Type 2-theories

Michael Shulman
joint work with Dan Licata and Mitchell Riley

University of San Diego

April 12, 2018
HoTTEST
1 Motivation: internal languages

2 Unary type 2-theories

3 Simple type 2-theories

4 Dependent type 2-theories
The Internal Language Hypothesis

Homotopy type theory is an internal language for $(\infty, 1)$-toposes.
The Internal Language Hypothesis

Homotopy type theory is an internal language for \((\infty, 1)\)-toposes.

I propose this as analogous to the Homotopy Hypothesis, Stabilization Hypothesis, Cobordism Hypothesis, etc. from higher category theory.

“One can regard the above hypothesis, and those to follow, either as a conjecture pending a general definition... or as a feature one might desire of such a definition.”

— John Baez and Jim Dolan,
Higher-Dimensional Algebra and Topological Quantum Field Theory
Applications of the internal language hypothesis

The Internal Language Hypothesis

Homotopy type theory is an internal language for \((\infty, 1)\)-toposes.

Some theorems that are proven:

- \((\infty, 1)\)-toposes are presented by CwAs w/ HITs\(^1\)
- *Some* \(\infty\)-object classifiers are presented by CwA universes\(^2\)
- \(\text{Lex (}\infty, 1\text{-)}\)categories are equivalent to CwAs w/ \(\Sigma, \text{Id}\)\(^3\)

Theorems we still need to prove:

- The syntax of type theory is the initial CwA w/ \(\ldots\)
- *All* \(\infty\)-object classifiers are presented by CwA universes

Definitions we still need to make:

- What is a general notion of “higher inductive type”?
- What is an “elementary \((\infty, 1)\)-topos”?

\(^1\)Cisinski, Gepner–Kock, Lumsdaine–S.
\(^2\)Voevodsky, S.
\(^3\)Kapulkin–Lumsdaine, Kapulkin–Szumiło
The Internal Language Hypothesis

Homotopy type theory is the internal language of $(\infty, 1)$-toposes.

Definitions we should not make:

- Homotopy type theory consists of what’s true in simplicial sets.
- Homotopy type theory consists of what’s true in cubical sets.

If you will forgive me saying it again

- One model is not enough!
- Please don’t talk about “the intended model”!

Why?

One reason: applications of homotopy type theory to new results in classical homotopy theory are much closer to our reach if we go through other models (e.g. Blakers–Massey in Goodwillie calculus).
What is an \((\infty, 1)\)-topos?

To a homotopy type theorist, the Internal Language Hypothesis can be a “working definition” of an \((\infty, 1)\)-topos: a collection of objects and morphisms that can interpret the types and terms of HoTT.

Examples

- \(\infty Gpd\): types are \(\infty\)-groupoids ("spaces")
 (The \(\infty\)-version of the 1-topos \(\text{Set}\))
- \(\infty Gpd^{\text{C}^{\text{op}}}\): types are presheaves of \(\infty\)-groupoids on \(C\)
- \(Sh(X)\): types are sheaves of \(\infty\)-groupoids on \(X\)

But the situation for **functors** between \((\infty, 1)\)-toposes is subtler.
A logical functor $L : \mathcal{E} \to S$ preserves all relevant structure.

A geometric morphism $p : \mathcal{E} \to S$ is an adjoint pair $p^* : \mathcal{F} \rightleftarrows \mathcal{E} : p_*$ such that p^* preserves finite limits.

Examples

- $f : C \to D$ a functor, $f^* : \infty Gpd^{D^{\text{op}}} \rightleftarrows \infty Gpd^{C^{\text{op}}} : \text{Ran}_f$ is a geometric morphism $\infty Gpd^{C^{\text{op}}} \to \infty Gpd^{D^{\text{op}}}$.
- If $f : X \to Y$ is a continuous map, there is a geometric morphism $Sh(f) : Sh(X) \to Sh(Y)$.
- Any \mathcal{E} has a unique geometric morphism $p : \mathcal{E} \to \infty Gpd$:
 - $p_* (A) = \mathcal{E}(1, A)$ is the global sections
 - $p^* (X) = \coprod_X 1$ is a discrete or constant object on X.

$\infty, 1$-geometric morphisms
Fact
A lot of interesting theorems in $(\infty, 1)$-topos theory are not about just one topos, but about diagrams of toposes and geometric morphisms between them.

Example
A $(\infty, 1)$-topos \mathcal{E} is...

- ∞-connected if $p^* : \infty \mathcal{G}pd \to \mathcal{E}$ is fully faithful
- locally ∞-connected if p^* has a left adjoint
- ∞-compact if p_* preserves filtered colimits

Problem
Is there a version of homotopy type theory that can be an internal language for diagrams of $(\infty, 1)$-toposes and geometric morphisms?
Applications of a theory in progress

We claim that yes, there is such a type theory, where the functors p^*, p_* appear as higher modalities. The fully general and dependently typed version is still a work in progress, but already it has been specialized to various applications:

- **Internal universes in topos models** (L.-Orton-Pitts-Spitters ’18)
 - One modality $♭$
- **Spatial and real-cohesive type theory** (S. ’17)
 - Three modalities $ʃ \vdash b \vdash ♯$
- **Differential cohesion** (L.-S.-Gross-New-Paykin-R.-Wellen – work in progress)
 - Six modalities $ʃ \vdash b \vdash ♯$ and $ℜ \vdash ℑ \vdash &.$
- **Type theory for parametrized pointed spaces and spectra** (Finster-L.-Morehouse-R. – work in progress)
 - One self-adjoint modality $♭ \vdash ♭$
 - Non-cartesian “smash product” monoidal structure
- **Directed type theory with cores and opposites** (work in progress)
1 Motivation: internal languages

2 Unary type 2-theories

3 Simple type 2-theories

4 Dependent type 2-theories
Suppose we have one geometric morphism $p : \mathcal{E} \rightarrow \mathcal{S}$. We might imagine a type theory with:

