
A Constructive Model of
Directed Univalence in

Bicubical Sets

HoTTEST. April 16th, 2020

Matthew Weaver
Princeton University

joint work with Dan Licata

Directed Type Theory
• Riehl-Shulman defines a type theory for ∞-categories with a

model in bisimplicial sets

1. Begin with HoTT

2. Add Hom-types

3. ∞-categories (Segal types) and univalent ∞-category

(Rezk types) given internally as predicates on types

4. Predicate isCov(B : A → U) for covariant discrete

fibrations

5. Cavallo, Riehl and Sattler have also (externally) defined

the universe of covariant fibrations (the ∞-category of
spaces and continuous functions) and shown 
Directed Univalence: HomUCov A B ≃ A → B

2

Constructive(?) Directed
Type Theory

• Can we make this constructive?

1. Begin with Cubical Type Theory

2. Use a second cubical interval to define Hom-types

3. Use LOPS to define universe of covariant fibrations

and construct directed univalence internally...

• ...unfortunately, directed univalence is a bit trickier

than expected

• ...fortunately, we can still make it work!

3

Let's see how far the
techniques from cubical

type theory get us!

4

Defining Bicubical Directed Type Theory
Directed Type Theory

1. Begin with a topos

2. Add an interval: 𝕀

3. Specify gen. cofibrations for 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

3. Specify gen. cofibrations for 𝟚

4. Define filling problem for

covariant fibrations

5. Define universe of

covariant fibrations

6. Construct directed univalence

Cubical Type Theory
(in the style of Orton-Pitts)

5

Defining Bicubical Directed Type Theory
Directed Type Theory

1. Begin with a topos

2. Add an interval: 𝕀

3. Specify gen. cofibrations for 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

3. Specify gen. cofibrations for 𝟚

4. Define filling problem for

covariant fibrations

5. Define universe of

covariant fibrations

6. Construct directed univalence

Cubical Type Theory
(in the style of Orton-Pitts)

6

Directed Type Theory

2. Add an interval: 𝕀 2. Add an interval: 𝟚

Cubical Type Theory
(in the style of Orton-Pitts)

𝟘𝕀 : 𝕀 𝟙𝕀 : 𝕀

𝕀 : Type 𝟚 : Type

𝟘𝟚 : 𝟚

x ∧ y : 𝟚
x : 𝟚 y : 𝟚

𝟙𝟚 : 𝟚

x ∨ y : 𝟚
x : 𝟚 y : 𝟚

e.g. generators for the Cartesian cubes,
although any cubical type theory works i.e. generators for the Dedekind cubes

and equations...

Defining Bicubical Directed Type Theory

7

The Directed Interval

• Why Dedekind cubes instead of Cartesian?  
x ≤ y := x = x ∧ y

• We also add the following axioms:

• p : 𝕀 → 𝟚 is constant (Π x y : 𝕀, p x = p y)

• p : 𝟚 → 𝟚 is monotone (Π x y : 𝟚, if x ≤ y then p x ≤ p y)

8

Cubical Type Theory
(in the style of Orton-Pitts) Directed Type Theory

1. Begin with a topos

2. Add an interval: 𝕀

3. Specify gen. cofibrations for 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

3. Specify gen. cofibrations for 𝟚

4. Define filling problem for

covariant fibrations

5. Define universe of

covariant fibrations

6. Construct directed univalence

Defining Bicubical Directed Type Theory

9

Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

isCof : Ω → Ω

Cof := Σ φ : Ω . isCof φ

_ : isCof (x = y)
x : 𝕀 y : 𝕀

_ : isCof (Π x : 𝕀 . φ x)
φ : 𝕀 → Cof

_ : isCof (x = y)
x : 𝟚 y : 𝟚

_ : isCof (Π x : 𝟚 . φ x)
φ : 𝟚 → Cof

Cof closed under _∧_, _∨_, ⊥, ⊤

10

Directed Type Theory

1. Begin with a topos

2. Add an interval: 𝕀

4. Define filling problem for
Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

4. Define filling problem for
covariant fibrations

5. Define universe of

covariant fibrations

6. Construct directed univalence

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚

11

Directed Type Theory

4. Define filling problem for
Kan fibrations

4. Define filling problem for
covariant fibrations

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

hasCom : (𝕀 → U) → U

hasCom A = Π i j : 𝕀 .

