
A Type Theory for Strictly
Unital ∞-Categories

Eric Finster
University of Cambridge

David Reutter
MPI Bonn

Jamie Vicary
University of Cambridge

arXiv:2007.08307
https://github.com/ericfinster/catt.io

Homotopy Type Theory Electronic Seminar Talks
3 December 2020

http://github.com/ericfinster/catt.io
http://arxiv.org/abs/2007.08307

Paths modulo units
Consider these cells in some higher structure, like a 2-groupoid:

x : ? f : x → x h : x → y μ : f → id(x) ζ : h → j

y : ? g : x → y j : x → y ν : g → h

We might try to compose them as follows:

(I) x x y

f g

id(x) h

⇑μ ⇑ν

j
⇑ζ

(II)
x x y

f g

id(x) h

⇑μ ⇑ν

h
'

j
⇑ζ

(μ •0 ν) •1 ζ (μ •0 ν) •1 coh •1 ζ

Simple, but invalid Verbose, but correct

But wait—aren’t these units somehow trivial? Ideally, we would like to:
I have the type checker accept (I) X
I on request, “inflate” (I) to (II), inserting missing coherences WIP!
I on request, “deflate” (II) to (I), removing trivial structure X

.

Plan for today

I Recall Catt, a type theory for weak ∞-categories
(Finster & Mimram, arXiv:1706.02866)

I Give a reduction relation on terms which “removes unit
structure”, and show it’s confluent and terminating

I Define the new type theory Cattsu, by using our reduction
relation to generate definitional equality for Catt

I Models of Cattsu are strictly unital ∞-categories, and we
explore their properties

I Investigate nontrivial examples, including Eckmann-Hilton
and the Syllepsis

I Speculate on possible future application of these ideas to
Martin-Löf identity types

http://arxiv.org/abs/1706.02866

Catt overview

Contexts Γ, Δ, . . . are lists
of variables-with-types:

x : A, y : B, . . . , z : C

Types A, B, C, . . . are trivial,
or pairs of parallel terms:

? u → v

Terms t, u, v, . . . are variables,
coherences, or composites:

x coh(Γ : A)[σ] comp(Γ : A)[σ]

Substitutions σ : Γ → Δ are
functions σ : var(Γ) → tm(Δ)

Γ ` “Γ is the generating data
for a free ∞-category Γ̃”

Γ ` A “in Γ̃, there is a hom-set A”

Γ ` t : A “in Γ̃, there is a morphism t
in the hom-set A”

Δ ` σ : Γ “there is a strict ∞-functor
σ : Γ̃ → Δ̃”

No definitional equality—“Catt does not compute”.

Catt pasting contexts
In Catt we can characterize the pasting contexts inductively.

We can illustrate this with Batanin trees.

x
y

z

f
g

h

μ ν

j

Leaf variables μ, ν, j
have locally maximal
dimension

x y

f

g

⇑μ

h

⇑ν
z

j

Γ = x : ?, y : ?, f : x → y, g : x → y, μ : f → g, h : x → y, ν : g → h, z : ?, j : y → z

We can also define the boundaries ∂± of a pasting context, in this case:

∂+ = {x : ?, y : ?, h : x → y, z : ?, j : y → z} x y z
h j

∂− = {x : ?, y : ?, f : x → y, z : ?, j : y → z} x y z
f j

Catt term construction
“in a pasting context, parallel full terms can be filled”

We can construct terms as follows, when Γ is a pasting context:

∂−(Γ) ` u : A ∂+(Γ) ` v : A

Γ ` comp(Γ, u, v) : u → v

Side condition: u, v are “full”, using every variable of their contexts.

x y z

f

h

g

⇑μ

⇑ν j

x y zh j

x y z
f j

Γ

∂+(Γ)

∂−(Γ)

Γ ` comp(Γ, u, v) : u →A v

δ+(Γ) ` u : A

δ−(Γ) ` u : A

This is a conceptually profound idea.

.