- An “\mathcal{E}-type theory” $\Gamma \vdash_{\mathcal{E}} s : A$
- A separate “\mathcal{S}-type theory” $\Delta \vdash_{\mathcal{S}} t : B$
- An operation p^* making any \mathcal{S}-type into an \mathcal{E}-type
- An operation p_* making any \mathcal{E}-type into an \mathcal{S}-type
Suppose we have one geometric morphism $p : \mathcal{E} \to \mathcal{S}$. We might imagine a type theory with:

- An “\mathcal{E}-type theory” $\Gamma \vdash_{\mathcal{E}} s : A$
- A separate “\mathcal{S}-type theory” $\Delta \vdash_{\mathcal{S}} t : B$
- An operation p^* making any \mathcal{S}-type into an \mathcal{E}-type
- An operation p_* making any \mathcal{E}-type into an \mathcal{S}-type
- Functoriality rules for p^* and p_*
- Adjunction rules for $p^* \dashv p_*$
- Higher functoriality rules for p^* and p_* on homotopies
- Higher adjunction rules for homotopies
- Coherence laws
- More coherence laws...
Suppose we have one geometric morphism $p : \mathcal{E} \to \mathcal{S}$. We might imagine a type theory with:

- An “\mathcal{E}-type theory” $\Gamma \vdash_{\mathcal{E}} s : A$
- A separate “\mathcal{S}-type theory” $\Delta \vdash_{\mathcal{S}} t : B$
- An operation p^* making any \mathcal{S}-type into an \mathcal{E}-type
- An operation p_* making any \mathcal{E}-type into an \mathcal{S}-type
- Functoriality rules for p^* and p_*
- Adjunction rules for $p^* \dashv p_*$
- Higher functoriality rules for p^* and p_* on homotopies
- Higher adjunction rules for homotopies
- Coherence laws
- More coherence laws...
Type theory

1. Types should be defined by introduction, elimination, β and η rules.

2. Good type theories satisfy canonicity and normalization.

Category theory

1. Objects should be defined by universal properties.

2. Structures defined by universal properties are automatically fully coherent.
Example: Cartesian products

Type theory

\[p : A \times B \]
\[\pi_1(p) : A \quad \pi_2(p) : B \]

\[a : A \quad b : B \]
\[(a, b) : A \times B \]

\[\pi_1(a, b) = a \]
\[\pi_2(a, b) = b \]

\[p = (\pi_1(p), \pi_2(p)) \]

Category theory

\[A \leftrightarrow A \times B \to B \]

\[X \longrightarrow A \times B \]

\[\text{correct composites} \]

\[\text{uniqueness} \]
Example: Cartesian products

Type theory

\[p : A \times B \]

\[\pi_1(p) : A \quad \pi_2(p) : B \]

\[a : A \quad b : B \]

\[(a, b) : A \times B \]

\[\pi_1(a, b) = a \]
\[\pi_2(a, b) = b \]

\[p = (\pi_1(p), \pi_2(p)) \]

Category theory

\[A \leftrightarrow A \times B \to B \]

\[X \longrightarrow A \times B \]

\[\begin{align*}
A \\
B
\end{align*} \]

correct composites

uniqueness
Example: Cartesian products

Type theory

\[
p : A \times B \\
\pi_1(p) : A \\
\pi_2(p) : B
\]

Category theory

\[
A \leftarrow A \times B \rightarrow B
\]

\[
a : A \\
b : B
\]

\[
(a, b) : A \times B
\]

\[
\pi_1(a, b) = a \\
\pi_2(a, b) = b
\]

\[
p = (\pi_1(p), \pi_2(p))
\]

correct composites

uniqueness
Example: Cartesian products

Type theory

\[p : A \times B \]

\[\pi_1(p) : A \quad \pi_2(p) : B \]

\[a : A \quad b : B \]

\[(a, b) : A \times B \]

\[\pi_1(a, b) = a \]

\[\pi_2(a, b) = b \]

\[p = (\pi_1(p), \pi_2(p)) \]

Category theory

\[A \leftarrow A \times B \rightarrow B \]

\[X \quad \longrightarrow A \times B \]

\[\rightarrow A \]

\[\rightarrow B \]

Correct composites

Uniqueness
Example: Cartesian products

Type theory

\[p : A \times B \]

\[\pi_1(p) : A \quad \pi_2(p) : B \]

\[a : A \quad b : B \]

\[(a, b) : A \times B \]

\[\pi_1(a, b) = a \]

\[\pi_2(a, b) = b \]

\[p = (\pi_1(p), \pi_2(p)) \]

Category theory

\[A \leftarrow A \times B \rightarrow B \]

\[A \]

\[X \quad \rightarrow A \times B \]

\[B \]

correct composites

uniqueness
Definition

A profunctor \(\mathcal{E} \to S \) is a category \(\mathcal{H} \) equipped with a functor \(\mathcal{H} \to 2 = (0 \to 1) \), with fibers \(\mathcal{H}_0 = S \) and \(\mathcal{H}_1 = \mathcal{E} \).

- Hom-sets \(\mathcal{H}(X, A) \) of “heteromorphisms” for \(X \in S, A \in \mathcal{E} \)
- With actions by arrows in \(\mathcal{E} \) and \(S \)

Definition

- A left representation of \(\mathcal{H} \) at \(X \in S \) is \(p^*X \in \mathcal{E} \) with an isomorphism \(\mathcal{E}(p^*X, A) \cong \mathcal{H}(X, A) \).
- A right representation of \(\mathcal{H} \) at \(A \in \mathcal{E} \) is \(p_*A \in S \) with an isomorphism \(\mathcal{S}(X, p_*A) \cong \mathcal{H}(X, A) \).

Insofar as they exist, we automatically have \(p^* \dashv p_* \) since

\[
\mathcal{E}(p^*X, A) \cong \mathcal{H}(X, A) \cong \mathcal{S}(X, p_*A).
\]
A hierarchy of type theories

Dependent type theory is very complicated, so we build up in stages.

