Path spaces of pushouts via a zigzag construction

David Wärn

University of Gothenburg

16 November 2023

- Discuss the background of the problem of understanding path spaces of pushouts
- Present the zigzag construction. First in a 'type-theoretic' style, then in a 'diagrammatic' style due to Christian Sattler.
- Discuss 'convergence behaviour' and applications to truncatedness of pushouts, Blakers–Massey, combinatorial group theory

Pushouts

We work informally in HoTT with a univalent universe U closed under *pushouts*.

Given

- ► A : U
- ► B : U
- $\blacktriangleright R: A \to B \to U$

the pushout $A +_R B$: U is freely generated by

The problem

We know that any element of $A +_R B$ is merely either of the form inl *a* or inr *b*.

But what are the identity types / path spaces?

- ▶ inl $a_0 = \operatorname{inr} b$?
- $\blacktriangleright \text{ inl } a_0 = \text{ inl } a ?$
- (inr b = inr b'?)

For most type formers (Σ -, Π - W-, M-types, univalent universes, *n*-truncations, sequential colimits), identity types are easy to describe.

Identity types of pushouts are 'complicated,' like $\Omega^m S^n$.

Aside from the generating paths $R a b \rightarrow inl a = inr b$ and their inverses one also has anything built up from a zigzag of generating paths.

We have to quotient by inverse laws $(glue r) \cdot (glue r)^{-1} = refl,$ but how exactly?

Can be made precise if we are interested in set-truncation $\| \ln a = \ln r b \|_0$.¹

¹Favonia, Shulman: The Seifert-van Kampen Theorem in Homotopy Type Theory; 2016

Some answers

Kraus and von Raumer^2 gave a universal property for path spaces of pushouts:

For any type X : U with x : X, the type family $X \to U$, $y \mapsto x = y$ is freely generated by refl : x = x.

A type family $A +_R B \rightarrow U$ is the same thing as the data

Thus the triple (P, Q, e) freely generated by a point $p : P a_0$ has $P a \simeq (inl a_0 = inl a)$, $Q b \simeq (inl a_0 = inr b)$, and e corresponding to post-composition by glue.

²Path Spaces of Higher Inductive Types in Homotopy Type Theory; 2019

This is a nice description and easy to prove, but not immediately useful for many purposes.

A priori describes path spaces of non-recursive HITs (pushouts) as recursive HITs (much more complex).

There is a close analogy with the James construction.³

³Brunerie: The James Construction and $\pi_4(\mathbb{S}^3)$ in Homotopy Type Theory; 2018

James construction

If X : U, $x_0 : X$ is a *pointed connected* type, writing $\Sigma X := 1 + x 1$, we have $J X := \Omega \Sigma X$ freely generated by

a term ε : JX

▶ a map
$$\alpha: X \to JX \to JX$$

• with
$$\delta: (j: JX) \to \alpha(x_0, j) = j$$
.

Also a recursive description, but can be 'unrecursified', so $JX = \operatorname{colim}_{n \to \infty} J_n X$.

 α unrecursifies to $\alpha_n : X \to J_n X \to J_{n+1} X$ with a naturality condition.

Dealing with equivalences

We would like to follow to the same strategy to 'unrecursify' Kraus-von Raumer's description of path spaces of pushouts, so $P a = \operatorname{colim}_{n \to \infty} P_n a$ and $Q b = \operatorname{colim}_{n \to \infty} Q_n b$.

But how to unrecursify $P(a) \simeq Q(b)$ for r : R a b?

Several ways to express equivalence constructors in HITs: Kraus and von Raumer use biinvertible maps. Rijke, Shulman, and Spitters⁴ use *path-split* maps.

One could probably unrecursify these, but they seem to give the wrong sequence P_n .

We follow a different route.

⁴Modalities in homotopy type theory; 2020

Interleaving sequences

Lemma

Given sequences $P_0 \rightarrow P_2 \rightarrow \cdots$ and $Q_1 \rightarrow Q_3 \rightarrow \cdots$ and a commutative diagram

we have an equivalence $\operatorname{colim}_{n\to\infty} P_n \simeq \operatorname{colim}_{n\to\infty} Q_n$.

Proof sketch.

Consider the sequence $P_0 \rightarrow Q_1 \rightarrow P_2 \rightarrow \cdots$ and its colimit. Omitting every other term, we get the two sequences $P_0 \rightarrow P_2 \rightarrow \cdots$ and $Q_1 \rightarrow Q_3 \rightarrow \cdots$ we started with. Thus all three sequences have the same colimit.

The zigzag construction

Let $A, B : U, R : A \rightarrow B \rightarrow U, a_0 : A$ as before. We define $P_0, P_2, \dots : A \rightarrow U$ and $Q_1, Q_3, \dots : B \rightarrow U$ freely so that we have

- ▶ a map $P_n a \rightarrow P_{n+2} a$ for a : A, n even,
- ▶ a map $Q_n b \rightarrow Q_{n+2} b$ for b : B, n odd
- a term of $P_0(a_0)$,
- ▶ for *a* : *A*, *b* : *B*, *r* : *R a b*, an interleaving diagram.

