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Directed Type Theory

* Riehl-Shulman defines a type theory for «o-categories with a
model in bisimplicial sets

1.
2.
3.

Begin with HoTT
Add Hom-types

co-categories (Segal types) and univalent «~-category
(Rezk types) given internally as predicates on types

Predicate isCov(B : A — U) for covariant discrete
fibrations

Cavallo, Riehl and Sattler have also (externally) defined
the universe of covariant fibrations (the «-category of
spaces and continuous functions) and shown

Directed Univalence: Homy,, , AB=A - B
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Constructive(?) Directed
Type Theory

e Can we make this constructive?
1. Begin with Cubical Type Theory
2. Use a second cubical interval to define Hom-types

3. Use LOPS to define universe of covariant fibrations
and construct directed univalence internally...

e ...unfortunately, directed univalence is a bit trickier
than expected

o . .fortunately, we can still make it work!



Let's see how far the
techniques from cubical
type theory get us!
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Defining Bicubical Directed Type Theory

Cubical Type Theory

(in the style of Orton-Pitts) Directed Type Theory
2. Add an interval: [ 2. Add an interval: 2
I : Type 2 : Type
@ﬂ:[l ]]u:ﬂ @2:2 ]]2:2
X:2 y:2 X:2 y:2
XAY:2 XVy:2
and equations...
€.9. generators folr the Cartesian cubes, l.e. generators for the Dedekind cubes
although any cubical type theory works



The Directed Interval

 Why Dedekind cubes instead of Cartesian?
XSY=X=XAY

 We also add the following axioms:

e p:l—2isconstant (M xy:l,px=pYy)

e p:2—=2ismonotone (MNxy:2,ifx<ythenpx<py)



Defining Bicubical Directed Type Theory

Cubical Type Theory
(in the style of Orton-Pitts)

1. Begin with a topos

2. Add an interval: [

3. Specify gen. cofibrations for I

4. Define filling problem for
Kan fibrations

5. Define universe of
Kan fibrations

6. Construct univalence

Directed Type Theory

1. Begin with Cubical Type Theory

2. Add an interval: 2

3. Specify gen. cofibrations for 2

4. Define filling problem for
covariant fibrations

5. Define universe of
covariant fibrations

6. Construct directed univalence



Defining Bicubical Directed Type Theory

Cubical Type Theory
(in the style of Orton-Pitts)

3. Specify gen. cofibrations for I

isCof: ) = Q)

Cof:=2¢d:Q.isCof P

Cofclosedunder A, v, 1, T

X:1 y:l
_:isCof (x = y)
$: 1 = Cof

_isCof (M x: 1. d x)
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Directed Type Theory

3. Specify gen. cofibrations for 2

X:2 vy:2
_:isCof (x = y)

d : 2 — Cof
_1isCof (Mx:2.dx)
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Defining Bicubical Directed Type Theory

Cubical Type Theory
(in the style of Orton-Pitts)

4. Define filling problem for
Kan fibrations

hasCom: (1 = U) = U

hasComA=T1ij:1.
[Ta: Cof.
Mt:(Mx:01.a—>AXx)
Mb:(Ailawrti].
Adlartji=jw~Db]

relCom:(A:U - A—-U - U
relComAB=Illp:I1 - A.
hasCom (B - p)
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Directed Type Theory

4. Define filling problem for
covariant fibrations

hasCov: (2 - U) - U

hasCov A=1TI1a: Cof.
Mt:(Mx:2.a— AXx)
nb(A@g)[aHt@g]
(A Ty)art 1]

relCov:(A: U - (A—-U) - U
relCovAB=Tllp:2—A.
hasCov (B - p)



Defining Bicubical Directed Type Theory

Cubical Type Theory .
(in the style of Orton-Pitts) Directed Type Theory
4. Define filling problem for 4. Define filling problem for
Kan fibrations covariant fibrations
---------------------- " Sl
comjﬁk[a — t]b b b dcomi[a — t]b
a K " J a N >
i* 1 1:2
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Defining Bicubical Directed Type Theory