1. **Unary type theory**: no dependency, only one type in context. Semantics in categories.
 \[x : A \vdash s : B \]

2. **Simple type theory**: no dependency, multiple types in context. Semantics in categories with products, or multicategories.
 \[x : A, y : B, z : C \vdash s : D \]

3. **Dependent type theory**: types can depend on previous ones. Semantics in lex categories (comprehension categories etc.)
 \[x : A, y : B(x), z : C(x, y) \vdash s : D(x, y, z) \]
Unary type theory for a profunctor

\[\begin{align*}
X \text{ type}_S & \quad A \text{ type}_\varepsilon \\
x : X & \vdash_S t : Y & x : X & \vdash_\varepsilon s : A & a : A & \vdash_\varepsilon s : B
\end{align*} \]
Unary type theory for a profunctor

\[
\begin{align*}
X \text{ type}_S & \quad A \text{ type}_\mathcal{E} \\
X \vdash_S t : Y & \quad X \vdash_\mathcal{H} s : A & & a : A \vdash_\mathcal{E} s : B \\
X \vdash_S t : Y & \quad y : Y \vdash_S s : Z & & x : X \vdash_S s[t/y] : Z \\
& & a : A \vdash_\mathcal{E} t : B & b : B \vdash_\mathcal{E} s : C & & a : A \vdash_\mathcal{E} s[t/b] : C \\
X \vdash_S t : Y & \quad y : Y \vdash_\mathcal{H} s : A & & x : X \vdash_\mathcal{H} s[t/y] : A \\
& & x : X \vdash_\mathcal{H} t : A & a : A \vdash_\mathcal{E} t : B & & x : X \vdash_\mathcal{H} s[t/a] : B
\end{align*}
\]
Unary type theory for a profunctor

\[X \text{ type}_S \quad A \text{ type}_\mathcal{E} \]

\[
x : X \vdash_S t : Y \quad x : X \vdash_\mathcal{H} s : A \quad a : A \vdash_\mathcal{E} s : B
\]

\[
x : X \vdash_S t : Y \quad y : Y \vdash_S s : Z
\]

\[
x : X \vdash_S s[t/y] : Z
\]

\[
a : A \vdash_\mathcal{E} t : B \quad b : B \vdash_\mathcal{E} s : C
\]

\[
a : A \vdash_\mathcal{E} s[t/b] : C
\]

\[
x : X \vdash_S t : Y \quad y : Y \vdash_\mathcal{H} s : A
\]

\[
x : X \vdash_\mathcal{H} s[t/y] : A
\]

\[
x : X \vdash_\mathcal{H} t : A \quad a : A \vdash_\mathcal{E} t : B
\]

\[
x : X \vdash_\mathcal{H} s[t/a] : B
\]
Unary type theory for a profunctor

\[
\begin{align*}
X \text{ type}_S & \quad A \text{ type}_\mathcal{E} \\
x : X \vdash_S t : Y & \quad x : X \vdash_\mathcal{H} s : A & \quad a : A \vdash_\mathcal{E} s : B \\
x : X \vdash_S t : Y & \quad y : Y \vdash_S s : Z & \quad a : A \vdash_\mathcal{E} t : B \quad b : B \vdash_\mathcal{E} s : C \\
& \quad x : X \vdash_S s[t/y] : Z & \quad a : A \vdash_\mathcal{E} s[t/b] : C \\
& \quad a : A \vdash_\mathcal{E} t : B \quad b : B \vdash_\mathcal{E} s : C & \quad x : X \vdash_\mathcal{H} t : A \\
& \quad x : X \vdash_\mathcal{H} s[t/y] : A & \quad x : X \vdash_\mathcal{H} t : A \quad a : A \vdash_\mathcal{E} t : B \\
& \quad x : X \vdash_\mathcal{H} s[t/a] : B
\end{align*}
\]
Unary type theory for a profunctor

\[
\begin{align*}
X & \text{ type}_S \\
A & \text{ type}_\mathcal{E} \\
x : X \vdash & t : Y \\
x : X \vdash & s : A \\
a : A \vdash & s : B \\
\vdash & s[t/y] : Z \\
\vdash & s[t/b] : C \\
\vdash & s[t/a] : B
\end{align*}
\]
Unary type theory for a profunctor

\[
\begin{aligned}
X \text{ type}_S & \quad A \text{ type}_\mathcal{E} \\
\vdash_{S} x : X & \quad \vdash_{\mathcal{E}} x : X & \quad a : A \vdash_{\mathcal{E}} s : B \\
x : X & \vdash_{S} t : Y & \quad x : X & \vdash_{\mathcal{E}} s : A & \quad a : A \vdash_{\mathcal{E}} s : B \\
\vdash_{S} x : X & \quad \vdash_{\mathcal{E}} y : Y & \quad \vdash_{S} s : Z \\
x : X & \vdash_{S} s[t/y] : Z \\
\vdash_{\mathcal{E}} a : A & \quad \vdash_{\mathcal{E}} t : B & \quad \vdash_{\mathcal{E}} b : B & \quad \vdash_{\mathcal{E}} s : C \\
\vdash_{\mathcal{E}} a : A & \vdash_{\mathcal{E}} s[t/b] : C \\
\vdash_{S} x : X & \vdash_{\mathcal{E}} s[t/y] : A \\
\vdash_{\mathcal{E}} x : X & \vdash_{\mathcal{E}} s[t/a] : B \\
\end{aligned}
\]
Unary type theory for an adjunction

\[\text{A type}_E \quad \frac{}{p_*A \text{ type}_S} \quad p^*_\text{-FORM} \]

\[\frac{(x : X) \vdash \mathcal{H} (s : A)}{(x : X) \vdash \mathcal{S} (s^\# : p_\ast A)} \quad p^*_\text{-INTRO} \]

\[\frac{(x : X) \vdash \mathcal{S} (s^\# : p_\ast A)}{(x : X) \vdash \mathcal{H} (s : A)} \quad p^*_\text{-ELIM} \]

\[\frac{(y : Y) \vdash \mathcal{S} (t : X)}{(y : Y) \vdash \mathcal{H} (t^b : p_\ast X)} \quad p^*_\text{-INTRO} \]

