A Type Theory for Strictly Unital ∞-Categories

Eric Finster	David Reutter	Jamie Vicary
University of Cambridge MPI Bonn	University of Cambridge	

arXiv:2007.08307
https://github.com/ericfinster/catt.io

Homotopy Type Theory Electronic Seminar Talks 3 December 2020

Paths modulo units

Consider these cells in some higher structure, like a 2-groupoid:

$$
\begin{array}{lllll}
x: \star & f: x \rightarrow x & h: x \rightarrow y & \mu: f \rightarrow \operatorname{id}(x) & \zeta: h \rightarrow j \\
y: \star & g: x \rightarrow y & j: x \rightarrow y & \nu: g \rightarrow h
\end{array}
$$

We might try to compose them as follows:

Simple, but invalid

$$
\left(\mu \bullet_{0} \nu\right) \bullet_{1} \operatorname{coh} \bullet_{1} \zeta
$$

Verbose, but correct

But wait—aren't these units somehow trivial? Ideally, we would like to:

- have the type checker accept (I)
- on request, "inflate" (I) to (II), inserting missing coherences WIP!
- on request, "deflate" (II) to (I), removing trivial structure

Plan for today

- Recall Catt, a type theory for weak ∞-categories (Finster \& Mimram, arXiv:1706.02866)
- Give a reduction relation on terms which "removes unit structure", and show it's confluent and terminating
- Define the new type theory Catt $_{\text {su }}$, by using our reduction relation to generate definitional equality for Catt
- Models of Catt $_{\text {su }}$ are strictly unital ∞-categories, and we explore their properties
- Investigate nontrivial examples, including Eckmann-Hilton and the Syllepsis
- Speculate on possible future application of these ideas to Martin-Löf identity types

Catt overview

Contexts Γ, Δ, \ldots are lists $\quad \Gamma \vdash$ of variables-with-types:

$$
x: A, y: B, \ldots, z: C
$$

Types A, B, C, \ldots are trivial, $\quad \Gamma \vdash A$ or pairs of parallel terms:

$$
\star \quad u \rightarrow v
$$

Terms t, u, v, \ldots are variables, $\quad \Gamma \vdash t: A$ coherences, or composites:
$x \quad \operatorname{coh}(\Gamma: A)[\sigma] \quad \operatorname{comp}(\Gamma: A)[\sigma]$
Substitutions $\sigma: \Gamma \rightarrow \Delta$ are $\quad \Delta \vdash \sigma: \Gamma \quad$ "there is a strict ∞-functor functions $\sigma: \operatorname{var}(\Gamma) \rightarrow \operatorname{tm}(\Delta)$
" Γ is the generating data for a free ∞-category $\widetilde{\Gamma}$ "
"in $\widetilde{\Gamma}$, there is a hom-set A "
"in $\widetilde{\Gamma}$, there is a morphism t in the hom-set A " $\sigma: \widetilde{\Gamma} \rightarrow \widetilde{\Delta}$ "

No definitional equality-"Catt does not compute".

Catt pasting contexts

In Catt we can characterize the pasting contexts inductively.
We can illustrate this with Batanin trees.

Leaf variables μ, ν, j have locally maximal dimension

$\Gamma=x: \star, y: \star, f: x \rightarrow y, g: x \rightarrow y, \mu: f \rightarrow g, h: x \rightarrow y, \nu: g \rightarrow h, z: \star, j: y \rightarrow z$
We can also define the boundaries $\partial^{ \pm}$of a pasting context, in this case:

$$
\begin{array}{ll}
\partial^{+}=\{x: \star, y: \star, h: x \rightarrow y, z: \star, j: y \rightarrow z\} & x \xrightarrow{h} y \xrightarrow{j} z \\
\partial^{-}=\{x: \star, y: \star, f: x \rightarrow y, z: \star, j: y \rightarrow z\} & x \xrightarrow{f} y \xrightarrow{j} z
\end{array}
$$

Catt term construction

"in a pasting context, parallel full terms can be filled"
We can construct terms as follows, when Γ is a pasting context:

$$
\frac{\partial^{-}(\Gamma) \vdash u: A \quad \partial^{+}(\Gamma) \vdash v: A}{\Gamma \vdash \operatorname{comp}(\Gamma, u, v): u \rightarrow v}
$$

Side condition: u, v are "full", using every variable of their contexts.

