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Plan for the talk

▶ Discuss the background of the problem of understanding path
spaces of pushouts

▶ Present the zigzag construction. First in a ‘type-theoretic’
style, then in a ‘diagrammatic’ style due to Christian Sattler.

▶ Discuss ‘convergence behaviour’ and applications to
truncatedness of pushouts, Blakers–Massey, combinatorial
group theory



Pushouts

We work informally in HoTT with a univalent universe U closed
under pushouts.
Given

▶ A : U

▶ B : U

▶ R : A→ B → U

the pushout A+R B : U is freely generated by

▶ inl : A→ A+R B

▶ inr : B → A+R B

▶ glue : (a : A) (b : B)→ R a b → inl a = inr b.



The problem

We know that any element of A+R B is merely either of the form
inl a or inr b.
But what are the identity types / path spaces?

▶ inl a0 = inr b ?

▶ inl a0 = inl a ?

▶ (inr b = inr b′ ?)

For most type formers (Σ-, Π- W-, M-types, univalent universes,
n-truncations, sequential colimits), identity types are easy to
describe.

Identity types of pushouts are ‘complicated,’ like ΩmSn.



Some answers

Aside from the generating paths R a b → inl a = inr b and their
inverses one also has anything built up from a zigzag of generating
paths.

We have to quotient by inverse laws (glue r) · (glue r)−1 = refl, but
how exactly?

Can be made precise if we are interested in set-truncation
∥inl a = inr b∥0.1

1Favonia, Shulman: The Seifert-van Kampen Theorem in Homotopy Type
Theory; 2016



Some answers

Kraus and von Raumer2 gave a universal property for path spaces
of pushouts:

For any type X : U with x : X , the type family X → U, y 7→ x = y
is freely generated by refl : x = x .

A type family A+R B → U is the same thing as the data

▶ P : A→ U

▶ Q : B → U

▶ e : (a : A) (b : B)→ R a b → P a ≃ Q b.

Thus the triple (P,Q, e) freely generated by a point p : P a0 has
P a ≃ (inl a0 = inl a), Q b ≃ (inl a0 = inr b),
and e corresponding to post-composition by glue.

2Path Spaces of Higher Inductive Types in Homotopy Type Theory; 2019



Some answers

This is a nice description and easy to prove, but not immediately
useful for many purposes.
A priori describes path spaces of non-recursive HITs (pushouts) as
recursive HITs (much more complex).

There is a close analogy with the James construction.3

3Brunerie: The James Construction and π4(S3) in Homotopy Type Theory;
2018



James construction

If X : U, x0 : X is a pointed connected type, writing ΣX := 1+X 1,
we have J X := ΩΣX freely generated by

▶ a term ε : J X

▶ a map α : X → J X → J X

▶ with δ : (j : J X )→ α(x0, j) = j .

Also a recursive description, but can be ‘unrecursified’,
so J X = colimn→∞ JnX .

α unrecursifies to αn : X → JnX → Jn+1X with a naturality
condition.



Dealing with equivalences

We would like to follow to the same strategy to ‘unrecursify’
Kraus–von Raumer’s description of path spaces of pushouts,
so P a = colimn→∞ Pn a and Q b = colimn→∞Qn b.

But how to unrecursify P(a) ≃ Q(b) for r : R a b?

Several ways to express equivalence constructors in HITs:
Kraus and von Raumer use biinvertible maps.
Rijke, Shulman, and Spitters4 use path-split maps.

One could probably unrecursify these, but they seem to give the
wrong sequence Pn.

We follow a different route.

4Modalities in homotopy type theory; 2020



Interleaving sequences

Lemma
Given sequences P0 → P2 → · · · and Q1 → Q3 → · · · and a
commutative diagram

P0 P2 · · ·

Q1 Q3 · · ·

we have an equivalence colimn→∞ Pn ≃ colimn→∞Qn.

Proof sketch.
Consider the sequence P0 → Q1 → P2 → · · · and its colimit.
Omitting every other term, we get the two sequences
P0 → P2 → · · · and Q1 → Q3 → · · · we started with.
Thus all three sequences have the same colimit.



The zigzag construction

Let A,B : U, R : A→ B → U, a0 : A as before.
We define P0,P2, · · · : A→ U and Q1,Q3, · · · : B → U freely so
that we have

▶ a map Pn a→ Pn+2 a for a : A, n even,

▶ a map Qn b → Qn+2 b for b : B, n odd

▶ a term of P0(a0),

▶ for a : A, b : B, r : R a b, an interleaving diagram.

