A Constructive Model of Directed Univalence in Bicubical Sets

Matthew Weaver

Princeton University

HoTTEST. April 16th, 2020

joint work with Dan Licata

Directed Type Theory

- Riehl-Shulman defines a type theory for ∞-categories with a model in bisimplicial sets
 - 1. Begin with HoTT
 - 2. Add Hom-types
 - ∞-categories (Segal types) and univalent ∞-category (Rezk types) given internally as predicates on types
 - 4. Predicate isCov(B : A \rightarrow U) for covariant discrete fibrations
 - Cavallo, Riehl and Sattler have also (externally) defined the universe of covariant fibrations (the ∞-category of spaces and continuous functions) and shown *Directed Univalence:* Hom_{Ucov} A B ≃ A → B

Constructive(?) Directed Type Theory

- Can we make this constructive?
 - 1. Begin with Cubical Type Theory
 - 2. Use a second cubical interval to define Hom-types
 - 3. Use LOPS to define universe of covariant fibrations and construct directed univalence internally...
 - ...unfortunately, directed univalence is a bit trickier than expected
 - ...fortunately, we can still make it work!

Let's see how far the techniques from cubical type theory get us!

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with a topos
- 2. Add an interval: I
- 3. Specify gen. cofibrations for I

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

6. Construct univalence

Directed Type Theory

- 1. Begin with Cubical Type Theory
- 2. Add an interval: 2
- 3. Specify gen. cofibrations for 2

4. Define filling problem for covariant fibrations

5. Define universe of covariant fibrations

6. Construct directed univalence

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with a topos
- 2. Add an interval: I
- 3. Specify gen. cofibrations for I

4. Define filling problem for Kan fibrations

- 5. Define universe of Kan fibrations
- 6. Construct univalence

Directed Type Theory

- 1. Begin with Cubical Type Theory
- **2.** Add an interval: 2
- 3. Specify gen. cofibrations for 2

4. Define filling problem for covariant fibrations

5. Define universe of covariant fibrations

6. Construct directed univalence

Cubical Type Theory (in the style of Orton-Pitts) 2. Add an interval: I: Type $\mathbb{O}_{\mathbb{I}}$: \mathbb{I} $1_{I}:0$

e.g. generators for the Cartesian cubes, although any cubical type theory works

Directed Type Theory

2. Add an interval: 2

and equations...

i.e. generators for the Dedekind cubes

The Directed Interval

- Why Dedekind cubes instead of Cartesian?
 x ≤ y := x = x ∧ y
- We also add the following axioms:
 - $p : \mathbb{I} \rightarrow 2$ is constant ($\Pi x y : \mathbb{I}, p x = p y$)
 - $p: 2 \rightarrow 2$ is monotone ($\Pi x y : 2$, if $x \le y$ then $p x \le p y$)

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with a topos
- 2. Add an interval: I

3. Specify gen. cofibrations for I

4. Define filling problem for Kan fibrations

- 5. Define universe of Kan fibrations
- 6. Construct univalence

Directed Type Theory

- 1. Begin with Cubical Type Theory
- 2. Add an interval: 2

3. Specify gen. cofibrations for $\ensuremath{\mathbbm 2}$

4. Define filling problem for covariant fibrations

5. Define universe of covariant fibrations

6. Construct directed univalence

Cubical Type Theory (in the style of Orton-Pitts)

3. Specify gen. cofibrations for I

isCof : $\Omega \rightarrow \Omega$

Cof := $\Sigma \varphi$: Ω . isCof φ

Cof closed under _^_, _v_, \perp , \top

$$\Phi : \mathbb{I} \to Cof$$

_ : isCof ($\Pi x : \mathbb{I} \cdot \Phi x$)

Directed Type Theory

3. Specify gen. cofibrations for $\ensuremath{\mathbbm 2}$

$$\phi: 2 \rightarrow Cof$$

_: isCof ($\Pi x : 2 \cdot \phi x$)

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with a topos
- 2. Add an interval: I
- 3. Specify gen. cofibrations for I

4. Define filling problem for Kan fibrations

- 5. Define universe of Kan fibrations
- 6. Construct univalence

Directed Type Theory

- 1. Begin with Cubical Type Theory
- 2. Add an interval: 2
- 3. Specify gen. cofibrations for 2