\[\frac{(b : B) \vdash \mathcal{E} (s : p^*_X) \quad (x : X) \vdash \mathcal{H} (c : C)}{(b : B) \vdash \mathcal{E} (\text{let } x^b := s \text{ in } c : C)} \quad p^*_\text{-ELIM} \]

\[s^\# \# = s \quad s^\# \# = s \quad \text{(let } x^b := t^b \text{ in } c) = c \]

\[\text{(let } x^b := t \text{ in } c[x^b/y]) = c[t/y] \]
Unary type theory for an adjunction

\[
\begin{align*}
A \text{ type}_\mathcal{E} & \quad p^*\text{-FORM} \\
\frac{}{p^*A \text{ type}_\mathcal{S}} \\
(x : X) \vdash_{\mathcal{H}} (s : A) & \quad p^*\text{-INTRO} \\
\frac{}{(x : X) \vdash_{\mathcal{S}} (s^{\#} : p^*A)} \\
(x : X) \vdash_{\mathcal{H}} (s^{\#} : p^*A) & \quad p^*\text{-INTRO} \\
(x : X) \vdash_{\mathcal{S}} (s^{\#} : p^*A) & \quad p^*\text{-INTRO} \\
(y : Y) \vdash_{\mathcal{S}} (t : X) & \quad p^*\text{-INTRO} \\
\frac{}{(y : Y) \vdash_{\mathcal{H}} (t^{b} : p^*X)} \\
(y : Y) \vdash_{\mathcal{H}} (t^{b} : p^*X) & \quad p^*\text{-INTRO} \\
(b : B) \vdash_{\mathcal{E}} (s : p^*X) & \quad (x : X) \vdash_{\mathcal{H}} (c : C) \\
\frac{}{(b : B) \vdash_{\mathcal{E}} ((\text{let } x^{b} := s \text{ in } c) : C)} \\
(b : B) \vdash_{\mathcal{E}} ((\text{let } x^{b} := s \text{ in } c) : C) & \quad p^*\text{-ELIM} \\
\frac{}{(b : B) \vdash_{\mathcal{E}} ((\text{let } x^{b} := s \text{ in } c) : C)} \\
\frac{}{(b : B) \vdash_{\mathcal{E}} ((\text{let } x^{b} := t^{b} \text{ in } c) = c)} \\
\frac{}{(b : B) \vdash_{\mathcal{E}} ((\text{let } x^{b} := t^{b} \text{ in } c) = c)} \\
\frac{}{(\text{let } x^{b} := t \text{ in } c[x^{b}/y]) = c[t/y]} \\
\end{align*}
\]
Some examples

Example

S4 modal logic has a modality \Box, with $\Box P$ sometimes interpreted as “P is necessarily true”, satisfying laws:

$$\Box(P \land Q) = \Box P \land \Box Q \quad \Box \top = \top \quad \Box P \to P \quad \Box P \to \Box \Box P$$

In other words, \Box is a product-preserving comonad. Pfenning–Davies gave a type theory for \Box, and Reed decomposed it as $p^* p_*$ for an adjunction $p^* \dashv p_*$, inspiring our framework.

Example

In a cohesive topos $p : \mathcal{E} \to \mathcal{S}$:

- the objects of \mathcal{E} are “spaces” or “manifolds”
- $p^* X$ gives X the “discrete topology”
- $p_* X$ is the underlying set of points of X
Unary type theory for diagrams

\(\mathcal{M} \) a category (the opposite “shape” of a diagram of toposes).

Unary modal type theory

- A unary type theory \(x : X \vdash_{1_m} t : Y \) for each \(m \in \mathcal{M} \).
- Hetero-judgments \((x : X)_m \vdash_p (s : A)_n \) for each \(p : m \to n \).
- Appropriate cut rules, and type operations as desired:

\[
\begin{align*}
\frac{X \text{ type}_m}{p^*X \text{ type}_n} & \quad \frac{A \text{ type}_n}{p_*X \text{ type}_m}
\end{align*}
\]

Semantics

It has semantics in categories \(\mathcal{H} \to \mathcal{M} \) over \(\mathcal{M} \), where

- If all \(p^* \) exist, the functor \(\mathcal{H} \to \mathcal{M} \) is an opfibration.
- If all \(p_* \) exist, the functor \(\mathcal{H} \to \mathcal{M} \) is a fibration.

If \(p^*/p_* \) all exist, \(\mathcal{H} \to \mathcal{M} \) is a bifibration, hence equivalent to a functor \(\mathcal{M}^{\text{op}} \to \mathcal{Cat}_{\text{radj}} \).
Actually want functors $\mathcal{M}^{op} \to \text{Cat}_{\text{radj}}$ where \mathcal{M} is a 2-category.

Examples

- If \mathcal{M} contains an adjunction, get an adjoint triple.
- If \mathcal{M} contains a monad, get an adjoint monad/comonad pair.

These arise naturally on local/cohesive/tangent toposes.

Definition (Hermida,Buckley)

A 2-functor $\pi : \mathcal{H} \to \mathcal{M}$ is:

- A **local fibration** if each functor on hom-categories $\mathcal{H}(X, A) \to \mathcal{M}(\pi X, \pi A)$ is a fibration (+ axioms).
- A **2-fibration** if it is a local fibration and has p_*’s.
- A **2-opfibration** if it is a local fibration and has p^*’s.

Theorem (Baković,Buckley)

\[(\text{Locally discrete 2-bifib. } \mathcal{H} \to \mathcal{M}) \simeq (\text{functors } \mathcal{M}^{op} \to \text{Cat}_{\text{radj}}).\]
Unary type theory for diagrams

\(M \) a 2-category (the opposite “shape” of a diagram of toposes).

Unary modal type theory (Licata-S. ’16)

- A unary type theory \(x : X \vdash t : Y \) for each \(m \in M \).
- Hetero-judgments \((x : X)_m \vdash_p (s : A)_n \) for each \(p : m \to n \).
- Appropriate cut rules and type operations \(p^*, p_* \)
- Structural rules for 2-cells \(u : p \Rightarrow q : m \to n \)

\[
\frac{(x : X)_m \vdash_q (s : A)_n}{(x : X)_m \vdash_p (u^* s : A)_n}
\]

Semantics

Locally discrete 2-bifibrations \(\mathcal{H} \to M \), hence functors \(M^{op} \to \text{Cat}_{radj} \).

