A Type Theory for Strictly Unital ∞ -Categories

Eric Finster University of Cambridge David Reutter MPI Bonn Jamie Vicary University of Cambridge

arXiv:2007.08307 https://github.com/ericfinster/catt.io

Homotopy Type Theory Electronic Seminar Talks 3 December 2020

Paths modulo units

Consider these cells in some higher structure, like a 2-groupoid:

 $\begin{array}{lll} x:\star & f:x\to x & h:x\to y & \mu:f\to \mathrm{id}(x) & \zeta:h\to j \\ y:\star & g:x\to y & j:x\to y & \nu:g\to h \end{array}$

We might try to compose them as follows:

But wait—aren't these units somehow trivial? Ideally, we would like to:

- ▶ have the type checker accept (I) \checkmark
- ► on request, "inflate" (I) to (II), inserting missing coherences WIP!
- ► on request, "deflate" (II) to (I), removing trivial structure √

Plan for today

- ► Recall Catt, a type theory for weak ∞-categories (Finster & Mimram, arXiv:1706.02866)
- ► Give a reduction relation on terms which "removes unit structure", and show it's confluent and terminating
- ► Define the new type theory Catt_{su}, by using our reduction relation to generate definitional equality for Catt
- ► Models of Catt_{su} are *strictly unital* ∞-*categories*, and we explore their properties
- ► Investigate nontrivial examples, including Eckmann-Hilton and the Syllepsis
- Speculate on possible future application of these ideas to Martin-Löf identity types

Catt overview

- *Contexts* Γ, Δ, \ldots are lists $\Gamma \vdash$ " Γ is the generating data of variables-with-types: for a free ∞ -category $\widetilde{\Gamma}$ "
- "in $\widetilde{\Gamma}$, there is a hom-set A" $\Gamma \vdash A$ Types A, B, C, \ldots are trivial, or pairs of parallel terms:

* $u \rightarrow v$

 $x:A, y:B,\ldots, z:C$

"in Γ , there is a morphism t *Terms* t, u, v, \ldots are variables, $\Gamma \vdash t : A$ coherences, or composites: in the hom-set A"

x $\operatorname{coh}(\Gamma:A)[\sigma]$ $\operatorname{comp}(\Gamma:A)[\sigma]$

"there is a strict ∞ -functor Substitutions $\sigma: \Gamma \to \Delta$ are $\Delta \vdash \sigma: \Gamma$ $\sigma: \widetilde{\Gamma} \to \widetilde{\Lambda}$ " functions $\sigma : \operatorname{var}(\Gamma) \to \operatorname{tm}(\Delta)$

No definitional equality—"Catt does not compute".

Catt pasting contexts

In Catt we can characterize the pasting contexts inductively. We can illustrate this with *Batanin trees*.

 $\Gamma = x:\star, \ y:\star, \ f:x \to y, \ g:x \to y, \ \mu:f \to g, \ h:x \to y, \ \nu:g \to h, \ z:\star, \ j:y \to z$

We can also define the *boundaries* ∂^{\pm} of a pasting context, in this case:

$$\partial^{+} = \{ x : \star, \ y : \star, \ h : x \to y, \ z : \star, \ j : y \to z \} \qquad x \xrightarrow{h} y \xrightarrow{j} z$$
$$\partial^{-} = \{ x : \star, \ y : \star, \ f : x \to y, \ z : \star, \ j : y \to z \} \qquad x \xrightarrow{f} y \xrightarrow{j} z$$

Catt term construction

"in a pasting context, parallel full terms can be filled"

We can construct terms as follows, when Γ is a pasting context:

$$\frac{\partial^{-}(\Gamma) \vdash u : A \quad \partial^{+}(\Gamma) \vdash v : A}{\Gamma \vdash \mathsf{comp}(\Gamma, u, v) : u \to v}$$

Side condition: u, v are "full", using every variable of their contexts.

This is a conceptually profound idea.

Catt term construction

"in a pasting context, parallel full terms can be filled" We can construct terms as follows, when Γ is a pasting context:

$$\frac{\partial^{-}(\Gamma) \vdash u : A \quad \partial^{+}(\Gamma) \vdash v : A}{\Gamma \vdash \mathsf{comp}(\Gamma, u, v) : u \to v} \qquad \qquad \frac{\Gamma \vdash u : A \quad \Gamma \vdash v : A}{\Gamma \vdash \mathsf{coh}(\Gamma, u, v) : u \to v}$$

Side condition: u, v are "full", using every variable of their contexts.

Catt term construction

"in a pasting context, parallel full terms can be filled"

We can construct terms as follows, when Γ is a pasting context:

$$\frac{\partial^{-}(\Gamma) \vdash u : A \quad \partial^{+}(\Gamma) \vdash v : A}{\Gamma \vdash \mathsf{comp}(\Gamma, u, v) : u \to v} \qquad \qquad \frac{\Gamma \vdash u : A \quad \Gamma \vdash v : A}{\Gamma \vdash \mathsf{coh}(\Gamma, u, v) : u \to v}$$

Side condition: u, v are "full", using every variable of their contexts.