4. Define filling problem for covariant fibrations

5. Define universe of covariant fibrations

6. Construct directed univalence

Cubical Type Theory (in the style of Orton-Pitts)

4. Define filling problem for Kan fibrations

```
hasCom : (\mathbb{I} \to \mathbb{U}) \to \mathbb{U}
hasCom A = \Pi i j : \mathbb{I}.
\Pi a : Cof .
\Pi t : (\Pi x : \mathbb{I} . a \to A x)
\Pi b : (A \ i)[a \mapsto t \ i] .
(A \ j)[a \mapsto t \ j; \ i = j \mapsto b]
relCom : (A : \mathbb{U}) \to (A \to \mathbb{U}) \to \mathbb{U}
relCom A B = \Pi p : \mathbb{I} \to A .
hasCom (B \circ p)
```

Directed Type Theory

```
4. Define filling problem for covariant fibrations
```

```
hasCov : (2 \rightarrow U) \rightarrow U
hasCov A = \Pi \alpha : Cof .
\Pi t : (\Pi x : 2 \cdot \alpha \rightarrow A x)
\Pi b : (A \oplus_2)[\alpha \mapsto t \oplus_2] .
(A \oplus_2)[\alpha \mapsto t \oplus_2]
```

```
relCov : (A : U) → (A → U) → U
relCov A B = \Pi p : 2 → A .
hasCov (B \circ p)
```

Cubical Type Theory

(in the style of Orton-Pitts)

4. Define filling problem for Kan fibrations

Directed Type Theory

4. Define filling problem for covariant fibrations

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with a topos
- 2. Add an interval: I
- 3. Specify gen. cofibrations for I

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

6. Construct univalence

Directed Type Theory

- 1. Begin with Cubical Type Theory
- 2. Add an interval: 2
- 3. Specify gen. cofibrations for 2

4. Define filling problem for covariant fibrations

5. Define universe of covariant fibrations

6. Construct directed univalence

Cubical Type Theory

(in the style of Orton-Pitts)

5. Define universe of Kan fibrations

• U_{Kan} given by LOPS construction for relCom

Directed Type Theory

5. Define universe of covariant fibrations

- U_{Cov} given by LOPS construction for relCov
- Lemma: relCov is in U_{Kan}, so
 El_{Cov} : U_{Cov} → U_{Kan}

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with a topos
- 2. Add an interval: I
- 3. Specify gen. cofibrations for I

4. Define filling problem for Kan fibrations

5. Define universe of Kan fibrations

6. Construct univalence

Directed Type Theory

- 1. Begin with Cubical Type Theory
- 2. Add an interval: 2
- 3. Specify gen. cofibrations for 2

4. Define filling problem for covariant fibrations

5. Define universe of covariant fibrations

6. Construct directed univalence

Cubical Type Theory

(in the style of Orton-Pitts)

6. Construct univalence

• Key Idea: Glue type to attach equivalences to path structure

Directed Type Theory

6. Construct directed univalence

 Key Idea: Glue type to attach functions to morphism structure

Defining Directed Univalence

dua i A B f := λ i . Glue [i = $\mathbb{O}_2 \mapsto (A, f : A \rightarrow B)$, i = $\mathbb{1}_2 \mapsto (B, id)$] B : Hom_U A B

Naive Directed Univalence

- dua is Kan + covariant, and thus lands in U_{Cov}
- U_{Cov} itself is Kan
- Path univalence holds in U_{Cov}
- These allow us to define the following for U_{Cov}:
 - dcoe : (Hom A B) \rightarrow (A \rightarrow B)
 - dua : $(A \rightarrow B) \rightarrow Hom A B$
 - $dua_{\beta} : \Pi f : A \rightarrow B$. Path f (dcoe (dua f))
 - dua_{nfun}: Πp : Hom A B. Πi : 2. $p i \rightarrow$ (dua (dcoe p)) i

Naive Directed Univalence

• We're thus left with the following picture:

• To complete directed univalence, we need $dua_{\eta fun}^{-1}$

What next?

- The proof in the bisimplicial model relies on the fact weak equivalences in the model are level-wise weak equivalences of simplicial sets
- Three potential model structures with level-wise weak equivalences...with three separate challenges.

Reedy	Dedekind cubes aren't Reedy
Projective	not all types we need are fibrant
Injective	not easily defined as cofibrantly generated

What next?