P0 a P2 a · · ·

Q1 b Q3 b · · ·



The zigzag construction

More concretely, we have

▶ P0 a := (a0 = a)

▶ Q1 b := R a0 b

▶ Pn+2 a given by a pushout square

(b : B)× R a b × Pn a (b : B)× R a b × Qn+1 b

Pn a Pn+2 a
⌜

▶ Qn+2 b is given by the analogous pushout square

(a : A)× R a b × Qn b (a : A)× R a b × Pn+1 a

Qn b Qn+2 b
⌜



The zigzag construction

Theorem
With notation as before,
(inl a0 = inl a) ≃ colimn→∞ Pn a for a : A and
(inl a0 = inr b) ≃ colimn→∞Qn b for b : B.

Proof sketch.
Write P∞ a := colimn→∞ Pn a.
Then e r : P∞ a ≃ Q∞ b for r : R a b by the interleaving diagram.
Now (P∞,Q∞, e) is freely generated by a term of P∞ a0 essentially
by construction.
So we can appeal to Kraus–von Raumer’s characterisation of the
path spaces.



An example: ΩS1

We have S1 ≃ 1 +2 1 where 2 = {B,R}.5

Writing N = inl ⋆ and S = inr ⋆, the construction describes N = N
and N = S as sequential colimits. How?

We picture N = N as the bottom row above and N = S as the top
row. The filtrations (i.e. types Pn and Qn) are given by intervals
centred on 0.

· · · • • • • · · ·

−2 −1 0 1 2

5Note that a relation R : 1 → 1 → U is just a type.



An example: ΩS1

The following pushout diagram describes P4:

2× P2 2× Q3

P2 P4
⌜

This expresses that {−2,−1, 0, 1, 2} is given by gluing two
four-element sets along {−1, 0, 1}.

• • • •

−1 0 1

• • • •



A diagrammatic perspective

An alternative presentation of the construction due to Christian
Sattler avoids type theory-style indexing.

Say given a span of spaces A← R → B.
Given a map Y → A+R B (e.g. inl : A→ A+R B) we seek to
understand the pullback of A← R → B along Y → A+R B.

In general suppose we have a span P0 ← T0 → Q0 over the first
one. We describe the pullback of the first span along the induced
map P0 +T0 Q0 → A+R B.

To this end we construct a sequence of overspans
(Pn ← Tn → Qn)n:N and take the colimit P∞ ← T∞ → Q∞.



A diagrammatic perspective

Descent for pushouts means that if both squares below are
pullback squares then the top span is the pullback of the bottom
one along P∞ +T∞ Q∞ → A+R B.

P∞ T∞ Q∞

A R B

⌞ ⌟

We can in turn ensure that these squares are pullback squares – in
short that P∞ ← T∞ and T∞ → Q∞ are cartesian – by ensuring
that Pn ← Tn and Tn → Qn are each cartesian for infinitely many
n.
(This uses commutativity of pullbacks and sequential colimits.)



A diagrammatic perspective

Given P ← T → Q a span over A← R → B we construct a span
P ′ ← T ′ → Q ′ in between the above two such that

▶ P → P ′ is an equivalence,

▶ P ′ ← T ′ is cartesian over A← R,

▶ P +T Q → P ′ +T ′ Q ′ is an equivalence,

as follows.
P T Q

P ′ T ′ Q ′

A R B

id

⌞

⌜



A diagrammatic perspective

Now starting from P0 ← T0 → Q0 one can iterate the previous
construction, alternating between making Pn ← Tn cartesian and
making Tn → Qn cartesian.

The pushout is unchanged in each step so is unchanged also in the
colimit as n→∞.

Thus P∞ ← T∞ → Q∞ is precisely the pullback of A← R → B
along P0 +T0 Q0 → A+R B.

We have e.g. A = A+0 0, and 1 = 1 +0 0.



The first few steps

A 0 0

A R R

A+R R ×B R R ×B R R

A+R R ×B R (A+R R ×B R)×A R · · ·

...
...

...

cart

cart

⌜

⌝
cart

cart

⌜



Convergence behaviour

It will be fruitful to analyse the convergence behaviour of the
construction.

How well does Pn approximate P∞?

How ‘far’ is the map Pn → Pn+2 from being an equivalence?

We are particularly interested in P0 a→ P∞ a, corresponding to
apinl : (a0 = a)→ (inl a0 = inl a),
and in Q1 b → Q∞b, corresponding to
glue : R a0 b → (inl a0 = inr b).