 Π α : Cof .

 Π t : (Π x : 𝕀 . α → A x)

 Π b : (A i)[α ↦ t i] .

 (A j)[α ↦ t j; i = j ↦ b]

relCom : (A : U) → (A → U) → U

relCom A B = Π p : 𝕀 → A .

 hasCom (B ∘ p)

hasCov : (𝟚 → U) → U

hasCov A = Π α : Cof .

 Π t : (Π x : 𝟚 . α → A x)

 Π b : (A 𝟘𝟚)[α ↦ t 𝟘𝟚] .

 (A 𝟙𝟚)[α ↦ t 𝟙𝟚]

relCov : (A : U) → (A → U) → U

relCov A B = Π p : 𝟚 → A .

hasCov (B ∘ p)

12

Directed Type Theory

4. Define filling problem for
Kan fibrations

4. Define filling problem for
covariant fibrations

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

𝖽𝖼𝗈𝗆𝗂[α ↦ 𝗍]𝖻b

t

i : 𝟚

α

𝖼𝗈𝗆𝗃→𝗄
𝗂 [α ↦ 𝗍]𝖻 b

tk jαα

i : 𝕀

13

Directed Type Theory

1. Begin with a topos

2. Add an interval: 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of
Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

4. Define filling problem for

covariant fibrations

5. Define universe of
covariant fibrations

6. Construct directed univalence

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚

14

Directed Type Theory

5. Define universe of
Kan fibrations

5. Define universe of
covariant fibrations

• UKan given by LOPS
construction for relCom

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

• UCov given by LOPS
construction for relCov

• Lemma: relCov is in UKan, so
ElCov : UCov → UKan

15

Directed Type Theory

1. Begin with a topos

2. Add an interval: 𝕀

4. Define filling problem for

Kan fibrations

5. Define universe of

Kan fibrations

6. Construct univalence

1. Begin with Cubical Type Theory

2. Add an interval: 𝟚

4. Define filling problem for

covariant fibrations

5. Define universe of

covariant fibrations

6. Construct directed univalence

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

3. Specify gen. cofibrations for 𝕀 3. Specify gen. cofibrations for 𝟚

16

Directed Type Theory

6. Construct univalence 6. Construct directed univalence

• Key Idea: Glue type to attach
equivalences to path structure

• Key Idea: Glue type to attach
functions to morphism structure

Cubical Type Theory
(in the style of Orton-Pitts)

Defining Bicubical Directed Type Theory

17

Defining
Directed Univalence

A B

f id

B

i

dua i A B f := λ i . Glue [i = 𝟘𝟚 ↦ (A , f : A → B)

 , i = 𝟙𝟚 ↦ (B , id)] B : HomU A B

18

Naive Directed Univalence
• dua is Kan + covariant, and thus lands in UCov

• UCov itself is Kan

• Path univalence holds in UCov

• These allow us to define the following for UCov:

• dcoe : (Hom A B) → (A → B)

• dua : (A → B) → Hom A B

• duaβ : Π f : A → B . Path f (dcoe (dua f))

• duaηfun : Π p : Hom A B . Π i : 𝟚 . p i → (dua (dcoe p)) i

19

Naive Directed Univalence
• We're thus left with the following picture:

• To complete directed univalence, we need duaηfun-1

duaηfun-1

A B

id id

i

A B

p

dua (dcoe p)

duaηfun

20

What next?
• The proof in the bisimplicial model relies on the fact weak

equivalences in the model are level-wise weak
equivalences of simplicial sets

• Three potential model structures with level-wise weak
equivalences...with three separate challenges.

Reedy Dedekind cubes aren’t Reedy

Projective not all types we need are fibrant

Injective not easily defined as cofibrantly generated

21

What next?
• The proof in the bisimplicial model relies on the fact weak

equivalences in the model are level-wise weak
equivalences of simplicial sets

• Three potential model structures with level-wise weak
equivalences...with three separate challenges.

