Path spaces of pushouts via a zigzag construction

David Wärn
University of Gothenburg

16 November 2023

Plan for the talk

- Discuss the background of the problem of understanding path spaces of pushouts
- Present the zigzag construction. First in a 'type-theoretic' style, then in a 'diagrammatic' style due to Christian Sattler.
- Discuss 'convergence behaviour' and applications to truncatedness of pushouts, Blakers-Massey, combinatorial group theory

Pushouts

We work informally in HoTT with a univalent universe U closed under pushouts.
Given

- A:U
- $B: \mathrm{U}$
- $R: A \rightarrow B \rightarrow \mathrm{U}$
the pushout $A+{ }_{R} B: \mathrm{U}$ is freely generated by
- inl: $A \rightarrow A+{ }_{R} B$
- inr: $B \rightarrow A+{ }_{R} B$
- glue: $(a: A)(b: B) \rightarrow R a b \rightarrow \operatorname{inl} a=\operatorname{inr} b$.

The problem

We know that any element of $A+{ }_{R} B$ is merely either of the form inl a or inr b.
But what are the identity types / path spaces?

- inl $a_{0}=\operatorname{inr} b$?
- inla $a_{0}=$ inla?
- (inrb=inr b^{\prime} ?)

For most type formers (Σ-, $\Pi-\mathrm{W}-, \mathrm{M}$-types, univalent universes, n-truncations, sequential colimits), identity types are easy to describe.

Identity types of pushouts are 'complicated,' like $\Omega^{m} S^{n}$.

Some answers

Aside from the generating paths $R a b \rightarrow \operatorname{inl} a=\operatorname{inr} b$ and their inverses one also has anything built up from a zigzag of generating paths.

We have to quotient by inverse laws (glue r) • (glue $r)^{-1}=$ refl, but how exactly?

Can be made precise if we are interested in set-truncation $\|\mathrm{inl} a=\operatorname{inr} b\|_{0} .{ }^{1}$
${ }^{1}$ Favonia, Shulman: The Seifert-van Kampen Theorem in Homotopy Type Theory; 2016

Some answers

Kraus and von Raumer ${ }^{2}$ gave a universal property for path spaces of pushouts:

For any type $X: U$ with $x: X$, the type family $X \rightarrow \mathrm{U}, y \mapsto x=y$ is freely generated by refl : $x=x$.

A type family $A+{ }_{R} B \rightarrow \mathrm{U}$ is the same thing as the data

- $P: A \rightarrow U$
- $Q: B \rightarrow \mathrm{U}$
- $e:(a: A)(b: B) \rightarrow R a b \rightarrow P a \simeq Q b$.

Thus the triple (P, Q, e) freely generated by a point $p: P a_{0}$ has $P a \simeq\left(\right.$ inl $\left.a_{0}=\operatorname{inl} a\right), Q b \simeq\left(\operatorname{inl} a_{0}=\operatorname{inr} b\right)$, and e corresponding to post-composition by glue.
${ }^{2}$ Path Spaces of Higher Inductive Types in Homotopy Type Theory; 2019

Some answers

This is a nice description and easy to prove, but not immediately useful for many purposes.
A priori describes path spaces of non-recursive HITs (pushouts) as recursive HITs (much more complex).
There is a close analogy with the James construction. ${ }^{3}$

[^0]
James construction

If $X: U, x_{0}: X$ is a pointed connected type, writing $\Sigma X:=1+x 1$, we have $J X:=\Omega \Sigma X$ freely generated by

- a term $\varepsilon: J X$
- a map $\alpha: X \rightarrow J X \rightarrow J X$
- with $\delta:(j: J X) \rightarrow \alpha\left(x_{0}, j\right)=j$.

Also a recursive description, but can be 'unrecursified', so $J X=\operatorname{colim}_{n \rightarrow \infty} J_{n} X$.
α unrecursifies to $\alpha_{n}: X \rightarrow J_{n} X \rightarrow J_{n+1} X$ with a naturality condition.

Dealing with equivalences

We would like to follow to the same strategy to 'unrecursify' Kraus-von Raumer's description of path spaces of pushouts, so $P a=\operatorname{colim}_{n \rightarrow \infty} P_{n}$ a and $Q b=\operatorname{colim}_{n \rightarrow \infty} Q_{n} b$.