This is a conceptually profound idea.

Catt term construction

"in a pasting context, parallel full terms can be filled"
We can construct terms as follows, when Γ is a pasting context:

$$
\frac{\partial^{-}(\Gamma) \vdash u: A \quad \partial^{+}(\Gamma) \vdash v: A}{\Gamma \vdash \operatorname{comp}(\Gamma, u, v): u \rightarrow v} \quad \frac{\Gamma \vdash u: A \quad \Gamma \vdash v: A}{\Gamma \vdash \operatorname{coh}(\Gamma, u, v): u \rightarrow v}
$$

Side condition: u, v are "full", using every variable of their contexts.

Catt term construction

"in a pasting context, parallel full terms can be filled"
We can construct terms as follows, when Γ is a pasting context:

$$
\frac{\partial^{-}(\Gamma) \vdash u: A \quad \partial^{+}(\Gamma) \vdash v: A}{\Gamma \vdash \operatorname{comp}(\Gamma, u, v): u \rightarrow v}
$$

$$
\frac{\Gamma \vdash u: A \quad \Gamma \vdash v: A}{\Gamma \vdash \operatorname{coh}(\Gamma, u, v): u \rightarrow v}
$$

Side condition: u, v are "full", using every variable of their contexts.
Here are some examples:

- $\operatorname{comp}(x \xrightarrow{f} y \xrightarrow{g} z, x, z): x \rightarrow z$ gives the binary composite $f \bullet g$
- comp $(x \xrightarrow{f} y, x, y): x \rightarrow y$ gives the unary composite (f)
- $\operatorname{coh}(x, x, x): x \rightarrow x$ gives the identity 1-cell id (x)

To obtain richer terms, we can substitute:

- $\operatorname{comp}(x \xrightarrow{f} y \xrightarrow{g} z, x, z)[p, q]$ gives the binary composite $p \bullet q$
- $\operatorname{coh}(x \xrightarrow{f} y, \operatorname{id}(x) \bullet f, f)$ gives the unitor λ_{f}
- $\operatorname{coh}(x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w,(f \bullet g) \bullet h, f \bullet(g \bullet h))$ gives associator $\alpha_{f, g, h}$

Every Catt term is a variable, a composite, or a coherence:

Globular sums

"pasting contexts are colimits of disks"

Definition. The category Catt ${ }^{\mathrm{p}}$ has pasting contexts as objects, and substitutions as morphisms.
Theorem. In Catt ${ }^{\mathrm{p}}$, pasting contexts are colimits of locally-maximal disks ("globular sums").

Definition. An ∞-category is a presheaf $\left(\mathrm{Catt}^{\mathrm{p}}\right)^{\text {op }} \rightarrow$ Set preserving globular sums.

Known to agree with the definition of contractible ∞-category (Grothendieck, Maltsiniotis, Batanin, Leinster, Brunerie) via recent work of Dmitri Ara, John Bourke and Thibaut Benjamin.
Lightweight approach:

- no globular extension technology (Grothendieck/Maltsiniotis)
- no globular operad technology (Batanin/Leinster)

P Reduction

"prune identity arguments of a comp or coh"
Suppose $\mu \in \operatorname{var}(\Gamma)$ is locally maximal, with $\mu[\sigma]$ an identity.
Then σ factorizes via Γ / μ, with $\mu\left[\pi_{\mu}\right]=\mathrm{id}$:

The intuition is that μ has been collapsed, or "pruned".
We define the reduction as follows:

$$
\begin{gathered}
\operatorname{comp}(\Gamma, u, v)[\sigma] \rightsquigarrow_{\mathrm{p}} \operatorname{comp}\left(\Gamma / \mu, u\left[\pi_{\mu}\right], v\left[\pi_{\mu}\right]\right)[\sigma / \mu] \\
\operatorname{coh}(\Gamma, u, v)[\sigma] \rightsquigarrow_{\mathrm{p}} \operatorname{coh}\left(\Gamma / \mu, u\left[\pi_{\mu}\right], v\left[\pi_{\mu}\right]\right)[\sigma / \mu]
\end{gathered}
$$

D Reduction

"simplify unary composites"
We define the n-sphere type S^{n} and the n-disk context D^{n} recursively:

$$
\begin{aligned}
& D^{0}:=\left\{d_{0}: S^{-1}\right\} \\
& \mathrm{D}^{n+1}:=\left\{\mathrm{D}^{n}, d_{n}^{\prime}: S^{n-1}, d_{n+1}: S^{n}\right\} \\
& S^{-1}:=\star \\
& S^{n}:=d_{n} \rightarrow d_{n}^{\prime} \\
& d_{0} \quad d_{0} \xrightarrow[d_{1}]{\longrightarrow} d_{0}^{\prime} \quad \underbrace{d_{0} \Uparrow d_{2}}_{d_{1}}
\end{aligned}
$$

Then for any n-cell u with $n>0$, we can build its unary composite:

$$
\operatorname{comp}\left(D^{n}, d_{n-1}, d_{n-1}^{\prime}\right)[u] \rightsquigarrow_{\mathrm{D}} u
$$

L Reduction

"eliminate loops"
Consider a term as follows:

$$
\operatorname{coh}(\Gamma, u, u)[\sigma]: u[\sigma] \rightarrow u[\sigma]
$$

This "coherence law" says
$" u[\sigma]=u[\sigma]$ ".
But this is obvious, and has a canonical witness:

$$
\operatorname{id}(u[\sigma]): u[\sigma] \rightarrow u[\sigma]
$$

So it seems reasonable to eliminate these terms:

$$
\operatorname{coh}(\Gamma, u, u)[\sigma] \rightsquigarrow_{\mathrm{L}} \operatorname{id}(u[\sigma])
$$

This reduces to u itself.

Examples

$$
\operatorname{comp}(\Gamma, u, v)[\sigma] \rightsquigarrow \mathrm{p} \operatorname{comp}\left(\Gamma / \mu, u\left[\pi_{\mu}\right], v\left[\pi_{\mu}\right]\right)[\sigma / \mu]
$$

$$
\operatorname{comp}\left(D^{n}, d_{n-1}, d_{n-1}^{\prime}\right)[u] \rightsquigarrow_{\mathrm{D}} u
$$

$$
\operatorname{coh}(\Gamma, u, u) \rightsquigarrow_{\mathrm{L}} \operatorname{id}(u[\sigma])
$$

 and add a single additional rule: never reduce the head of an identity.

- Identity composite. $\quad f \bullet \operatorname{id}(y) \equiv \operatorname{comp}(x \xrightarrow{f} y \xrightarrow{g} z, x, z)[f, \operatorname{id}(y)]$
$\rightsquigarrow_{\mathrm{p}} \operatorname{comp}(x \xrightarrow{f} y, x, y)[f]$
$\rightsquigarrow_{\mathrm{D}} f$
- Left unitor. $\quad \operatorname{coh}(x \xrightarrow{f} y, \operatorname{id}(x) \bullet f, f)$

$$
\begin{aligned}
& \rightsquigarrow_{\mathrm{p}} \operatorname{coh}(x \xrightarrow{f} y,(f), f) \\
& \rightsquigarrow_{\mathrm{D}} \operatorname{coh}(x \xrightarrow{f} y, f, f) \equiv \operatorname{id}(f)
\end{aligned}
$$

- Associator with identity.

