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Models of constructive set theory in HoTT

Let U be a universe of small types.

Aczel 1978 [1]: based on the type WA:U A

Model of constructive set theory with foundation
Setoid based

Lindström 1989 [2]: based on something akin to the typeW

A:UA

Model of constructive set theory with AFA
Setoid based

Gylterud 2018 [3]: based on a subtype of WA:U A

Model of constructive set theory with foundation
Equality interpreted as the identity type

Joint work with Håkon Gylterud.
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Models of constructive set theory in HoTT

Goal: A model of constructive set theory with AFA, where equality
is the identity type.

Want: The terminal coalgebra for the (U-restricted) powerset
functor.

Idea: Dualise the V0 construction of Gylterud.
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Polynomial functors

For a polynomial functor F X =
∑

a:A(B a → X ):

The type Wa:A B a is the initial F -algebra.

The type

W

a:AB a is the terminal F -coalgebra.

The powerset functor is not polynomial.

Terminal coalgebra exists classically (relies on AC), but not yet
constructively.
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This work

We don’t get a terminal coalgebra for the powerset functor.

We do get a fixed point for the powerset functor.

We do get terminality with respect to embeddings.

This becomes a model of constructive set theory with SAFA.
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The type WA:U A

The type WA:U A is the inductive type with a single constructor:

sup :
∏
A:U

(A → WA:U A) → WA:U A
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Example elements in WA:U A

•

• •

• •

•

• •

•
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The functor TU

Definition (TU)

On types:

TU : Type → Type
TU X :=

∑
A:U

A → X

On maps:

TU : (X → Y ) → (TU X → TU Y )
TU g (A, f ) := (A, g ◦ f )

TU is polynomial.
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The initial TU-algebra

Theorem
(WA:U A, sup) is the initial TU -algebra.
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The type V0

Definition (V0)

Define the predicate:

is-itset : WA:U A → Type
is-itset (sup A f ) := (is-emb f ) ×

∏
a:A

is-itset (f a)

Define the type V0 :=
∑

x :WA:U A is-itset x .
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The U-restricted powerset functor

Definition (PU)

On types:

PU : Type → Type
PU X :=

∑
A:U

A ↪→ X

On maps:

PU : (X → Y ) → (PU X → PU Y )
PU g (A, f ) := (image (g ◦ f ), incl)

(This functor is not polynomial.)
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The U-restricted powerset functor

In pictures:

A X Y

image (g ◦ f )

f g

incl
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The initial PU-algebra

Theorem
V0 is the initial PU -algebra.
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Dualisation of V0

Idea: Start from the terminal TU -coalgebra and pick out the trees
where the branchings are embeddings arbitrarily far down.
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The type

W

A:UA

(

W

A:UA, desup∞) is the terminal TU -coalgebra.

For every TU -coalgebra (X , m) let corecT (X , m) denote the
corresponding unique TU -coalgebra homomorphism.

W

A:UA can be constructed from inductive types [4].
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Example elements of

W

A:UA

•

• •

• • • •

...
...

...
...

...
...

...
...

•

•

•

...
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Notation for TU-coalgebras

Notation
Let X : Type and m : X → (

∑
A:U A → X ) be a TU -coalgebra. For

x : X , denote

x : U x̃ : x → X
x := π0 (m x) x̃ := π1 (m x)
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The type V0
∞

Definition (is-coitsetn)

Define the predicate:

is-coitset : N →
W

A:UA → Type
is-coitset0 x := is-emb x̃
is-coitset(s n) x :=

∏
a:x

is-coitsetn (x̃ a)
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The type V0
∞

Definition (V0
∞)

Define the predicate:

is-coitset :
W

A:UA → Type
is-coitset x :=

∏
n:N

is-coitsetn x

Define the type V0
∞ :=

∑
x :

W

A:UA is-coitset x
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V0
∞ is a fixed point for PU

Theorem
There is an equivalence V0

∞ ≃ PU V0
∞.
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V0
∞ is a fixed point for PU

Outline of proof.
We have desup∞ :

W

A:UA ≃ TU(

W

A:UA), with inverse sup∞.