But how to unrecursify $P(a) \simeq Q(b)$ for $r: R a b$?
Several ways to express equivalence constructors in HITs:
Kraus and von Raumer use biinvertible maps.
Rijke, Shulman, and Spitters ${ }^{4}$ use path-split maps.
One could probably unrecursify these, but they seem to give the wrong sequence P_{n}.

We follow a different route.

[^1]
Interleaving sequences

Lemma
Given sequences $P_{0} \rightarrow P_{2} \rightarrow \cdots$ and $Q_{1} \rightarrow Q_{3} \rightarrow \cdots$ and a commutative diagram

we have an equivalence $\operatorname{colim}_{n \rightarrow \infty} P_{n} \simeq \operatorname{colim}_{n \rightarrow \infty} Q_{n}$.
Proof sketch.
Consider the sequence $P_{0} \rightarrow Q_{1} \rightarrow P_{2} \rightarrow \cdots$ and its colimit.
Omitting every other term, we get the two sequences $P_{0} \rightarrow P_{2} \rightarrow \cdots$ and $Q_{1} \rightarrow Q_{3} \rightarrow \cdots$ we started with.
Thus all three sequences have the same colimit.

The zigzag construction

Let $A, B: \mathrm{U}, R: A \rightarrow B \rightarrow \mathrm{U}, a_{0}: A$ as before.
We define $P_{0}, P_{2}, \cdots: A \rightarrow \mathrm{U}$ and $Q_{1}, Q_{3}, \cdots: B \rightarrow \mathrm{U}$ freely so that we have

- a map $P_{n} a \rightarrow P_{n+2}$ a for a: A, n even,
- a map $Q_{n} b \rightarrow Q_{n+2} b$ for $b: B, n$ odd
- a term of $P_{0}\left(a_{0}\right)$,
- for $a: A, b: B, r: R a b$, an interleaving diagram.

The zigzag construction

More concretely, we have

- $P_{0} a:=\left(a_{0}=a\right)$
- $Q_{1} b:=R a_{0} b$
- P_{n+2} a given by a pushout square

$$
(b: B) \times R a b \times P_{n} a \longrightarrow(b: B) \times R a b \times Q_{n+1} b
$$

- $Q_{n+2} b$ is given by the analogous pushout square

$$
(a: A) \times R a b \times Q_{n} b \longrightarrow(a: A) \times R a b \times P_{n+1} a
$$

The zigzag construction

Theorem
With notation as before,
(inl $a_{0}=$ inl $\left.a\right) \simeq \operatorname{colim}_{n \rightarrow \infty} P_{n}$ a for $a: A$ and
$\left(\right.$ inl $\left.a_{0}=\operatorname{inr} b\right) \simeq \operatorname{colim}_{n \rightarrow \infty} Q_{n} b$ for $b: B$.
Proof sketch.
Write $P_{\infty} a:=\operatorname{colim}_{n \rightarrow \infty} P_{n} a$.
Then er: $P_{\infty} a \simeq Q_{\infty} b$ for $r: R a b$ by the interleaving diagram. Now $\left(P_{\infty}, Q_{\infty}, e\right)$ is freely generated by a term of $P_{\infty} a_{0}$ essentially by construction.
So we can appeal to Kraus-von Raumer's characterisation of the path spaces.

An example: ΩS^{1}

We have $S^{1} \simeq 1+{ }_{2} 1$ where $2=\{B, R\} .{ }^{5}$
Writing $N=$ inl* and $S=$ inr \star, the construction describes $N=N$ and $N=S$ as sequential colimits. How?

We picture $N=N$ as the bottom row above and $N=S$ as the top row. The filtrations (i.e. types P_{n} and Q_{n}) are given by intervals centred on 0 .

[^2]
An example: ΩS^{1}

The following pushout diagram describes P_{4} :

This expresses that $\{-2,-1,0,1,2\}$ is given by gluing two four-element sets along $\{-1,0,1\}$.

A diagrammatic perspective

An alternative presentation of the construction due to Christian Sattler avoids type theory-style indexing.
Say given a span of spaces $A \leftarrow R \rightarrow B$.
Given a map $Y \rightarrow A+{ }_{R} B$ (e.g. inl : $A \rightarrow A+{ }_{R} B$) we seek to understand the pullback of $A \leftarrow R \rightarrow B$ along $Y \rightarrow A+{ }_{R} B$.

