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In extensional type theory, we only have one notion of equality to
worry about. We interpret it in a locally cartesian closed category
as follows.

I Contexts B are interpreted as objects of the category.

I Types in context B are interpreted as maps E ! B .

I Terms are interpreted as sections B ! E (we will also refer to
sections as points).

I The lcc believes two terms are equal exactly when they are
interpreted as the same map in the lcc.

I Hence if a type is an h-proposition it has at most one section.

I Propositional truncation “strictly identifies points.”
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In homotopical models of intensional type theory, such as cubical
sets, things are not as simple.

The category of cubical sets, Set⇤
op

is a locally cartesian closed
category, so is a model of extensional type theory, but also has a
notion of homotopy which is important for modelling HoTT.

Definition

We say two maps s, t : B ! E are homotopic if there is a map h in
the commutative diagram below:

B

B ⇥ I E

B

s

h

t
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I Types in context B are interpreted as Kan fibrations E ! B

(a map together with “Kan fibration structure”).

I Terms are interpreted as sections B ! E , as before.

I Definitionally equal terms are interpreted as equal sections.

I Two terms s, t : B ! E are propositionally equal if they are
homotopic.

I Hence h-propositions can have multiple sections, as long as
any two are homotopic.
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Typically propositional truncation does not strictly identify points:

I In cubical sets the map |� | : E ! kEk is always a
monomorphism.

I By Kraus’ paradox there are examples of types E such that
|� | : E ! kEk is interpreted as a monomorphism in every

model of HoTT (e.g. any E with decidable equality).
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We can better understand h-propositions using some arguments
due to Uemura, using the string of adjunctions between sets and
cubical sets:

Set Set⇤
op

�

r

?

?
�

I � sends each a set A to the constant cubical set (only points,
no paths or homotopies).

I For a cubical set E , �E is the set of global sections (points of
the space).

I r maps into h-propositions.
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Theorem

Let p : E ! B be a Kan fibration in cubical sets. If kEkB ! B has

a section, then so does the map �E ! �B .

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Corollary

Let p : X ⇣ Y be a surjection in Set. If k�XkB ! �Y is

equivalent to a monomorphism, then p has a section. Hence if

every h-proposition is equivalent to a monomorphism we deduce

the axiom of choice.

Corollary

Suppose that cubical sets have a (homotopy) subobject classifier,

and that power sets exist. Then we can deduce the law of excluded

middle.
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Definition

We say a monomorphism m : A ! B in a locally cartesian closed
category is extensional if the following holds in the internal
language: Y

b,b0:B

(Ab $ Ab0) ! b = b
0

Theorem

Suppose that p : E ! B is both a monomorphism and a Kan

fibration, and that �(p) : �(E ) ! �(B) is a pullback of some

extensional monomorphism m : X ! Y . Then p is a pullback of

�(m) : �(X ) ! �(Y ).
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Corollary

Suppose that 1 ! ⌦ is the subobject classifier in Set. Then every

p : E ! B which is both a monomorphism and Kan fibration is a

pullback of 1 ! �(⌦).

We see that the classifier for monic fibrations not only exists, but
is preserved by �.



Although monomorphisms are well behaved semantically, there
does not seem to be any way to talk about them internally in type
theory. One way to fix this is to augment type theory with a type
of strict propositions as developed by Gilbert, Cockx, Sozeau and
Tabareau.

For this work we take an alternative approach of restricting to a
subclass of h-propositions that is very easy to define internally in
HoTT.



Definition

A type P is ¬¬-stable if it is an h-proposition and ¬¬P ! P .

We can think of double negation as “removing computational
information from a proposition.”

For example, writing RH for the Riemann hypothesis, RH + ¬RH
is an h-proposition (because RH can’t be both true and false) but
to prove it constructively, we need to either provide a proof of RH
or provide a proof of ¬RH, i.e. the computational information that
tells us whether RH is true or false. On the other hand
¬¬(RH + ¬RH) is just provable without needing to show which
one holds.

With care, we can ensure that RH + ¬RH is interpreted as a
monomorphism in Set⇤

op
.