Reedy Dedekind cubes aren’t Reedy

Projective not all types we need are fibrant

Injective not easily defined as cofibrantly generated

Run into constructivity issue: degenerate cells
not always decidable

22

Cobar and the
Injective Model Structure

• Shulman classifies an injective fibrant object A : C → M as:

• For every c in C, A c is fibrant in the underlying model structure M

(i.e. A is object-wise fibrant)

• A is equivalent to cobar(A)

• Coquand and Ruch internalize the cobar construction in a syntactic
setting,

• ...and constructively show weak equivalences are object-wise!

• Idea: use the internal cobar and prove all types A we care about are
equivalent to cobar(A)

• Spoiler: This works to finish the construction of directed univalence!

• Fine Print: The formal connection between the internal version and

Shulman's work has not yet been worked out.

23

Lex Operators and
Stack Models of Type Theory
• Coquand and Ruch define a general framework for

internalizing lex operators and defining models of type
theory localized at them:

• D : Type → Type is a strict lex endofunctor on types

• η is a strict natural transformation Id → D

• We can restrict the model to types A that are stacks,
i.e. ηA is an equivalence from A to D A

• Note: Cobar is a lex operator

24

Lex Axioms

D : UKan → UKan

D f : D A → D B
f : A → B

D (g ∘ f) = D g ∘ D f
f : A → B g : B → C

D (λ x : A . x) = λ x : D A . x

ηA : A → D A
A : UKan

D f ∘ ηA = ηB ∘ f
f : A → B

D is an endofunctor on UKan η is a natural transformation IdUKan → D

25

Lex Axioms

L : D UKan → UKan

dD : (A → UKan) → (D A → UKan)

dD B := L ∘ D B

η-PathA : PathD A → D2A (D ηA) (ηD A)

Additionally...

DΣ-sndB : (x : D ΣA.B) → dD B (D fst x)
A : UKan B : A → UKan

D is Lex

DΣ-isoB : isIso (λ x → D fst x , DΣ-sndB x)
A : UKan B : A → UKan

(i.e. D ΣA.B ≅ ΣD A. dD B)

26

Closure Properties

• For an arbitrary lex endofunctor D...

• ...if B : A → U is a family of stacks, then Π A . B is a
stack.

• ...if A is a stack and B : A → U is a family of stacks,
then Σ A . B is a stack.

• For the other type formers we care about (i.e. Path, Hom,
and Glue), we need specific information D and η.

27

Internalizing Cobar
• Main Idea: A natural transformation A → cobar(B) corresponds to a

homotopy coherent transformation A B

• We define our internal cobar operator D by first defining a helper
operator E.

• Intuition for E: For a type A and every X in Ded, an element of E
A(X) is an element in a in A(X) along with a choice for the action of
every substitution Y → X as an element in A(Y).

• Intuition for D: For every type A and X in Ded, an element of D A(X)
is a choice of n elements of A for every chain of n composable
morphisms into X that are weakly coherent with respect to the
substitution action given by A.

⇝

⌧
⌧

28

Definition of E
• Given a bicubical set A, we define the bicubical set E A:

• For X in Ded,

E A(X) := Π f : Hom(Y, X)) . A(Y)

• For f : Hom(Y , X),

E A(f) := u : E A(X) ↦ λ g : Hom(Z , Y). u(f ∘ g)

• We also define a natural transformation α : Id → E:

αA (X) := a : A(X) ↦ λ f : Hom(Y , X). af

⌧

29

Definition of D
• diag : 𝕀n[𝟘 = i1 ∨ i1 = i2 ∨ ... ∨ in-1 = in ∨ in = 𝟙] → 𝕀n-1 by forgetting i1 on 𝟘 = i1,

ik on ik = ik+1 and in on in = 𝟙.