- The proof in the bisimplicial model relies on the fact weak equivalences in the model are level-wise weak equivalences of simplicial sets
- Three potential model structures with level-wise weak equivalences...with three separate challenges.

-Reedy-	Run into constructivity issue: degenerate cells not always decidable
Projective	not all types we need are fibrant
Injective	not easily defined as cofibrantly generated

Cobar and the Injective Model Structure

- Shulman classifies an injective fibrant object $A : C \rightarrow M$ as:
 - For every c in C, A c is fibrant in the underlying model structure M (i.e. A is object-wise fibrant)
 - A is equivalent to cobar(A)
- Coquand and Ruch internalize the cobar construction in a syntactic setting,
 - ...and constructively show weak equivalences are object-wise!
- Idea: use the internal cobar and prove all types A we care about are equivalent to cobar(A)
 - Spoiler: This works to finish the construction of directed univalence!
 - Fine Print: The formal connection between the internal version and Shulman's work has not yet been worked out.

Lex Operators and Stack Models of Type Theory

- Coquand and Ruch define a general framework for internalizing lex operators and defining models of type theory localized at them:
 - D : Type \rightarrow Type is a strict lex endofunctor on types
 - η is a strict natural transformation Id \rightarrow D
 - We can restrict the model to types A that are stacks,
 i.e. η_A is an equivalence from A to D A
- Note: Cobar is a lex operator

Lex Axioms

D is an endofunctor on U_{Kan}

 η is a natural transformation $Id_{U_{Kan}} \rightarrow D$

 $D: U_{Kan} \rightarrow U_{Kan}$

$$f: A \to B$$

Df: DA \to DB

$$f: A \to B \quad g: B \to C$$
$$D (g \circ f) = D g \circ D f$$

A : U_{Kan} η_A : A → D A f : A → B D f ∘ η_A = η_B ∘ f

 $D(\lambda x : A \cdot x) = \lambda x : D A \cdot x$

Lex Axioms

Additionally...

D is Lex

 η -Path_A : Path_{D A} \rightarrow $D^{2}A$ (D η_{A}) ($\eta_{D A}$)

 $L: D U_{Kan} \rightarrow U_{Kan}$

 $dD: (A \rightarrow U_{Kan}) \rightarrow (D A \rightarrow U_{Kan})$

 $dDB := L \circ DB$

A : U_{Kan} B : A → U_{Kan} DΣ-snd_B : (x : D ΣA.B) → dD B (D fst x)

 $\begin{array}{ll} A: U_{Kan} & B: A \rightarrow U_{Kan} \\ D\Sigma \text{-}iso_B: islso (\lambda \ x \rightarrow D \ fst \ x \ , \ D\Sigma \text{-}snd_B \ x) \\ (i.e. \ D \ \Sigma A.B \ \cong \ \Sigma D \ A. \ dD \ B) \end{array}$

Closure Properties

- For an arbitrary lex endofunctor D...
 - …if B : A → U is a family of stacks, then Π A . B is a stack.
 - …if A is a stack and B : A → U is a family of stacks, then Σ A . B is a stack.
- For the other type formers we care about (i.e. Path, Hom, and Glue), we need specific information D and η.

Internalizing Cobar

- Main Idea: A natural transformation A → cobar(B) corresponds to a homotopy coherent transformation A → B
- We define our internal cobar operator D by first defining a helper operator E.
- Intuition for E: For a type A and every X in D_{Ded}, an element of E
 A(X) is an element in a in A(X) along with a choice for the action of every substitution Y → X as an element in A(Y).
- Intuition for D: For every type A and X in D_{Ded}, an element of D A(X) is a choice of n elements of A for every chain of n composable morphisms into X that are weakly coherent with respect to the substitution action given by A.