Informal explanation of convergence behaviour

The fibres of the map Pn → Pn+2 express when a zigzag of length
at most n + 2 has length at most n.

This happens when one can reduce an pair of adjacent edges.

This is controlled by the identity types of (a : A)× R a b for b : B
and of (b : B)× R a b for a : A,

or equivalently by the diagonals of R → B and R → A.

It is enough to reduce some adjacent pair in the zigzag.
This is why joins of these identity types show up.



Formal analysis of convergence behaviour

We want to understand the map Pn a→ Pn+2 a.
It is defined as a pushout of
(b : B)× R a b × Pn a→ (b : B)× R a b × Qn+1 b.

So suffices to understand Pn a→ Qn+1 b given r : R a b.

Theorem
For r : R a b and n even, the map Pn a→ Qn+1 b is a pushout of a
map f such that all fibres of f are of the form X ∗ Y where X is
the fibre of a map Qn−1 b

′ → Pn a given by r ′ : R a b′ and Y is
(b, r) = (b′, r ′).
Similarly, for r : R a b and n odd, the map Qn b → Pn+1 a is a
pushout of a map g such that all fibres of g are of the form X ∗ Y
where X is the fibre of a map Pn−1 a

′ → Qn b given by r ′ : R a′ b
and Y is (a, r) = (a′, r ′).



The key theorem

Theorem
Let C−1,C0,C1, · · · be classes of maps of types such that

▶ Each class is determined fibrewise: there is a class Tn of types
such that Cn consists of all maps whose fibres are all in Tn.

▶ Each class is closed under pushouts.

▶ T−1 contains the empty type.

▶ For each n ≥ 0, Tn contains any type that is a join of a type
in Tn−1 with an identity type in (a : A)× R a b if n is even,
b : B or an identity type in (b : B)× R a b if n is odd, a : A.

Then the maps Pn a→ Qn+1 b and Pn a→ Pn+2 a lie in Cn for n
even and Qn b → Pn+1 a, Qn b → Qn+2 b lies in Cn for n odd.
If moreover Cn+1 ⊆ Cn for all n and Cn is closed under transfinite
composition, then the same holds for Pn a→ P∞ a and
Qn b → Q∞ b.



Pushouts of embeddings

Suppose R → B is an embedding.
Then we can take Cn to be the class of all equivalences for n ≥ 0.
This shows that apinl is an equivalence i.e. inl : A→ A+R B is an
embedding i.e. embeddings are closed under pushouts.
Also glue is an equivalence so the pushout square is a pullback
square.

If R → A is an embedding we can take Cn to be all equivalences
for n ≥ 1 to see that P2 a ≃ (inl a0 = inl a).



Pushouts of 0-truncated spans

Theorem
Suppose R → A and R → B are both 0-truncated i.e. their
diagonals are embeddings. Then the same holds for inl and inr,
and glue is an embedding.

Proof.
Take each Cn to consist of all embeddings.

The same result holds if we replace ‘embedding’ with
‘complemented’ / ‘decidable embedding’ throughout.



Truncatedness of pushouts

Corollary

If R → A and R → B are both 0-truncated and A, B are both
n-truncated with n ≥ 1 then A+R B is also n-truncated.

Proof.
To be n-truncated means that Ωn+1 is contractible at each point,
and inl, inr induce equivalences already on Ω2.

So the suspension of a set, or any other pushout of sets, is
1-truncated. This resolves an open question from the HoTT book.



Some group theory

The following observation is due to Buchholtz, de Jong, and Rijke.

Theorem
Given a parallel pair of group embeddings H ⇒ G , we have that G
embeds in the associated HNN extension G∗H .

Proof.
The coequaliser of BH ⇒ BG is a delooping of G∗H . Equivalently
this is a pushout:

BH + BH BH

BG B(G∗H)
⌜

The proof is directly constructive and avoids combinatorial
reasoning about words.



The Blakers–Massey theorem

Theorem
Let k, l ≥ 0 be integers such that the diagonal of R → A is
k-connected and the diagonal of R → B is l-connected.
Then glue is (k + l + 2)-connected.

Proof.
Take Cn to be the class of
((l + 2) + (k + 2) + (l + 2) + . . .− 2)-connected maps, where the
sum contains n + 1 terms.
Then glue lies in C1 which is the class of
(l + 2 + k + 2− 2)-connected maps.

This directly generalises a corresponding argument for the James
construction.



A rough preprint with some more details is available online at

dwarn.se/po-paths.pdf

Thanks for listening!