The objects of \(M \) are sometimes called modes (cf. modal logic).
Outline

1 Motivation: internal languages

2 Unary type 2-theories

3 Simple type 2-theories

4 Dependent type 2-theories
Simple type theory for an adjunction

In unary type theory, we can think of \((x : X) \vdash_{\mathcal{H}} (s : A)\) as representing a morphism \(p^*X \to A\).

Idea for simple type theory

Allow a term in an \(E\)-type to depend on multiple variables, some in \(S\)-types and others in \(E\)-types.

- \((x : X)_{S}, (y : Y)_{S}, (a : A)_{E}, (b : B)_{E} \vdash (t : C)_{E}\) represents a morphism \(p^*X \times p^*Y \times A \times B \to C\).
- This turns out to require/imply that \(p^*\) preserves products.
- \((x : X)_{S} \vdash (t : C)_{E}\) is the old \((x : X) \vdash_{\mathcal{H}} (t : C)\).
- \((a : A)_{E} \vdash (t : C)_{E}\) is the old \((a : A) \vdash_{\mathcal{E}} (t : C)\).
- Still have \((x : X)_{S} \vdash (s : Y)_{S}\), the old \((x : X) \vdash_{\mathcal{S}} (s : Y)\). Terms in \(S\)-types are not allowed to depend on variables in \(E\)-types. “Only left adjoints can appear in contexts.”
Simple type theory for an adjunction, rules

\[
\frac{\Gamma_S \vdash (s : A)_{\varepsilon}}{\Gamma_S \vdash (s^\# : p_\ast A)_{S}} \quad p_\ast\text{-INTRO} \\
\frac{\Gamma_S \vdash (t : p_\ast A)_{S}}{\Gamma_S, \Delta_\varepsilon \vdash (t^\# : A)_{\varepsilon}} \quad p_\ast\text{-ELIM}
\]

\[
\frac{\Gamma_S \vdash (t : X)_{S}}{\Gamma_S, \Delta_\varepsilon \vdash (t^\flat : p_\ast X)_{\varepsilon}} \quad p_\ast\text{-INTRO}
\]

\[
\frac{\Gamma_S, \Delta_\varepsilon \vdash (t : p_\ast X)_{\varepsilon} \quad \Gamma_S, \Delta_\varepsilon, (x : X)_S \vdash (c : C)_{\varepsilon}}{\Gamma_S, \Delta_\varepsilon \vdash ((\text{let } x^\flat := t \text{ in } c) : C)_{\varepsilon}} \quad p_\ast\text{-ELIM}
\]
Towards profunctors for simple type theory

On the categorical side, we should replace:

- categories \rightsquigarrow cartesian monoidal categories
- 2-categories \rightsquigarrow cartesian monoidal 2-categories
- objects in a 2-category \rightsquigarrow cartesian monoidal objects

Definition

A **cartesian monoidal object** $m \in \mathcal{M}$ is one with right adjoints to $\Delta : m \to m \times m$ and $! : m \to 1$.
Let \mathcal{M} be the cartesian monoidal 2-category freely generated by two cartesian monoidal objects e, s and a cartesian morphism $p : s \to e$.

- Objects like $s \times s \times e \times e \times e$
- Morphisms like $s \times s \to s$ and $e \times e \times e \to e$ and $s \times s \times e \times e \times e \to e \times e \times e \times e \times e \times e \to e$

Definition

A **cartesian monoidal profunctor** $\mathcal{E} \to \mathcal{S}$ is a cartesian monoidal local fibration $\mathcal{H} \to \mathcal{M}$ with fibers $\mathcal{H}_e = \mathcal{E}$ and $\mathcal{H}_s = \mathcal{S}$.

- Think of the fiber $\mathcal{H}_{s \times s \times e \times e \times e}$ as $\mathcal{S} \times \mathcal{S} \times \mathcal{E} \times \mathcal{E} \times \mathcal{E}$ ("Contexts of a specified length and shape")
- Heteromorphisms like $(X_s, Y_s, A_e, B_e, C_e) \to D_e$.
- Local fibration condition gives $[(A, A) \to B] \rightsquigarrow [A \to B]$.

4 This isn’t quite true, but the problem goes away if we use cartesian 2-multicategories.
Let \mathcal{M} be a cartesian monoidal 2-category.

Simple modal type theory (Licata-S.-Riley ’17)

- A class of types for each $m \in \mathcal{M}$ (the modes).
- Terms like $(x : X)_{m_1}, (y : Y)_{m_2} \vdash p (s : A)_n$ for each $p : m_1 \times m_2 \to n$.
- Appropriate cut rules and type operations p^*, p_*
- Structural rules for 2-cells $u : p \Rightarrow q : (m_1, \ldots, m_n) \to n$

$$
\begin{align*}
\Gamma & \vdash q : (m_1, \ldots, m_n) \to n \\
\Gamma & \vdash a : A \\
\Gamma & \vdash p \quad u^* s : A
\end{align*}
$$

Semantics

Locally discrete 2-bifibrations $\mathcal{H} \to \mathcal{M}$.
In a cartesian monoidal 2-category, we can also talk about:

- Objects with **non-cartesian** monoidal structure \(\otimes : m \times m \to m \)
- Objects with multiple monoidal structures (e.g. \(\otimes, \times \))
- Adjunctions between cartesian and non-cartesian objects
- etc.

We therefore immediately get as special cases of our type theory:

- Intuitionistic linear logic
- Bunched implication
- A decomposition like \(\Box = p^* p_* \) for the linear-logic modality \(!\)
- etc.
An unexpected bonus

In a cartesian monoidal 2-category, we can also talk about:

- Objects with non-cartesian monoidal structure $\otimes : \mathbf{m} \times \mathbf{m} \to \mathbf{m}$
- Objects with multiple monoidal structures (e.g. \otimes, \times)
- Adjunctions between cartesian and non-cartesian objects
- etc.