Cubical Type Theory

(in the style of Orton-Pitts) Directed Type Theory
5. Define universe of 5. Define universe of
Kan fibrations covariant fibrations

e Ucov given by LOPS

e Ukan given by LOPS construction for relCov

construction for relCom _ .
e Lemma: relCov is in Ukan, SO

Elcov : Ucov = Ukan
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Defining Bicubical Directed Type Theory

Cubical Type Theory

(in the style of Orton-Pitts) Directed Type Theory

6. Construct univalence 6. Construct directed univalence

e Key Idea: Glue type to attach e Key Idea: Glue type to attach
equivalences to path structure functions to morphism structure
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Defining
Directed Univalence

duaiABf:=Ai.Glue[i=0;»(A,f:A—>B)
,i=1,»(B,id)] B :Homy A B

A B

f id
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Naive Directed Univalence

e dua is Kan + covariant, and thus lands in Ucov
o Ucoy itself is Kan
e Path univalence holds in Ucov

 These allow us to define the following for Ucov:
e dcoe:(HomAB)— (A — B)
e dua:(A—B)— HomAB
e duag:ll1f: A — B.Pathf(dcoe (dua f))
e duanun:lMp:HomAB.Ili:2.pi— (dua(dcoe p)) i
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Naive Directed Univalence

 We're thus left with the following picture:

A B
fy p4 A

d d

duanfun| :duanfun

p

\ 4 A 4 :
A dua(dcoep) B

—
i

e To complete directed univalence, we need duanfun
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What next?

* The proof in the bisimplicial model relies on the fact weak
equivalences in the model are level-wise weak
equivalences of simplicial sets

* Three potential model structures with level-wise weak
equivalences...with three separate challenges.

Reedy Dedekind cubes aren’t Reedy

Injective not easily defined as cofibrantly generated
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What next?

* The proof in the bisimplicial model relies on the fact weak
equivalences in the model are level-wise weak
equivalences of simplicial sets

* Three potential model structures with level-wise weak
equivalences...with three separate challenges.

Run into constructivity issue: degenerate cells
5 not always decidable

Injective not easily defined as cofibrantly generated
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Cobar and the
Injective Model Structure

Shulman classifies an injective fibrant object A: C = M as:

 Forevery cin C, A cis fibrant in the underlying model structure M
(i.e. A is object-wise fibrant)

 Ais equivalent to cobar(A)

Coquand and Ruch internalize the cobar construction in a syntactic
setting,

e ...and constructively show weak equivalences are object-wise!

|dea: use the internal cobar and prove all types A we care about are
equivalent to cobar(A)

e Spoiler: This works to finish the construction of directed univalence!

e Fine Print: The formal connection between the internal version and
Shulman's work has not yet been worked out.
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Lex Operators and
Stack Models of Type Theory

e Coquand and Ruch define a general framework for
internalizing lex operators and defining models of type
theory localized at them:

e D: Type — Type is a strict lex endofunctor on types
* nis a strict natural transformation Id = D

* We can restrict the model to types A that are stacks,
l.e. Na Is an equivalence from Ato D A

e Note: Cobar is a lex operator
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Lex AXioms

D is an endofunctor on Ukan

D : Ukan = Ukan

f:-A—B
Df:DA—-DB

f:A=>B g:B—~C
D(g-f)=Dg:-Df

DAX:A.X)=AXx:DA.x

25

n is a natural transformation Idu,_,

A : Ukan
na:A—=DA

f:-A—B
Df-na=ne-f

D



Lex AXioms

Additionally... D is Lex

-Patha : Pathpa - p2a (D
n A DA~ D% (D Na) (o ) A:Ukan B :A — Ukan

D>-snds : (x : D SA.B) = dD B (D fst x)

L : D Ukan = Ukan

A:Ukan B:A — Ukan

dD : (A = Ukan) = (D A = Ukan) D2-isog : islso (A x = D fst x , D2-snds Xx)
dbB:=L-DB (i.e. DZA.B = 3D A. dD B)
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Closure Properties

 For an arbitrary lex endofunctor D...

e .ifB:A — Uisafamily of stacks, then1A.Bis a
stack.

e .ifAisastackand B : A — U is a family of stacks,
then 2 A . B Is a stack.

* For the other type formers we care about (i.e. Path, Hom,
and Glue), we need specific information D and n.
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Internalizing Cobar

Main Idea: A natural transformation A — cobar(B) corresponds to a

homotopy coherent transformation A -~ B

We define our internal cobar operator D by first defining a helper

operator E.