The zigzag construction

More concretely, we have

▶
$$P_0 a := (a_0 = a)$$

$$\blacktriangleright Q_1 b := R a_0 b$$

• $P_{n+2} a$ given by a pushout square

• $Q_{n+2} b$ is given by the analogous pushout square

The zigzag construction

Theorem With notation as before, (inl $a_0 = inl a$) $\simeq colim_{n\to\infty} P_n a$ for a : A and (inl $a_0 = inr b$) $\simeq colim_{n\to\infty} Q_n b$ for b : B.

Proof sketch.

Write $P_{\infty} a \coloneqq \operatorname{colim}_{n \to \infty} P_n a$.

Then $er: P_{\infty} a \simeq Q_{\infty} b$ for r: R a b by the interleaving diagram.

Now $(P_{\infty}, Q_{\infty}, e)$ is freely generated by a term of $P_{\infty} a_0$ essentially by construction.

So we can appeal to Kraus-von Raumer's characterisation of the path spaces.

An example: ΩS^1

We have $S^1 \simeq 1 +_2 1$ where $2 = \{B, R\}^{.5}$.

Writing $N = \text{inl} \star$ and $S = \text{inr} \star$, the construction describes N = N and N = S as sequential colimits. How?

We picture N = N as the bottom row above and N = S as the top row. The filtrations (i.e. types P_n and Q_n) are given by intervals centred on 0.

⁵Note that a relation $R: 1 \rightarrow 1 \rightarrow U$ is just a type.

An example: ΩS^1

The following pushout diagram describes P_4 :

This expresses that $\{-2, -1, 0, 1, 2\}$ is given by gluing two four-element sets along $\{-1, 0, 1\}$.

An alternative presentation of the construction due to Christian Sattler avoids type theory-style indexing.

Say given a span of spaces $A \leftarrow R \rightarrow B$. Given a map $Y \rightarrow A +_R B$ (e.g. inl : $A \rightarrow A +_R B$) we seek to understand the pullback of $A \leftarrow R \rightarrow B$ along $Y \rightarrow A +_R B$.

In general suppose we have a span $P_0 \leftarrow T_0 \rightarrow Q_0$ over the first one. We describe the pullback of the first span along the induced map $P_0 +_{T_0} Q_0 \rightarrow A +_R B$.

To this end we construct a sequence of overspans $(P_n \leftarrow T_n \rightarrow Q_n)_{n:\mathbb{N}}$ and take the colimit $P_\infty \leftarrow T_\infty \rightarrow Q_\infty$.

Descent for pushouts means that if both squares below are pullback squares then the top span is the pullback of the bottom one along $P_{\infty} + T_{\infty} Q_{\infty} \rightarrow A +_R B$.

We can in turn ensure that these squares are pullback squares – in short that $P_{\infty} \leftarrow T_{\infty}$ and $T_{\infty} \rightarrow Q_{\infty}$ are cartesian – by ensuring that $P_n \leftarrow T_n$ and $T_n \rightarrow Q_n$ are each cartesian for infinitely many n.

(This uses commutativity of pullbacks and sequential colimits.)

Given $P \leftarrow T \rightarrow Q$ a span over $A \leftarrow R \rightarrow B$ we construct a span $P' \leftarrow T' \rightarrow Q'$ in between the above two such that

- ▶ $P \rightarrow P'$ is an equivalence,
- ▶ $P' \leftarrow T'$ is cartesian over $A \leftarrow R$,
- ▶ $P +_T Q \rightarrow P' +_{T'} Q'$ is an equivalence,

as follows.

Now starting from $P_0 \leftarrow T_0 \rightarrow Q_0$ one can iterate the previous construction, alternating between making $P_n \leftarrow T_n$ cartesian and making $T_n \rightarrow Q_n$ cartesian.

The pushout is unchanged in each step so is unchanged also in the colimit as $n \to \infty$.

Thus $P_{\infty} \leftarrow T_{\infty} \rightarrow Q_{\infty}$ is precisely the pullback of $A \leftarrow R \rightarrow B$ along $P_0 +_{T_0} Q_0 \rightarrow A +_R B$.

We have e.g. $A = A +_0 0$, and $1 = 1 +_0 0$.

The first few steps

It will be fruitful to analyse the convergence behaviour of the construction.

How well does P_n approximate P_∞ ?

How 'far' is the map $P_n \rightarrow P_{n+2}$ from being an equivalence?

We are particularly interested in $P_0 a \rightarrow P_{\infty} a$, corresponding to $ap_{inl} : (a_0 = a) \rightarrow (inl a_0 = inl a)$, and in $Q_1 b \rightarrow Q_{\infty} b$, corresponding to glue : $R a_0 b \rightarrow (inl a_0 = inr b)$.