Theorem

Suppose that E ! B is a ¬¬-stable h-proposition in Set⇤
op
. Then

it is equivalent to a monomorphism.

Proof.

Sketch: By assumption E is equivalent to ¬¬E (in context B), so
it su�ces to show ¬¬E is interpreted as a monomorphism
¬¬E ! B . When we interpret exponentials in HoTT into cubical
type theory, we just use the underlying locally cartesian closed
structure of cubical sets. Also we interpret ? as the initial object
in the usual sense. Hence it su�ces to show ¬¬E ! B is an
h-proposition in extensional type theory, which it is.
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We now have three di↵erent notions of proposition in cubical sets:

h-propositions ◆ monos ◆ ¬¬-stable monos

1. H-propositions are spaces where any two points are joined by
a path, any two paths by a homotopy, etc

2. Monomorphisms have no homotopical structure but can carry
computational information (we can’t prove P + ¬P without
assuming excluded middle in Set)

3. ¬¬-stable monomorphisms have no homotopical structure or
computational information.

Either 2 or 3 can be used to implement strict propositions.

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



By the same arguments as earlier,

Theorem

Suppose that ⌦¬¬ is a classifier for ¬¬-stable monomorphisms in

Set. Then �(⌦¬¬) is a classifier for ¬¬-stable h-propositions in

cubical sets.

A classifier for ¬¬-stable h-propositions su�ces for many
constructions in type theory, including:

I The Dedekind real numbers.

I To formulate Extended Church’s Thesis (all partial functions
are computable), and prove its consistency.

I To construct the modality of 0-truncated ¬¬-sheafification.
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Recall that we can define the Dedekind real numbers as the
collection of all left cuts:

Definition

A Dedekind left cut is a set L ✓ Q satisfying:

1. (Boundedness) There exist rational numbers a 2 L and b /2 L.

2. (Openness) For all a 2 L there merely exists b 2 L such that
b > a.

3. (Locatedness) For all a < b 2 Q either a 2 L or b /2 L.
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Left cuts do not need to be ¬¬-stable, so in order to construct the
Dedekind reals, we switch to the dual notion of cocut:

Definition

A cocut is a set C ✓ Q satisfying:

1. (Boundedness) There exist rational numbers a /2 C and b 2 C .

2. (Closedness) For all a 2 Q, if b 2 C for all b > a, then a 2 C .

3. (Locatedness) For all a < b 2 Q either a /2 C or b 2 C .
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Theorem

Suppose that there is a classifier for all ¬¬-stable h-propositions.

Then the type of Dedekind real numbers exists.

Proof.

I Using ⌦¬¬ we can construct the type of all cocuts.

I Every left cut is of the form L = {a 2 Q | 9b 2 Q \ C a < b}
for a unique cocut C .
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Side remark: in fact we don’t need the full power of ¬¬-resizing in
our metatheory: We can show that Set⇤

op
has Dedekind real

numbers only using the fact that we are working in a locally
cartesian closed category with natural number object.

Theorem

MLTT� +UA+ RD has the same consistency strength as

MLTT� +UA, where MLTT�
is Martin-Löf type theory without

W -types, UA is the univalence axiom and RD asserts the existence

of the Dedekind reals.

Open Problem

What is the consistency strength of MLTT� +UA+ RHIT , where

RHIT is the existence of the HIT reals as defined in Chapter 11 of

the HoTT book?
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Theorem (Swan, Uemura)

There is a reflective subuniverse of cubical assemblies that satisfies

Church’s thesis.

In many cases we don’t want to just consider total computable,
but also partial computable functions. Because of this, it’s
common in constructive mathematics to consider a stronger
version of Church’s thesis that applies also to partial functions.
We will use ⌦¬¬ to first define what we mean by partial function.
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Definition

For a type A, we define @A, the type of ¬¬-stable partial elements
to consist of pairs p,↵, where p : ⌦¬¬ and f : p ! A. For
↵ = (p, f ) : @A, we write ↵# to mean p is true, and write ↵ #= a

to mean p is true and f ⇤ = a.

In particular, note that we can think of maps A ! @B as partial
functions A + B . This allows us to formulate the stronger version
of Church’s thesis.