Define desup0 : V0
∞ → TU(

W

A:UA) as

desup0 := desup∞ ◦ π0

Show that desup0 in fact lands in PU V0
∞.

Define sup0 : PU V0
∞ →

W

A:UA as

sup0 (A, f ) := sup∞ (A, π0 ◦ f )

Show that sup0 in fact lands in V0
∞.

That desup0 and sup0 are inverses follows from the fact that
desup∞ and sup∞ are inverses.
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V0
∞ is a model of constructive set theory

Since V0
∞ is a fixed point for PU , it is a model of constructive set

theory. This goes back to Rieger 1957 [5].
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Terminality of V0
∞?

Theorem
The PU -coalgebra (V0

∞, desup0) is not terminal.

Elisabeth Stenholm University of Bergen
Non-wellfounded sets in HoTT



Motivation The type V0 The type V0
∞ Results about V0

∞

Terminality of V0
∞?

Consider the following graph:

• •
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Terminality of V0
∞?

The nodes are mapped by corecT to the corresponding unfolding
trees:

•

• •

...
...

...

•

•

• •

...
...

...
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Terminality of V0
∞?

But there is also a PU -coalgebra homomorphism which maps both
nodes to the tree:

•

•

•

...
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Terminality of V0
∞?

So V0
∞ is not the terminal PU -coalgebra.
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∞

Terminality of V0
∞ w.r.t. embeddings

Theorem
Let (X , m) be a PU -coalgebra such that corecT (X , m) is an
embedding. Then the following type is contractible:∑

f :PU -Coalg (X ,V0
∞)

is-emb f
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Terminality of V0
∞ w.r.t. embeddings

Center of contraction
We show that the map corecT (X , m) : X ↪→

W

A:UA lands in
V0

∞. We need to show that for all x : X and n : N,
is-coitsetn (corecT x).

Base case: ˜(corecT x) = corecT ◦ x̃ , and the rhs is a
composition of two embeddings.
Induction step: Let a : x , by induction, corecT (x̃ a) is
n-coiterative.

So corecT (X , m) : X ↪→ V0
∞. And it is a PU -coalgebra

homomorphism because it is an embedding.
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composition of two embeddings.

Induction step: Let a : x , by induction, corecT (x̃ a) is
n-coiterative.

So corecT (X , m) : X ↪→ V0
∞. And it is a PU -coalgebra

homomorphism because it is an embedding.
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Terminality of V0
∞ w.r.t. embeddings

Equality
Let f : X ↪→ V0

∞ be a PU -coalgebra homomorphism. To show
that f = corecT it is enough to show that π0 ◦ f = π0 ◦ corecT.

But π0 ◦ f : X →

W

A:UA is a TU -coalgebra since f is an
embedding. By the terminality of

W

A:UA it follows that
π0 ◦ f = π0 ◦ corecT.
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Scott’s anti-foundation axiom

Definition (Scott extensionality)

A graph G is Scott extensional if for any a, b ∈ G ,

Ga ∼=t Gb ⇒ a = b

where Ga ∼=t Gb means that the unfolding trees are isomorphic.

Definition (Scott’s anti-foundation axiom)

V is Scott extensional and every Scott extensional graph has a
decoration [6].
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Scott’s anti-foundation axiom in our setting

In our setting:

V0
∞ is Scott extensional, because equality is tree isomorphism.

Given a PU -coalgebra (X , m), to say that corecT (X , m) is an
embedding is to say that equality between nodes is
isomorphism of the corresponding unfolding trees.

A decoration is precisely a PU -coalgebra homomorphism.
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Formalisation

The formalisation can be found at:
https://git.app.uib.no/hott/hott-set-theory/-/tree/2e98dd35
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Future work

Formalise that

W

A:UA is locally small.

Formulate SAFA in the model and formalise that it holds.

Formalise counterexample to terminality.
Investigate Vn

∞.

Can we think of this as some type of non-wellfounded multisets?

Do either a generalisation of AFA or SAFA hold?
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