We therefore immediately get as special cases of our type theory:

- Intuitionistic linear logic
- Bunched implication
- A decomposition like $\Box = p^* p_*$ for the linear-logic modality $!$
- etc.

Furthermore:

- Product types and function types

\[A \times B \quad A \to B \quad A \otimes B \quad A \vdash B \]

are unified with p^*, p_* as (op)fibrational actions in $\mathcal{H} \to \mathcal{M}$.

The cartesian monoidal 2-category \mathcal{M} can also be presented by a type-theoretic syntax!

Example

$x : e, y : e \vdash x \times y : e$

$x : s, y : s \vdash x \times y : s$

$x : s \vdash p(x) : e$

$x : s, y : s \vdash p(x \times y) = p(x) \times p(y)$

$x : s \vdash x \Rightarrow x \times x$

\vdots

This is the **type 2-theory** of a cartesian adjunction, written in **simple type 3-theory**. What do I mean by that?
A **theory** is a collection of generating types, terms, and axioms

A **model** of a theory sends its types/terms to objects/morphisms

A **theory** is the structured category L_T freely generated by a model

A **model** of a theory T in \mathbf{C} is a morphism $L_T \rightarrow \mathbf{C}$
A **doctrine** specifies a “kind of type theory”: the type forming operations and their rules.

A theory in a doctrine is a collection of generating types, terms, and axioms.

A model of a theory sends its types/terms to objects/morphisms.

A **doctrine** is a 2-category of structured categories, such as “cartesian monoidal categories.”

A theory in a doctrine \mathcal{K} is the $L_T \in \mathcal{K}$ freely generated by a model.

A model of a theory T in \mathcal{C} is a morphism $L_T \rightarrow \mathcal{C}$.
What is “a type theory”?

Remark

Unfortunately, the phrase “type theory” gets applied to both theories and doctrines.

- When we state the ILH as “the category of dependent type theories is equivalent to the category of lcccs”, each such “dependent type theory” is a theory.
- But “Martin-Löf dependent type theory” is a doctrine (namely, the doctrine in which the above theories are written).

This is a source of some confusion.
Reifying the doctrines

Standard approach to type theory

1. Given a categorical structure, find a syntactic doctrine.
2. OR: given a syntactic doctrine, find a categorical structure.
3. Prove metatheorems like initiality, canonicity, . . .

Problems with this

- Without a general framework, can be hard to “find” correspondents.
- Have to prove all the metatheorems over and over again for each doctrine.

Our approach

Treat doctrines as “categorified theories” in a “categorified doctrine”, about which we can prove the theorems once and for all.
Functorial semantics, bis

Type theory

A doctrine specifies a “kind of type theory”: the type forming operations and their rules

A theory in a doctrine is a collection of generating types, terms, and axioms

A model of a theory sends its types/terms to objects/morphisms

Category theory

A doctrine is a 2-category of structured categories, such as “cartesian monoidal categories”

A theory in a doctrine \mathcal{K} is the $L_T \in \mathcal{K}$ freely generated by a model

A model of a theory T in \mathcal{C} is a morphism $L_T \to \mathcal{C}$
A 2-theory specifies a “kind of type theory”: the type forming operations and their rules

A 1-theory in a 2-theory is a collection of generating types, terms, and axioms

A 0-theory in a 1-theory sends its types/terms to objects/morphisms

A 2-theory is a structured 2-category freely generated by something

A 1-theory in a 2-theory is a morphism $L_K \to \text{Cat}$

A 0-theory in a 1-theory T in \mathbf{C} is a morphism $L_T \to \mathbf{C}$
Type theory

- **A 3-theory** is like
 - “unary type theory”
 - “simple type theory”, or
 - “dependent type theory”

- A 2-theory specifies a
 - “kind of type theory”: the
 - type forming operations
 - and their rules

Category theory

- **A 3-theory** is a 3-category
 - like “2-categories”,
 - “cartesian monoidal 2-categories”, or . . .

- A 2-theory in a 3-theory
 - is an object of it freely
 - generated by something
A 3-theory is like “unary type theory”, “simple type theory”, or “dependent type theory”

A 3-theory is a 3-category like “2-categories”, “cartesian monoidal 2-categories”, or . . .

A 2-theory specifies a “kind of type theory”: the type forming operations and their rules

A 2-theory in a 3-theory is an object of it freely generated by something

We can generate a semantic 2-theory using a syntactic type 2-theory (or mode theory) expressed in a particular 3-theory.
Now we can describe the process of “building up to the full complexity of dependent type theory” as a progression through richer 3-theories:

1. LS’16: unary type theory, semantics in 2-categories.
 \[x : A \vdash s : B \]

2. LSR’17: simple type theory, semantics in cartesian 2-categories.
 \[x : A, y : B, z : C \vdash s : D \]

 \[x : A, y : B(x), z : C(x, y) \vdash s : D(x, y, z) \]
Outline

1. Motivation: internal languages
2. Unary type 2-theories
3. Simple type 2-theories
4. Dependent type 2-theories
Dependent type theory is a lot more complicated because...

1. In $\Gamma \vdash p \ t : Z$, the type Z must also depend on Γ in some way that is recorded, $\Gamma \vdash q \ Z \ \text{type}_e$.

2. Each type in Γ also depends on the previous ones in some way that must be also be recorded.

3. These dependencies have to be related in some coherent way.

Example

If $(x : A)_s \vdash_p B \ \text{type}_e$, then $(x : A)_s, (y : B)_e \vdash C \ \text{type}_t$ must depend on x through some $r : s \rightarrow t$ and on y through some $q : e \rightarrow t$. Do we need $qp = r$? (In fact, $r \Rightarrow qp$ is enough.)
Dependent type theory is a lot more complicated because...

- We need “dependency graphs” that are more complicated than linear. In ordinary DTT, if B and C both depend on A we can write $x : A$, $y : B(x)$, $z : C(x)$ in order, where the dependence of C on y is trivial. But in modal type theory such a “trivial dependency” may not even be syntactically well-formed.