Definition

The axiom of extended Church’s thesis (ECT) states that for every
map f : N ! @N there is a natural number e : N such that
whenever f (n)#, we have 'e(n) = f (n).

Note that this doesn’t talk about which partial functions are equal

to a computable function, but rather the partial functions that are
extended by some computable function.



Theorem

There is a reflective subuniverse of cubical assemblies that satisfies

Extended Church’s thesis. Hence ECT is consistent HoTT.

Key ideas: Largely this follows the same outline as the earlier proof
for Church’s thesis, namely:

1. We take the largest reflective subuniverse that forces ECT to
be true.

2. We use the fact that ECT holds in assemblies to ensure the
subuniverse is non trivial.

In order for this to work, it is important that we can closely relate
the statement of ECT in assemblies with the statement of ECT in
cubical assemblies. This uses the fact that � : Asm ! Asm⇤op

preserves all the type formers used to state ECT except
truncation. In particular the proof requires that � preserves the
classifier for ¬¬-stable h-propositions.



Definition

A modal operator is a map � : U ! U together with a family of
maps ⌘A : A ! �A that we call the unit maps.
We say a type A is �-modal or �-stable if ⌘A is an equivalence.

Definition (Rijke, Shulman, Spitters)

A (uniquely eliminating) modality is a modal operator �, ⌘ such
that for every A, the map

� � ⌘A :
Y

z:�A

�(P(z)) !
Y

x :A

�(P(⌘A(x)))

is an equivalence for every P : �A ! U .
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Earlier we stated that double negation “erases computational
information.” However, in fact it does two things: it erases
information and it truncates: ¬¬A is always an h-proposition for
any type A. We can think of ¬¬-sheafification as a generalisation
of double negation to arbitrary (untruncated) types.

Usually we would define it as follows:

Definition

An h-proposition P is ¬¬-dense if ¬¬P is true.
¬¬-sheafification is the smallest modality r such that every
¬¬-dense h-proposition is r-connected. That is,
¬¬P ! rP ' 1.

Rijke, Shulman and Spitters showed r can be constructed as a
HIT, as long as we have propositional resizing.



We can define 0-truncated ¬¬-sheafification only using ⌦¬¬ by a
standard construction in (1-)topos theory. This is enough to
generalise double negation from h-propositions to h-sets.

Definition

For a type A, we define r0A to consist of ¬¬-stable subsets of A,
c : A ! ⌦¬¬ with the properties:

1. c is not empty: ¬¬
P

a:A c(a)

2. c has at most one element up to double negation:Q
a,b:A c(a) ! c(b) ! ¬¬a = b

Theorem

r0 : U ! U reflects onto types that are both 0-truncated and

¬¬-sheaves.



We think of r0A as the result of stripping computational
information from a set without adding paths between its points.
We can use it to formulate objects in type theory that we can
explicitly define but not compute.
To make this precise, first note that we can define elements of
r0A by cases like in classical logic:

Lemma

Let P an h-proposition and A a ¬¬-sheaf. For ↵,� : A, there is a

unique � : A such that P ! � = ↵ and ¬P ! � = �, i.e.

� =

(
↵ P

� otherwise



For example, write 'e(n) for the output of the Turing machine
coded by e on input n. We define the halting set K : N ! r02 as

K (n) :=

(
1 'n(n) #= 0

0 otherwise

Note that K is non computable by construction.
We can define K constructively, even in realizability models of
HoTT, where all functions are computable. In that case K cannot

extend to a function N ! 2.
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I ¬¬-stable h-propositions are much better behaved than
general h-propositions in cubical sets constructively.
I They are interpreted as monomorphisms.
I If ⌦¬¬ classifies ¬¬-stable h-propositions in Set, then �(⌦¬¬)

does so in Set⇤
op

.

I Despite this they are useful in type theory for
I Constructing RD

I Formulating ECT and showing its consistency
I ¬¬-sheafification

I Moreover, each of these constructions matches closely with
the corresponding notion in whatever metatheory we working
in when constructing cubical sets.

Thank you for your attention!