Here are some examples:

- ► comp $(x \xrightarrow{f} y \xrightarrow{g} z, x, z) : x \to z$ gives the binary composite $f \bullet g$
- $\operatorname{comp}(x \xrightarrow{f} y, x, y) : x \to y$ gives the unary composite (f)
- ► $\operatorname{coh}(x, x, x) : x \to x$ gives the identity 1-cell $\operatorname{id}(x)$

To obtain richer terms, we can substitute:

- ► comp $(x \xrightarrow{f} y \xrightarrow{g} z, x, z)[p, q]$ gives the binary composite $p \bullet q$
- $\operatorname{coh}(x \xrightarrow{f} y, \operatorname{id}(x) \bullet f, f)$ gives the unitor λ_f
- ► $\operatorname{coh}(x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w, (f \bullet g) \bullet h, f \bullet (g \bullet h))$ gives associator $\alpha_{f,g,h}$

Every Catt term is a variable, a composite, or a coherence:

$$x \qquad \operatorname{comp}(\Gamma, u, v)[\sigma] \qquad \operatorname{coh}(\Gamma, u, v)[\sigma]$$

Globular sums

"pasting contexts are colimits of disks"

Definition. The category Catt^p has pasting contexts as objects, and substitutions as morphisms.

Theorem. In Catt^P, pasting contexts are colimits of locally-maximal disks ("globular sums").

Definition. An ∞ -category is a presheaf (Catt^p)^{op} \rightarrow Set preserving globular sums.

Known to agree with the definition of *contractible* ∞ -*category* (Grothendieck, Maltsiniotis, Batanin, Leinster, Brunerie) via recent work of Dmitri Ara, John Bourke and Thibaut Benjamin.

Lightweight approach:

- no globular extension technology (Grothendieck/Maltsiniotis)
- no globular operad technology (Batanin/Leinster)

P Reduction

"prune identity arguments of a comp or coh"

Suppose $\mu \in var(\Gamma)$ is locally maximal, with $\mu[\sigma]$ an identity. Then σ factorizes via Γ/μ , with $\mu[\pi_{\mu}] = id$:

The intuition is that μ has been collapsed, or "pruned". We define the reduction as follows:

$$\begin{array}{l} \operatorname{comp}(\Gamma, u, \nu)[\sigma] \rightsquigarrow_{\mathrm{P}} \operatorname{comp}(\Gamma/\mu, u[\pi_{\mu}], \nu[\pi_{\mu}])[\sigma/\mu] \\ \operatorname{coh}(\Gamma, u, \nu)[\sigma] \rightsquigarrow_{\mathrm{P}} \operatorname{coh}(\Gamma/\mu, u[\pi_{\mu}], \nu[\pi_{\mu}])[\sigma/\mu] \end{array}$$

D Reduction

"simplify unary composites"

We define the *n*-sphere type S^n and the *n*-disk context D^n recursively:

$$D^{0} := \{d_{0} : S^{-1}\}$$

$$D^{n+1} := \{D^{n}, d'_{n} : S^{n-1}, d_{n+1} : S^{n}\}$$

$$S^{-1} := \star$$

$$S^{n} := d_{n} \rightarrow d'_{n}$$

$$d_{0} \qquad d_{0} \xrightarrow{d_{1}} d'_{0} \qquad \underbrace{d'_{1}}_{d_{0} \uparrow d_{2}} d'_{0} \qquad \dots$$

Then for any *n*-cell *u* with n > 0, we can build its *unary composite*:

$$\mathsf{comp}(D^n, d_{n-1}, d_{n-1}')[u] \leadsto_{\mathsf{D}} u$$

This reduces to *u* itself.

L Reduction

"eliminate loops"

Consider a term as follows:

 $\mathsf{coh}(\Gamma, u, u)[\sigma]: u[\sigma] \to u[\sigma]$

This "coherence law" says " $u[\sigma] = u[\sigma]$ ".

But this is obvious, and has a canonical witness: id(x[-1]) = x[-1] = x[-1]

 $\mathrm{id}(u[\sigma]): u[\sigma] \to u[\sigma]$

So it seems reasonable to eliminate these terms:

 $\mathsf{coh}(\Gamma, u, u)[\sigma] \leadsto_{\mathsf{L}} \mathsf{id}(u[\sigma])$

Examples ...

$$\begin{array}{c} \operatorname{comp}(\Gamma, u, \nu)[\sigma] \rightsquigarrow_{\mathrm{P}} \operatorname{comp}(\Gamma/\mu, u[\pi_{\mu}], \nu[\pi_{\mu}])[\sigma/\mu] \\ \operatorname{omp}(D^{n}, d_{n-1}, d'_{n-1})[u] \rightsquigarrow_{\mathrm{D}} u \\ \operatorname{coh}(\Gamma, u, u) \rightsquigarrow_{\mathrm{L}} \operatorname{id}(u[\sigma]) \end{array}$$

To get normalizing reductions, we extend \rightsquigarrow_P , \rightsquigarrow_D and \rightsquigarrow_L to subterms, and add a single additional rule: never reduce the head of an identity.