Catt term construction
“in a pasting context, parallel full terms can be filled”

We can construct terms as follows, when Γ is a pasting context:

∂−(Γ) ` u : A ∂+(Γ) ` v : A

Γ ` comp(Γ, u, v) : u → v

Γ ` u : A Γ ` v : A

Γ ` coh(Γ, u, v) : u → v

Side condition: u, v are “full”, using every variable of their contexts.

x y z

f

h

g

⇑μ

⇑ν
j

x y z

f

h

g

⇑μ

⇑ν
j

Γ

Γ

Γ ` coh(Γ, u, v) : u → v

Γ ` v : A

Γ ` u : A

.

Catt term construction
“in a pasting context, parallel full terms can be filled”

We can construct terms as follows, when Γ is a pasting context:

∂−(Γ) ` u : A ∂+(Γ) ` v : A

Γ ` comp(Γ, u, v) : u → v

Γ ` u : A Γ ` v : A

Γ ` coh(Γ, u, v) : u → v

Side condition: u, v are “full”, using every variable of their contexts.

Here are some examples:
I comp(x y zf g , x, z) : x → z gives the binary composite f • g
I comp(x yf , x, y) : x → y gives the unary composite (f)
I coh(x, x, x) : x → x gives the identity 1-cell id(x)

To obtain richer terms, we can substitute:
I comp(x y zf g , x, z)[p, q] gives the binary composite p • q
I coh(x yf , id(x) • f , f) gives the unitor λf
I coh(x y z wf g h , (f • g) • h, f • (g • h)) gives associator αf ,g,h

Every Catt term is a variable, a composite, or a coherence:

x comp(Γ, u, v)[σ] coh(Γ, u, v)[σ]

.

Globular sums
“pasting contexts are colimits of disks”

Definition. The category Cattp has pasting contexts as objects, and
substitutions as morphisms.

Theorem. In Cattp, pasting contexts
are colimits of locally-maximal disks
(“globular sums”).

Definition. An ∞-category is a
presheaf (Cattp)op → Set
preserving globular sums.

• •
f

⇑μ

• •
f

• •x
f

⇑ν

•x

• •x

• • •
⇑μ

⇑ν

→ →→ →

→ →→

Known to agree with the definition of contractible ∞-category
(Grothendieck, Maltsiniotis, Batanin, Leinster, Brunerie) via recent
work of Dmitri Ara, John Bourke and Thibaut Benjamin.

Lightweight approach:
I no globular extension technology (Grothendieck/Maltsiniotis)
I no globular operad technology (Batanin/Leinster)

.

P Reduction
“prune identity arguments of a comp or coh”

Suppose μ ∈ var(Γ) is locally maximal, with μ[σ] an identity.

Then σ factorizes via Γ/μ, with μ[πμ] = id:

Γ Δ
σ

Γ/μ

πμ σ/μ
μ 7→ id

x y z

f

h

g

⇑μ

⇑ν j

x y z

h

g

⇑ν j

f 7→ g
μ 7→ id(g)

The intuition is that μ has been collapsed, or “pruned”.

We define the reduction as follows:

comp(Γ, u, v)[σ] P comp(Γ/μ, u[πμ], v[πμ])[σ/μ]

coh(Γ, u, v)[σ] P coh(Γ/μ, u[πμ], v[πμ])[σ/μ]

.

D Reduction
“simplify unary composites”

We define the n-sphere type Sn and
the n-disk context Dn recursively:

D0 := {d0 : S−1}

Dn+1 := {Dn, d′
n : Sn−1, dn+1 : Sn}

S−1 := ?

Sn := dn → d′
n

d0
d0 d′0

d1
d0 d′0

d1

d′1

⇑d2 ∙ ∙ ∙

Then for any n-cell u with n > 0,
we can build its unary composite:

comp(Dn, dn−1, d′n−1)[u] D u

This reduces to u itself.

.