Example

If $(x : A)_s \vdash_p B$ type$_e$ for $p : s \to e$, and $(x : A)_s \vdash_q C$ type$_t$ for $q : s \to t$, we want to allow a context like $(x : A)_s$, $(y : B)_e$, $(z : C)_t$. But there may be no morphism $e \to t$ at all, hence no way for C to depend on y even “trivially”.

The context has to be structured like a directed acyclic graph or inverse category:
This is a snapshot of work in progress.
Tomorrow it might look very different.
(And then the day after that different yet again.)
A semantic approach

One of the usual semantic correspondents of ordinary DTT is:

Definition

A **comprehension category** is a commuting triangle of functors

\[
\begin{array}{ccc}
T & \xrightarrow{\chi} & C \\
\downarrow{\pi} & & \downarrow{\text{cod}} \\
C & & C \\
\end{array}
\]

where . . .

1. C has a terminal object.
2. $C \to$ is the arrow category, with cod the codomain projection.
3. $\pi : T \to C$ is a fibration.
4. χ preserves cartesian arrows.

Objects of C are “contexts”, objects of T are “types in context”.
By analogy with our use of 2-categories in the unary case, and cartesian monoidal 2-categories in the simple case, we define:

Definition

A *comprehension 2-category* is a commuting triangle of 2-functors

\[
\begin{array}{ccc}
\mathcal{D} & \xrightarrow{\chi} & \mathcal{M} \\
\downarrow{\pi} & & \downarrow{\text{cod}} \\
\mathcal{M} & & \\
\end{array}
\]

where...

1. \(\mathcal{M}\) has a terminal object.
2. \(\mathcal{M} \rightarrow\) is the arrow 2-category, \(\text{cod}\) the codomain projection.
3. \(\pi : \mathcal{D} \rightarrow \mathcal{M}\) is a 2-fibration.
4. \(\chi\) preserves cartesian 1-cells and 2-cells.
The pieces of a comprehension 2-category

\[\mathcal{D} \xrightarrow{\chi} \mathcal{M} \rightarrow \]

\[\pi \quad \text{cod} \]

\[\mathcal{M} \]

- Objects of \(\mathcal{M} \) (mode contexts)
- Morphisms of \(\mathcal{M} \) (mode substitutions)
- Objects of \(\mathcal{D} \) (mode types)
- Sections of \(\chi(m) \) (mode terms)

- Possible "shapes" of contexts (record modes and dependency structure)
- Shapes of context morphisms
- Modes/shapes of dependent types (record mode and dependency structure)
- Shapes of terms
The basic comprehension 2-category

- If a 1-category C has pullbacks, then $\text{cod}: C \rightarrow C$ is a fibration, corresponding to the pseudofunctor $c \mapsto C/c$.
- Even if a 2-category \mathcal{M} has pullbacks, $\text{cod}: \mathcal{M} \rightarrow \mathcal{M}$ is not a 2-fibration! ($m \mapsto \mathcal{M}/m$ is not functorial on 2-cells.)
The basic comprehension 2-category

- If a 1-category C has pullbacks, then $\text{cod} : C \rightarrow C$ is a fibration, corresponding to the pseudofunctor $c \mapsto C/c$.
- Even if a 2-category \mathcal{M} has pullbacks, $\text{cod} : \mathcal{M} \rightarrow \mathcal{M}$ is not a 2-fibration! ($m \mapsto \mathcal{M}/m$ is not functorial on 2-cells.)
- What is functorial is $m \mapsto \mathcal{F}ib(\mathcal{M})/m$, the internal fibrations over m.

Example (The basic (semantic) comprehension 2-category)

\[
\mathcal{F}ib(\mathcal{M}) \xleftarrow{\pi} \mathcal{M} \xrightarrow{\text{cod}} \mathcal{M} \rightarrow
\]

More generally, in any comprehension 2-category, $\chi : \mathcal{D} \rightarrow \mathcal{M}$ lands inside $\mathcal{F}ib(\mathcal{M})$.
Internal comprehension categories

- For simple type theory, \mathcal{M} is generated by (e.g.) a cartesian monoidal object.
- For dependent type theory, we should instead use “objects with finite limits”.
- But the type-theoretic way to talk about categories with finite limits is using dependent type theory with Σ, Id, which semantically means a comprehension category.

Definition

A **comprehension object** in a comprehension 2-category $\mathcal{D} \to \mathcal{M}$ is:

- An object $\mathcal{C} \in \mathcal{M}$ with an internal terminal object \diamond.
- An object \mathcal{T} in the fiber \mathcal{D}_C (a “formal fibration” over \mathcal{C}).
- A morphism $\mathcal{C}.\mathcal{T} \to \mathcal{C} \rightarrow$ of internal fibrations over \mathcal{C} in \mathcal{M} (here $\mathcal{C} \rightarrow$ is the copower by the arrow category in \mathcal{M}).
Building context shapes

- From a comprehension category we can define categories of Reedy fibrant diagrams on inverse categories.
- We can internalize this for a comprehension object in a comprehension 2-category.
- Thus: the “context shapes” are inverse categories.
Building context shapes

- From a comprehension category we can define categories of Reedy fibrant diagrams on inverse categories.
- We can internalize this for a comprehension object in a comprehension 2-category.
- **Thus:** the “context shapes” are inverse categories.

One further improvement:

- Reedy fibrant diagrams are tedious to describe in comprehension-category language.
- But we already have a better notation for comprehension categories: dependent type theory itself!
- Use a **mini-DTT** to describe the modes and mode contexts.\(^5\)

\(^5\)cf. Tsementzis–Weaver, *Finite Inverse Categories as Signatures*
If we have one comprehension object $\mathcal{T} \to \mathcal{C} \to$, a generic mode context (object of \mathcal{M}) looks something like this:

$$(X : \mathcal{T}()), (Y : \mathcal{T}(x : X)), (Z : \mathcal{T}(x : X, y : Y(x)))$$

This is a bit hard to parse, so here’s some help:

- $(), (x : X)$, and $(x : X, y : Y(x))$ are elements of \mathcal{C}, represented by “mini-contexts”.
 - $():\mathcal{C}$ is in the empty mode context.
 - $(x : X):\mathcal{C}$ is in the mode context $(X : \mathcal{T}())$.
 - $(x : X, y : Y(x))$ in mode context $(X : \mathcal{T}()), (Y : \mathcal{T}(x : X))$.

