alg(Σ) (via FSub). Objects (algebras) consist of
I a 1-type X
I a function cX : A(X )→ X
I for each j : JP and x : Sj(X ) a path pX

j (x) : JljK(x) = JrjK(x);
I for each j : JH, x : R(X ) and w : JalK(x) = Jar K(x), a 2-path

hX
j : JpK(x ,w) = JqK(x ,w)
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Putting it together (groupoids)

For a signature Σ, we get the following bicategories

I PreAlgGrpd(Σ) (via DFalg).

I PathAlgGrpd(Σ) (via DFcell).

I AlgGrpd(Σ) (via FSub).
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The Groupoid Quotient

The groupoid quotient is the following HIT:

Inductive GQuot (G : Grpd) :=
| gcl : G → GQuot(G )
| gcleq :

∏
(x , y : G )(f : G (x , y)), gcl(x) = gcl(y)

| ge :
∏

(x : G ), gcleq(id(x)) = idpath(x)
| gconcat :

∏
(x , y , z : G )(f : G (x , y))(g : G (y , z)),

gcleq(f · g) = gcleq(f ) • gcleq(g)
| gtrunc :

∏
(x , y : GQuot(G ))(p, q : x = y)(r , s : p = q),

r = s
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The Groupoid Quotient is a Biadjunction

The groupoid quotient gives to a pseudofunctor

GQuot : Grpd→ 1-Type

We also have a pseudofunctor

PathGrpd : 1-Type→ Grpd

(takes fundamental groupoid)

Proposition

We have: GQuot a PathGrpd.
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How to lift the biadjunction?

Again we want a biadjunction between Alg(Σ) and AlgGrpd(Σ)

I Disadvantage of direct approach: requires reconstruction

I Instead we construct the biadjunction in a layered fashion

To do so, we use displayed biadjunctions
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Displayed Biadjunctions: the idea

Situation:

I Displayed bicategories D1 and D2 over B1 and B2

I A biadjunction L a R with L : B1 → B2

Displayed biadjunctions give a way to

I construct biadjunctions between the totals
∫

D1 and
∫

D2

I on the first coordinate, it is given by L a R

I the displayed biadjunction specifies the second coordinate
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Concluding the construction

Alg(Σ) >

PathGrpdAlg
--

��

AlgGrpd(Σ)
GQuotAlg

mm

��

1-Type >
PathGrpd

,,
Grpd

GQuot

mm

To construct a HIT on Σ, we do

I By biinitial algebra semantics, find biinitial object in Alg(Σ)

I By biadjunction, find biinitial object in AlgGrpd(Σ)

I Technical, see formalization and (Dybjer, Moeneclaey, 2018)
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Future Work

I More permissive syntax (HIITs by Kaposi, Kovács, 2018)

I Generalize this construction to the non-truncated case

I Use the notion of HIT signature to do algebra in bicategories
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