In general suppose we have a span $P_{0} \leftarrow T_{0} \rightarrow Q_{0}$ over the first one. We describe the pullback of the first span along the induced $\operatorname{map} P_{0}+T_{0} Q_{0} \rightarrow A+{ }_{R} B$.
To this end we construct a sequence of overspans $\left(P_{n} \leftarrow T_{n} \rightarrow Q_{n}\right)_{n: \mathbb{N}}$ and take the colimit $P_{\infty} \leftarrow T_{\infty} \rightarrow Q_{\infty}$.

A diagrammatic perspective

Descent for pushouts means that if both squares below are pullback squares then the top span is the pullback of the bottom one along $P_{\infty}+T_{\infty} Q_{\infty} \rightarrow A+{ }_{R} B$.

We can in turn ensure that these squares are pullback squares - in short that $P_{\infty} \leftarrow T_{\infty}$ and $T_{\infty} \rightarrow Q_{\infty}$ are cartesian - by ensuring that $P_{n} \leftarrow T_{n}$ and $T_{n} \rightarrow Q_{n}$ are each cartesian for infinitely many n.
(This uses commutativity of pullbacks and sequential colimits.)

A diagrammatic perspective

Given $P \leftarrow T \rightarrow Q$ a span over $A \leftarrow R \rightarrow B$ we construct a span $P^{\prime} \leftarrow T^{\prime} \rightarrow Q^{\prime}$ in between the above two such that

- $P \rightarrow P^{\prime}$ is an equivalence,
- $P^{\prime} \leftarrow T^{\prime}$ is cartesian over $A \leftarrow R$,
- $P+_{T} Q \rightarrow P^{\prime}+T_{T^{\prime}} Q^{\prime}$ is an equivalence, as follows.

A diagrammatic perspective

Now starting from $P_{0} \leftarrow T_{0} \rightarrow Q_{0}$ one can iterate the previous construction, alternating between making $P_{n} \leftarrow T_{n}$ cartesian and making $T_{n} \rightarrow Q_{n}$ cartesian.

The pushout is unchanged in each step so is unchanged also in the colimit as $n \rightarrow \infty$.

Thus $P_{\infty} \leftarrow T_{\infty} \rightarrow Q_{\infty}$ is precisely the pullback of $A \leftarrow R \rightarrow B$ along $P_{0}+T_{0} Q_{0} \rightarrow A+{ }_{R} B$.
We have e.g. $A=A+{ }_{0} 0$, and $1=1+{ }_{0} 0$.

The first few steps

Convergence behaviour

It will be fruitful to analyse the convergence behaviour of the construction.

How well does P_{n} approximate P_{∞} ?
How 'far' is the map $P_{n} \rightarrow P_{n+2}$ from being an equivalence?
We are particularly interested in $P_{0} a \rightarrow P_{\infty} a$, corresponding to
$\mathrm{ap}_{\text {inl }}:\left(a_{0}=a\right) \rightarrow\left(\right.$ inl $\left.a_{0}=\mathrm{inl} a\right)$,
and in $Q_{1} b \rightarrow Q_{\infty} b$, corresponding to glue : $R a_{0} b \rightarrow\left(\right.$ inl $\left.a_{0}=\operatorname{inr} b\right)$.

Informal explanation of convergence behaviour

The fibres of the map $P_{n} \rightarrow P_{n+2}$ express when a zigzag of length at most $n+2$ has length at most n.

This happens when one can reduce an pair of adjacent edges.
This is controlled by the identity types of $(a: A) \times R a b$ for $b: B$ and of $(b: B) \times R a b$ for $a: A$, or equivalently by the diagonals of $R \rightarrow B$ and $R \rightarrow A$.

It is enough to reduce some adjacent pair in the zigzag. This is why joins of these identity types show up.

Formal analysis of convergence behaviour

We want to understand the map $P_{n} a \rightarrow P_{n+2} a$.
It is defined as a pushout of
$(b: B) \times R a b \times P_{n} a \rightarrow(b: B) \times R a b \times Q_{n+1} b$.
So suffices to understand $P_{n} a \rightarrow Q_{n+1} b$ given $r: R a b$.
Theorem
For $r: R a b$ and n even, the map $P_{n} a \rightarrow Q_{n+1} b$ is a pushout of a map f such that all fibres of f are of the form $X * Y$ where X is the fibre of a map $Q_{n-1} b^{\prime} \rightarrow P_{n}$ a given by $r^{\prime}: R$ a b^{\prime} and Y is $(b, r)=\left(b^{\prime}, r^{\prime}\right)$.
Similarly, for $r: R a b$ and n odd, the $\operatorname{map} Q_{n} b \rightarrow P_{n+1} a$ is a pushout of a map g such that all fibres of g are of the form $X * Y$ where X is the fibre of a map $P_{n-1} a^{\prime} \rightarrow Q_{n} b$ given by $r^{\prime}: R a^{\prime} b$ and Y is $(a, r)=\left(a^{\prime}, r^{\prime}\right)$.