L Reduction
“eliminate loops”

Consider a term as follows:

coh(Γ, u, u)[σ] : u[σ] → u[σ]

This “coherence law” says
“u[σ] = u[σ]”.

But this is obvious, and has a
canonical witness:

id(u[σ]) : u[σ] → u[σ]

So it seems reasonable to
eliminate these terms:

coh(Γ, u, u)[σ] L id(u[σ])

.

Examples
comp(Γ, u, v)[σ] P comp(Γ/μ, u[πμ], v[πμ])[σ/μ]

comp(Dn, dn−1, d′n−1)[u] D u
coh(Γ, u, u) L id(u[σ])

To get normalizing reductions, we extend P, D and L to subterms,
and add a single additional rule: never reduce the head of an identity.

I Identity composite. f • id(y) ≡ comp(x y zf g , x, z)[f , id(y)]

 P comp(x yf , x, y)[f]

 D f X

I Left unitor. coh(x yf , id(x) • f , f)

 P coh(x yf , (f), f)

 D coh(x yf , f , f) ≡ id(f) X

I Associator with identity.
αf ,id(y),g ≡ coh(x y z wf g h , (f • g) • h, f • (g • h))[f , id(y), g]

 P coh(x y zf g , (f • id(y)) • g, f • (id(y) • g))[f , g]

 P P coh(x y zf g , (f) • g, f • (g))[f , g]

 D D coh(x y zf g , f • g, f • g)[f , g]

 L id(f • g) X

.

Results

Theorem. Reduction is terminating and has unique normal forms.

Definition. Cattsu is obtained by extending Catt with definitional
equality, defining t = t′ just when t, t′ have the same normal form.

Terms in Cattsu “compute” to their strictly unital normal form.

There is an obvious full projection functor π : Cattp → Cattpsu.

Definition. A strictly unital ∞-category is an ∞-category
(Cattp)op → Set, which factors through π.

Appears to identify more terms than the definition of Batanin,
Cisinski and Weber (arXiv:1209.2776), which has analogues of P

and D, but not L.

Conjecture (WIP). Every ∞-category is weakly equivalent to a
strictly unital ∞-category.

http://arxiv.org/abs/1209.2776

Eckmann-HiltonΓ := {x : ?, s : id(x) → id(x),
t : id(x) → id(x)}

In Γ, the Eckmann-Hilton 3-cell has the following type:

EHs,t : s •1 t → t •1 s

In Cattsu we can construct it as an interchanger u:

⇑s

⇑t
x x D

x x

id

id

⇑s

x x

id

id

⇑t

x x P
x x x

id

id

⇑id

id

id

⇑s

x x x
id

id

⇑t
id

id

⇑id

x x u
→

x x x
id

id

⇑t
id

id

⇑id

x x x
id

id

⇑id

id

id

⇑s

x x P
x x

id

id

⇑t

x x

id

id

⇑s

x x D ⇑t

⇑s
x x

We can also formalize it in Catt, with the following syntax tree:

Catt syntax tree
1224 vertices

Cattsu syntax tree
60 vertices

(20 times
smaller)

=

.]

SyllepsisΔ := {x : ?, s : id(id(x)) → id(id(x)),
t : id(id(x)) → id(id(x))}

In Δ, the Syllepsis 5-cell has the following type:

SYs,t : EHs,t •3 EH−1
t,s → id(s •2 t)

Geometrically, it says “the double braid is isotopic to the identity”.

We can construct it in Cattsu. Its syntax tree has 2,713 vertices:

Cannot yet construct SYs,t in Catt. (Would follow from WIP.)

Estimate Catt SY syntax tree size ∼ 100,000 vertices.

.

Outlook
Path types are not contractible . . .

x y

f

y′ z
g

. . . but they can be carved into contractible pieces.

Can we gain this advantage for Martin-Löf identity types, maybe via
a more geometrical notion of composition?

Could this go some way to alleviate the burden of proof-relevance?

Could these ideas of semistrictness apply beyond path types?

Thanks for listening!