Definition of E

- Given a bicubical set A, we define the bicubical set E A:
 - For X in Ded,

 $E A(X) := \Pi f : Hom(Y, X)) . A(Y)$

 $E A(f) := u : E A(X) \mapsto \lambda g : Hom(Z, Y). u(f \circ g)$

• We also define a natural transformation α : Id \rightarrow E:

$$\alpha_A(X) := a : A(X) \mapsto \lambda f : Hom(Y, X).$$
 af

Definition of D

- Given a bicubical set A, we define the bicubical set D A:
 - For X in Ded,

 $D A(X) := \Pi n : \mathbb{N} . \mathbb{I}^n \rightarrow E^{n+1} A(X)$

• The family u must additionally satisfy some conditions

So...what is D?

n	u : D A(X)
n = 0	id _x ↦ a₀ : A(X)
n = 1	$\begin{array}{l} id_X, f:Hom(Y,X)\mapsto\\ a_0f:A(Y) & \longrightarrow\\ = u(0,id_X)f & = u(0,id_{X^\circ}f) \end{array}$
n = 2 :	$ \begin{array}{c} id_X, f:Hom(Y,X), g:Hom(Z,Y)\mapsto\\ a_1g:A(Z)=u(0,id_X\circf)g\\ u(1,id_X,f)g & u(1,id_X\circf,g)\\ a_0fg:A(Z)u(1,id_X,f\circg)a_2:A(Z)\\ =u(0,id_X)fg & u(1,id_X,f\circg)a_2:A(Z)\\ =u(0,id_X\circf\circg) \end{array} $

Definition of D

- diag : $\mathbb{I}^n[\mathbb{O} = i_1 \lor i_1 = i_2 \lor ... \lor i_{n-1} = i_n \lor i_n = 1] \rightarrow \mathbb{I}^{n-1}$ by forgetting i_1 on $\mathbb{O} = i_1$, i_k on $i_k = i_{k+1}$ and i_n on $i_n = 1$.
- Given a bicubical set A, we define the bicubical set D A:
 - For X in Ded,

 $D A(X) := \Pi n : \mathbb{N} . \mathbb{I}^n \rightarrow E^{n+1} A(X)$

- The family u must additionally satisfy the following:
 - $u = \alpha \circ u \circ diag$ when $0 = i_1$
 - $u = E^k(\alpha) \circ u \circ diag$ when $i_k = i_{k+1}$
 - $u = E^n(\alpha) \circ u \circ diag$ when $i_n = 1$
- For f : Hom(Y , X),

D A(f) := u : D A(X) \mapsto λ n, i₁, ..., i_n. Eⁿ⁺¹ A(f)(u(n , i₁, ..., i_n))

• We also define a natural transformation η : Id \rightarrow D:

$$\eta_A(X) := a : A(X) \mapsto \lambda n, i_1, ..., i_n. \alpha^{n+1}(a)$$

Additional Internal Axioms

DPath-iso : Iso (D (Path_A(a_0, a_1)) Path_{D A}($\eta_A a_0, \eta_A a_1$)

DHom-iso : Iso (D (Hom_A(a_0, a_1)) Hom_{D A}($\eta_A a_0, \eta_A a_1$)

Ddua-iso : Iso (D (dua i A B f)) (dua i (D A) (D B) (D f))

(actual axioms specify how these isomorphisms compute in relation to η)

More Closure Properties

- For this specific lex endofunctor D...
 - If a type A is a stack, then for any terms a₀, a₁ in A, both Path_A(a₀, a₁) and Hom_A(a₀, a₁) are stacks.
 - If types A and B are stacks, then for any i : 2 and function f : A → B, dua i A B f is a stack.

Completing Directed Univalence

- The construction of directed univalence follows in two steps:
 - 1. Given a function $f : A \rightarrow B$ between stacks, if f is an object-wise equivalence of cubical sets then it is an equivalence of bicubical sets (Coquand and Ruch).
 - The function dua_{ηfun} is an object-wise equivalence of cubical sets (modified from bisimplicial proof of Cavallo, Riehl and Sattler).

The Universe of Covariant Stacks

 Lastly, we define the universe that supports directed univalence:

 $U_{CovStack} := \Sigma \ A : U_{Cov} \ . \ isStack \ A$

Our Results

- Main Theorem: There exists a constructive model of type theory in bicubical sets with a universe of fibrant types (U_{Kan}) and a universe of covariant fibrations (U_{CovStack}) such that:
 - U_{CovStack} has a decode function into U_{Kan};
 - U_{Kan} is closed under Π, Σ, DPath, DHom and contains codes for smaller U_{CovStack} and U_{Kan};
 - U_{CovStack} is closed under Π (with fixed closed domain), Σ, DPath and DHom;
 - U_{Kan} and U_{CovStack} are both path univalent;
 - U_{CovStack} is morphism (directed path) univalent.
- Formalized in Agda!