$$
\begin{aligned}
& \alpha_{f, \operatorname{id}(y), g} \equiv \operatorname{coh}(x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w,(f \bullet g) \bullet h, f \bullet(g \bullet h))[f, \operatorname{id}(y), g] \\
& \rightsquigarrow_{\mathrm{p}} \operatorname{coh}(x \xrightarrow{\stackrel{f}{\rightarrow} y \xrightarrow{g} z,(f \bullet \operatorname{id}(y)) \bullet g, f \bullet(\operatorname{id}(y) \bullet g))[f, g]} \\
& \rightsquigarrow \mathrm{p}^{2} \mathrm{p}_{\mathrm{p}} \operatorname{coh}(x \xrightarrow{f} y \xrightarrow{g} z,(f) \bullet g, f \bullet(g))[f, g] \\
& \rightsquigarrow_{\mathrm{D}} \rightsquigarrow_{\mathrm{D}} \operatorname{coh}(x \xrightarrow{f} y \xrightarrow{g} z, f \bullet g, f \bullet g)[f, g] \\
& \rightsquigarrow_{\mathrm{L}} \operatorname{id}(f \bullet g)
\end{aligned}
$$

Results

Theorem. Reduction is terminating and has unique normal forms.
Definition. Catt $_{\text {su }}$ is obtained by extending Catt with definitional equality, defining $t=t^{\prime}$ just when t, t^{\prime} have the same normal form.

Terms in Catt ${ }_{\text {su }}$ "compute" to their strictly unital normal form.
There is an obvious full projection functor π : Catt $^{p} \rightarrow$ Catt $_{\text {su }}^{p}$.
Definition. A strictly unital ∞-category is an ∞-category $\left(\text { Catt }^{\mathrm{p}}\right)^{\mathrm{op}} \rightarrow$ Set, which factors through π.
Appears to identify more terms than the definition of Batanin, Cisinski and Weber (arXiv:1209.2776), which has analogues of $\rightsquigarrow p$ and $\rightsquigarrow_{\mathrm{D}}$, but not $\rightsquigarrow_{\mathrm{L}}$.

Conjecture (WIP). Every ∞-category is weakly equivalent to a strictly unital ∞-category.
$\Gamma:=\substack{\{x: \star, s: \operatorname{did}(x) \rightarrow \operatorname{id}(x), t: i d(x) \rightarrow \operatorname{id}(x)\}}$ Eckmann-Hilton
In Γ, the Eckmann-Hilton 3-cell has the following type:

$$
\mathrm{EH}_{s, t}: s \bullet_{1} t \rightarrow t \bullet_{1} s
$$

In Catt ${ }_{\text {su }}$ we can construct it as an interchanger u :

We can also formalize it in Catt, with the following syntax tree:

Catt syntax tree 1224 vertices

Catt $_{\text {su }}$ syntax tree 60 vertices
(20 times smaller)
$\Delta:=\underset{\substack{\{x: \star, s: \operatorname{idd}(\operatorname{id}(x)) \rightarrow \operatorname{id}(\mathrm{id}(x)), t: \operatorname{id}(\operatorname{id}(x)) \rightarrow \operatorname{id}(\operatorname{id}(x))\}}}{ } \quad$ Syllepsis

In Δ, the Syllepsis 5 -cell has the following type:

$$
\mathrm{SY}_{s, t}: \mathrm{EH}_{s, t} \bullet_{3} \mathrm{EH}_{t, s}^{-1} \rightarrow \operatorname{id}\left(s \bullet_{2} t\right)
$$

Geometrically, it says "the double braid is isotopic to the identity".

We can construct it in Catt su . Its syntax tree has 2,713 vertices:

Cannot yet construct $\mathrm{SY}_{s, t}$ in Catt. (Would follow from WIP.)
Estimate Catt SY syntax tree size $\sim 100,000$ vertices.

Outlook

Path types are not contractible . . .

. . . but they can be carved into contractible pieces.
Can we gain this advantage for Martin-Löf identity types, maybe via a more geometrical notion of composition?

Could this go some way to alleviate the burden of proof-relevance?
Could these ideas of semistrictness apply beyond path types?