Intuition for E: For a type A and every X in

Ded, an element of E

A(X) is an element in a in A(X) along with a choice for the action of
every substitution Y — X as an element in A(Y).

Intuition for D: For every type A and X in

Ded, @N element of D A(X)

Is a choice of n elements of A for every chain of n composable
morphisms into X that are weakly coherent with respect to the

substitution action given by A.
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Definition of E

e Given a bicubical set A, we define the bicubical set E A:

e For X In [)peg,

E A(X) :=T1f: Hom(Y, X)) . A(Y)
e Forf:Hom(Y , X),
EAf):=u:EAX)»Ag:Hom(Z,Y). uf - g
* We also define a natural transformation a : Id — E:

aa (X):=a: AX)» A f: Hom(Y , X). af
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Definition of D

e (Given a bicubical set A, we define the bicubical set D A:
e For X in L-peg,

DAMX) :=Mn:N.In = En AX)

* The family u must additionally satisfy some conditions
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So...what is D?

n u: D AX)

Idx +
n=0 a0 : A(X)

idx, f: Hom(Y, X) »

n=1 aof : A(Y) a1 : A(Y)
= u(0, idx)f = u(0, idx-f)

idx, f: Hom(Y, X), g : Hom(Z, Y) »
a1g : A(Z2) = u(0, idx-f)g

n=o u(1, iwxof, 9)

aofg : A(Z) u(1, idx, f.g) @A)
= u(0, idx)fg = u(0, idx-f.q)
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Definition of D

e diag: M0 =i1Vvit=i2V .. Vin1=inVin=1] = "1 by forgetting i1 on 0 = iy,
ik On ik = ik+1 and in on in = T.

 (Given a bicubical set A, we define the bicubical set D A:
e For X in L-peg,

DAXX):=TTn:N.In—> E1 A(X)
* The family u must additionally satisfy the following:
e U=0 .U .diag when 0 = i
e u=EXa) - -u-.diag when ik = ik+1
e U=E"Q) -u.diag whenin=1
* Forf:Hom(Y, X),
DAf):=u:DAX) »An, i1, ..., in. EMTAMf)(u(n, i1, ..., in)
* We also define a natural transformation n: Id — D:
na(X):=a: AX)» An,ii, ..., in. a™(a)
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Additional Internal Axioms

DPath-iso : Iso (D (Patha(ao, a1)) Pathp a(na ao, Na ai)

DHome-iso : Iso (D (Homa(ao, a1)) Homp A(Na ao, Na ai)

Ddua-iso : Iso (D (duai ABf)) (duai (D A) (D B) (D 1))

(actual axioms specify how these isomorphisms
compute in relation to n)
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More Closure Properties

e For this specific lex endofunctor D...

e |f atype A is a stack, then for any terms ao, a1 in A,
both Patha(ao, a1) and Homa(ao, a1) are stacks.

e If types A and B are stacks, then for any i : 2 and
functionf: A — B, duai A B fis a stack.
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Completing Directed
Univalence

e The construction of directed univalence follows in two
steps:

1. Given a function f : A & B between stacks, if f is an
object-wise equivalence of cubical sets then it is an
equivalence of bicubical sets (Coguand and Ruch).

2. The function duanfun Is an object-wise equivalence of
cubical sets (modified from bisimplicial proof of
Cavallo, Riehl and Sattler).
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The Universe of
Covariant Stacks

e |astly, we define the universe that supports directed

univalence:

UCovStack — Z A : UCov . iSStaCk A
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Our Results

* Main Theorem: There exists a constructive model of type
theory in bicubical sets with a universe of fibrant types (Ukan)
and a universe of covariant fibrations (Ucovstack) such that:

e Ucovstack has a decode function into Ukan;

e Ukanis closed under I'l, 2, DPath, DHom and contains
codes for smaller Ucovstack and Ukan;

e Ucovstack IS closed under 1 (with fixed closed domain), 2,
DPath and DHom;

e Ukan and Ucovstack are both path univalent;
e Ucovstack IS morphism (directed path) univalent.

* Formalized in Agda!
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