► Identity composite.
$$f \bullet id(y) \equiv comp(x \xrightarrow{f} y \xrightarrow{g} z, x, z)[f, id(y)]$$

 $\sim p comp(x \xrightarrow{f} y, x, y)[f]$
 $\sim D f \checkmark$

► Left unitor:
$$\operatorname{coh}(x \xrightarrow{f} y, \operatorname{id}(x) \bullet f, f)$$

 $\rightsquigarrow_{\mathrm{P}} \operatorname{coh}(x \xrightarrow{f} y, (f), f)$
 $\rightsquigarrow_{\mathrm{D}} \operatorname{coh}(x \xrightarrow{f} y, f, f) \equiv \operatorname{id}(f) \checkmark$

• Associator with identity.

$$\begin{split} \alpha_{f,\mathrm{id}(y),g} &\equiv \mathrm{coh}(x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w, (f \bullet g) \bullet h, f \bullet (g \bullet h))[f,\mathrm{id}(y),g] \\ & \rightsquigarrow_{\mathrm{P}} \mathrm{coh}(x \xrightarrow{f} y \xrightarrow{g} z, (f \bullet \mathrm{id}(y)) \bullet g, f \bullet (\mathrm{id}(y) \bullet g))[f,g] \\ & \rightsquigarrow_{\mathrm{P}} \rightsquigarrow_{\mathrm{P}} \mathrm{coh}(x \xrightarrow{f} y \xrightarrow{g} z, (f) \bullet g, f \bullet (g))[f,g] \\ & \rightsquigarrow_{\mathrm{D}} \sim \longrightarrow_{\mathrm{D}} \mathrm{coh}(x \xrightarrow{f} y \xrightarrow{g} z, f \bullet g, f \bullet g)[f,g] \\ & \sim_{\mathrm{L}} \mathrm{id}(f \bullet g) \quad \checkmark \end{split}$$

Results

Theorem. Reduction is terminating and has unique normal forms. **Definition.** Catt_{su} is obtained by extending Catt with definitional equality, defining t = t' just when t, t' have the same normal form. Terms in Catt_{su} "compute" to their strictly unital normal form.

There is an obvious full projection functor $\pi : Catt^{p} \rightarrow Catt^{p}_{su}$.

Definition. A *strictly unital* ∞ -category is an ∞ -category (Catt^p)^{op} \rightarrow Set, which factors through π .

Appears to identify *more* terms than the definition of Batanin, Cisinski and Weber (arXiv:1209.2776), which has analogues of \rightsquigarrow_P and \rightsquigarrow_D , but not \rightsquigarrow_L .

Conjecture (WIP). Every ∞ -category is weakly equivalent to a strictly unital ∞ -category.

$\Gamma := \{ x : \star, s : id(x) \to id(x), \\ t : id(x) \to id(x) \}$ **Eckmann-Hilton**

In Γ , the *Eckmann-Hilton 3-cell* has the following type:

 $\mathsf{EH}_{s,t}: s \bullet_1 t \to t \bullet_1 s$

In $Catt_{su}$ we can construct it as an interchanger *u*:

We can also formalize it in Catt, with the following syntax tree:

Catt syntax tree 1224 vertices

Catt_{su} syntax tree 60 vertices (20 times smaller)

$$\Delta := \{x : \star, s : \mathrm{id}(\mathrm{id}(x)) \to \mathrm{id}(\mathrm{id}(x)), \\ t : \mathrm{id}(\mathrm{id}(x)) \to \mathrm{id}(\mathrm{id}(x))\}$$
Syllepsis

In Δ , the *Syllepsis 5-cell* has the following type:

$$\mathsf{SY}_{s,t}: \mathsf{EH}_{s,t} \bullet_3 \mathsf{EH}_{t,s}^{-1} \to \mathrm{id}(s \bullet_2 t)$$

Geometrically, it says "the double braid is isotopic to the identity".

We can construct it in $Catt_{su}$. Its syntax tree has 2,713 vertices:

Cannot yet construct SY_{*s*,*t*} in Catt. (Would follow from WIP.) Estimate Catt SY syntax tree size \sim 100,000 vertices.

Outlook

Path types are *not* contractible . . .

. . . but they can be carved into contractible pieces.

Can we gain this advantage for Martin-Löf identity types, maybe via a more geometrical notion of composition?

Could this go some way to alleviate the burden of proof-relevance?

Could these ideas of semistrictness apply beyond path types?

Thanks for listening!