• Given a bicubical set A, we define the bicubical set D A:

• For X in Ded,

D A(X) := Π n : ℕ . 𝕀n → En+1 A(X)

• The family u must additionally satisfy some conditions

• u = α ∘ u ∘ diag when 𝟘 = i1

• u = Ek(α) ∘ u ∘ diag when ik = ik+1

• u = En(α) ∘ u ∘ diag when in = 𝟙

• For f : Hom(Y , X),

D A(f) := u : D A(X) ↦ λ n, i1, ..., in. En+1 A(f)(u(n , i1, ..., in))

• We also define a natural transformation η : Id → D:

ηA (X) := a : A(X) ↦ λ n, i1, ..., in. αn+1(a)

⌧

30

So...what is D?
n u : D A(X)

n = 0

n = 1

n = 2

idX ↦

idX, f : Hom(Y, X) ↦

idX, f : Hom(Y, X), g : Hom(Z, Y) ↦

a0 : A(X)

a1 : A(Y)a0f : A(Y)

a0fg : A(Z)

a1g : A(Z)

a2 : A(Z)

u(1, idX, f)g u(1, idX∘f, g)

u(1, idX, f∘g)

= u(0, idX∘f)

= u(0, idX∘f∘g).
.
.

= u(0, idX∘f)g

= u(0, idX)f

= u(0, idX)fg
31

Definition of D
• diag : 𝕀n[𝟘 = i1 ∨ i1 = i2 ∨ ... ∨ in-1 = in ∨ in = 𝟙] → 𝕀n-1 by forgetting i1 on 𝟘 = i1,

ik on ik = ik+1 and in on in = 𝟙.

• Given a bicubical set A, we define the bicubical set D A:

• For X in Ded,

D A(X) := Π n : ℕ . 𝕀n → En+1 A(X)

• The family u must additionally satisfy the following:

• u = α ∘ u ∘ diag when 𝟘 = i1

• u = Ek(α) ∘ u ∘ diag when ik = ik+1

• u = En(α) ∘ u ∘ diag when in = 𝟙

• For f : Hom(Y , X),

D A(f) := u : D A(X) ↦ λ n, i1, ..., in. En+1 A(f)(u(n , i1, ..., in))

• We also define a natural transformation η : Id → D:

ηA (X) := a : A(X) ↦ λ n, i1, ..., in. αn+1(a)

⌧

32

Additional Internal Axioms

DHom-iso : Iso (D (HomA(a0, a1)) HomD A(ηA a0, ηA a1)

Ddua-iso : Iso (D (dua i A B f)) (dua i (D A) (D B) (D f))

DPath-iso : Iso (D (PathA(a0, a1)) PathD A(ηA a0, ηA a1)

(actual axioms specify how these isomorphisms

compute in relation to η)

33

More Closure Properties

• For this specific lex endofunctor D...

• If a type A is a stack, then for any terms a0, a1 in A,
both PathA(a0, a1) and HomA(a0, a1) are stacks.

• If types A and B are stacks, then for any i : 𝟚 and
function f : A → B, dua i A B f is a stack.

34

Completing Directed
Univalence

• The construction of directed univalence follows in two
steps:

1. Given a function f : A → B between stacks, if f is an
object-wise equivalence of cubical sets then it is an
equivalence of bicubical sets (Coquand and Ruch).

2. The function duaηfun is an object-wise equivalence of
cubical sets (modified from bisimplicial proof of
Cavallo, Riehl and Sattler).

35

The Universe of
Covariant Stacks

• Lastly, we define the universe that supports directed
univalence:

UCovStack := Σ A : UCov . isStack A

36

Our Results
• Main Theorem: There exists a constructive model of type

theory in bicubical sets with a universe of fibrant types (UKan)
and a universe of covariant fibrations (UCovStack) such that:

• UCovStack has a decode function into UKan;

• UKan is closed under Π, Σ, DPath, DHom and contains

codes for smaller UCovStack and UKan;

• UCovStack is closed under Π (with fixed closed domain), Σ,

DPath and DHom;

• UKan and UCovStack are both path univalent;

• UCovStack is morphism (directed path) univalent.

• Formalized in Agda!

37