The key theorem

Theorem

Let $C_{-1}, C_{0}, C_{1}, \cdots$ be classes of maps of types such that

- Each class is determined fibrewise: there is a class T_{n} of types such that C_{n} consists of all maps whose fibres are all in T_{n}.
- Each class is closed under pushouts.
- T_{-1} contains the empty type.
- For each $n \geq 0, T_{n}$ contains any type that is a join of a type in T_{n-1} with an identity type in $(a: A) \times R a b$ if n is even, $b: B$ or an identity type in $(b: B) \times R a b$ if n is odd, $a: A$.
Then the maps $P_{n} a \rightarrow Q_{n+1} b$ and $P_{n} a \rightarrow P_{n+2}$ a lie in C_{n} for n even and $Q_{n} b \rightarrow P_{n+1} a, Q_{n} b \rightarrow Q_{n+2} b$ lies in C_{n} for n odd. If moreover $C_{n+1} \subseteq C_{n}$ for all n and C_{n} is closed under transfinite composition, then the same holds for $P_{n} a \rightarrow P_{\infty} a$ and $Q_{n} b \rightarrow Q_{\infty} b$.

Pushouts of embeddings

Suppose $R \rightarrow B$ is an embedding.
Then we can take C_{n} to be the class of all equivalences for $n \geq 0$. This shows that $\mathrm{ap}_{\mathrm{inl}}$ is an equivalence i.e. inl : $A \rightarrow A+{ }_{R} B$ is an embedding i.e. embeddings are closed under pushouts.
Also glue is an equivalence so the pushout square is a pullback square.

If $R \rightarrow A$ is an embedding we can take C_{n} to be all equivalences for $n \geq 1$ to see that $P_{2} a \simeq\left(\right.$ inl $\left.a_{0}=\operatorname{inl} a\right)$.

Pushouts of 0-truncated spans

Theorem
Suppose $R \rightarrow A$ and $R \rightarrow B$ are both 0 -truncated i.e. their diagonals are embeddings. Then the same holds for inl and inr, and glue is an embedding.

Proof.
Take each C_{n} to consist of all embeddings.
The same result holds if we replace 'embedding' with 'complemented' / 'decidable embedding' throughout.

Truncatedness of pushouts

Corollary

If $R \rightarrow A$ and $R \rightarrow B$ are both 0 -truncated and A, B are both n-truncated with $n \geq 1$ then $A+_{R} B$ is also n-truncated.

Proof.
To be n-truncated means that Ω^{n+1} is contractible at each point, and inl, inr induce equivalences already on Ω^{2}.

So the suspension of a set, or any other pushout of sets, is 1-truncated. This resolves an open question from the HoTT book.

Some group theory

The following observation is due to Buchholtz, de Jong, and Rijke.
Theorem
Given a parallel pair of group embeddings $H \rightrightarrows G$, we have that G embeds in the associated HNN extension $G *_{H}$.

Proof.
The coequaliser of $B H \rightrightarrows B G$ is a delooping of $G *_{H}$. Equivalently this is a pushout:

The proof is directly constructive and avoids combinatorial reasoning about words.

The Blakers-Massey theorem

Theorem

Let $k, I \geq 0$ be integers such that the diagonal of $R \rightarrow A$ is
k-connected and the diagonal of $R \rightarrow B$ is l-connected.
Then glue is $(k+1+2)$-connected.
Proof.
Take C_{n} to be the class of
$((I+2)+(k+2)+(I+2)+\ldots-2)$-connected maps, where the sum contains $n+1$ terms.
Then glue lies in C_{1} which is the class of
($I+2+k+2-2)$-connected maps.
This directly generalises a corresponding argument for the James construction.

A rough preprint with some more details is available online at dwarn.se/po-paths.pdf

Thanks for listening!

[^0]: ${ }^{3}$ Brunerie: The James Construction and $\pi_{4}\left(\mathbb{S}^{3}\right)$ in Homotopy Type Theory; 2018

[^1]: ${ }^{4}$ Modalities in homotopy type theory; 2020

[^2]: ${ }^{5}$ Note that a relation $R: 1 \rightarrow 1 \rightarrow \mathrm{U}$ is just a type.