Informal explanation of convergence behaviour

The fibres of the map $P_n \rightarrow P_{n+2}$ express when a zigzag of length at most n+2 has length at most n.

This happens when one can reduce an pair of adjacent edges.

This is controlled by the identity types of $(a : A) \times R a b$ for b : Band of $(b : B) \times R a b$ for a : A,

or equivalently by the diagonals of $R \rightarrow B$ and $R \rightarrow A$.

It is enough to reduce *some* adjacent pair in the zigzag. This is why *joins* of these identity types show up.

Formal analysis of convergence behaviour

We want to understand the map $P_n a \rightarrow P_{n+2} a$. It is defined as a pushout of $(b:B) \times R a b \times P_n a \rightarrow (b:B) \times R a b \times Q_{n+1} b$.

So suffices to understand $P_n a \rightarrow Q_{n+1} b$ given r : R a b.

Theorem

For $r : R \ a \ b$ and n even, the map $P_n \ a \to Q_{n+1} \ b$ is a pushout of a map f such that all fibres of f are of the form X * Y where X is the fibre of a map $Q_{n-1} \ b' \to P_n \ a$ given by $r' : R \ a \ b' \ and Y$ is (b, r) = (b', r'). Similarly, for $r : R \ a \ b$ and $n \ odd$, the map $Q_n \ b \to P_{n+1} \ a$ is a pushout of a map g such that all fibres of g are of the form X * Y where X is the fibre of a map $P_{n-1} \ a' \to Q_n \ b$ given by $r' : R \ a' \ b$ and Y is (a, r) = (a', r').

The key theorem

Theorem

Let C_{-1}, C_0, C_1, \cdots be classes of maps of types such that

- Each class is determined fibrewise: there is a class T_n of types such that C_n consists of all maps whose fibres are all in T_n.
- Each class is closed under pushouts.
- T_{-1} contains the empty type.
- For each n ≥ 0, T_n contains any type that is a join of a type in T_{n-1} with an identity type in (a : A) × R a b if n is even, b : B or an identity type in (b : B) × R a b if n is odd, a : A.

Then the maps $P_n a \to Q_{n+1} b$ and $P_n a \to P_{n+2} a$ lie in C_n for n even and $Q_n b \to P_{n+1} a$, $Q_n b \to Q_{n+2} b$ lies in C_n for n odd. If moreover $C_{n+1} \subseteq C_n$ for all n and C_n is closed under transfinite composition, then the same holds for $P_n a \to P_\infty a$ and $Q_n b \to Q_\infty b$. Suppose $R \rightarrow B$ is an embedding.

Then we can take C_n to be the class of all equivalences for $n \ge 0$. This shows that ap_{inl} is an equivalence i.e. inl : $A \rightarrow A +_R B$ is an embedding i.e. embeddings are closed under pushouts. Also glue is an equivalence so the pushout square is a pullback square.

If $R \to A$ is an embedding we can take C_n to be all equivalences for $n \ge 1$ to see that $P_2 a \simeq (\text{inl } a_0 = \text{inl } a)$.

Pushouts of 0-truncated spans

Theorem

Suppose $R \rightarrow A$ and $R \rightarrow B$ are both 0-truncated i.e. their diagonals are embeddings. Then the same holds for inl and inr, and glue is an embedding.

Proof.

Take each C_n to consist of all embeddings.

The same result holds if we replace 'embedding' with 'complemented' / 'decidable embedding' throughout.

Truncatedness of pushouts

Corollary

If $R \rightarrow A$ and $R \rightarrow B$ are both 0-truncated and A, B are both n-truncated with $n \ge 1$ then $A +_R B$ is also n-truncated.

Proof.

To be *n*-truncated means that Ω^{n+1} is contractible at each point, and inl, inr induce equivalences already on Ω^2 .

So the suspension of a set, or any other pushout of sets, is 1-truncated. This resolves an open question from the HoTT book.

Some group theory

The following observation is due to Buchholtz, de Jong, and Rijke.

Theorem

Given a parallel pair of group embeddings $H \rightrightarrows G$, we have that G embeds in the associated HNN extension G_{*H} .

Proof.

The coequaliser of $BH \rightrightarrows BG$ is a delooping of $G*_H$. Equivalently this is a pushout:

The proof is directly constructive and avoids combinatorial reasoning about words.

The Blakers–Massey theorem

Theorem

Let $k, l \ge 0$ be integers such that the diagonal of $R \to A$ is k-connected and the diagonal of $R \to B$ is l-connected. Then glue is (k + l + 2)-connected.

Proof.

Take C_n to be the class of $((l+2) + (k+2) + (l+2) + \ldots - 2)$ -connected maps, where the sum contains n + 1 terms. Then glue lies in C_1 which is the class of (l+2+k+2-2)-connected maps.

This directly generalises a corresponding argument for the James construction.

A rough preprint with some more details is available online at dwarn.se/po-paths.pdf

Thanks for listening!