- $\mathcal{T}(), \mathcal{T}(x : X)$, and $\mathcal{T}(x : X, y : Y(x))$ are mode types (objects of \mathcal{D}) obtained as pullbacks of \mathcal{T} to these elements.

- The whole thing is obtained by repeatedly extending by a variable (X, Y, Z) belonging to a mode type that’s well-defined in the context of the previous variables.
If we have one comprehension object $\mathcal{I} \to \mathcal{C}$, a generic mode context (object of \mathcal{M}) looks something like this:

$$(X : \mathcal{I}()), (Y : \mathcal{I}(x : X)), (Z : \mathcal{I}(x : X, y : Y(x)))$$

This is a bit hard to parse, so here’s some help:

- $(_ : X)$, $(_ : X)$, and $(_ : X, y : Y(x))$ are elements of \mathcal{C}, represented by “mini-contexts”.
 - $(_ : \mathcal{C})$ is in the empty mode context.
 - $(_ : \mathcal{C})$ is in the mode context $(X : \mathcal{I}())$.
 - $(_ : \mathcal{C})$ in mode context $(X : \mathcal{I}()), (Y : \mathcal{I}(x : X))$.
- $\mathcal{I}(_), \mathcal{I}(x : X)$, and $\mathcal{I}(x : X, y : Y(x))$ are mode types (objects of \mathcal{D}) obtained as pullbacks of \mathcal{I} to these elements.
- The whole thing is obtained by repeatedly extending by a variable (X, Y, Z) belonging to a mode type that’s well-defined in the context of the previous variables.
If we have one comprehension object $\mathcal{T} \to \mathcal{C} \to$, a generic mode context (object of \mathcal{M}) looks something like this:

$$(X : \mathcal{T}()), (Y : \mathcal{T}(x : X)), (Z : \mathcal{T}(x : X, y : Y(x)))$$

This is a bit hard to parse, so here’s some help:

- (\cdot), $(x : X)$, and $(x : X, y : Y(x))$ are elements of \mathcal{C}, represented by “mini-contexts”.
 - $(\cdot) : \mathcal{C}$ is in the empty mode context.
 - $(x : X) : \mathcal{C}$ is in the mode context $(X : \mathcal{T}())$.
 - $(x : X, y : Y(x))$ in mode context $(X : \mathcal{T}()), (Y : \mathcal{T}(x : X))$.

- $\mathcal{T}(), \mathcal{T}(x : X)$, and $\mathcal{T}(x : X, y : Y(x))$ are mode types (objects of \mathcal{D}) obtained as pullbacks of \mathcal{T} to these elements.

- The whole thing is obtained by repeatedly extending by a variable (X, Y, Z) belonging to a mode type that’s well-defined in the context of the previous variables.
If we have one comprehension object \(\mathcal{I} \rightarrow \mathcal{C} \), a generic mode context (object of \(\mathcal{M} \)) looks something like this:

\[
(X : \mathcal{I}()), (Y : \mathcal{I}(x : X)), (Z : \mathcal{I}(x : X, y : Y(x)))
\]

This is a bit hard to parse, so here’s some help:

- (), \((x : X)\), and \((x : X, y : Y(x))\) are elements of \(\mathcal{C} \), represented by “mini-contexts”.
 - () : \(\mathcal{C} \) is in the empty mode context.
 - \((x : X) : \mathcal{C}\) is in the mode context \((X : \mathcal{I}())\).
 - \((x : X, y : Y(x))\) in mode context \((X : \mathcal{I}()), (Y : \mathcal{I}(x : X))\).
- \(\mathcal{I}()\), \(\mathcal{I}(x : X)\), and \(\mathcal{I}(x : X, y : Y(x))\) are mode types (objects of \(\mathcal{D} \)) obtained as pullbacks of \(\mathcal{I} \) to these elements.
- The whole thing is obtained by repeatedly extending by a variable \((X, Y, Z)\) belonging to a mode type that’s well-defined in the context of the previous variables.
If we have one comprehension object \(T \to C \), a generic mode context (object of \(M \)) looks something like this:

\[
(X : T()), (Y : T(x : X)), (Z : T(x : X, y : Y(x)))
\]

This is a bit hard to parse, so here’s some help:

- \(() \), \((x : X) \), and \((x : X, y : Y(x)) \) are elements of \(C \), represented by “mini-contexts”.
 - \(() : C \) is in the empty mode context.
 - \((x : X) : C \) is in the mode context \((X : T()) \).
 - \((x : X, y : Y(x)) \) in mode context \((X : T()), (Y : T(x : X)) \).
- \(T() \), \(T(x : X) \), and \(T(x : X, y : Y(x)) \) are mode types (objects of \(D \)) obtained as pullbacks of \(T \) to these elements.
- The whole thing is obtained by repeatedly extending by a variable \((X, Y, Z) \) belonging to a mode type that’s well-defined in the context of the previous variables.
If we have one comprehension object $\mathcal{T} \to \mathcal{C} \to$, a generic mode context (object of \mathcal{M}) looks something like this:

$$(X : \mathcal{T}()), (Y : \mathcal{T}(x : X)), (Z : \mathcal{T}(x : X, y : Y(x)))$$

This is a bit hard to parse, so here’s some help:

- $()$, $(x : X)$, and $(x : X, y : Y(x))$ are elements of \mathcal{C}, represented by “mini-contexts”.
 - $() : \mathcal{C}$ is in the empty mode context.
 - $(x : X) : \mathcal{C}$ is in the mode context $(X : \mathcal{T}())$.
 - $(x : X, y : Y(x))$ in mode context $(X : \mathcal{T}()), (Y : \mathcal{T}(x : X))$.

- $\mathcal{T}()$, $\mathcal{T}(x : X)$, and $\mathcal{T}(x : X, y : Y(x))$ are mode types (objects of \mathcal{D}) obtained as pullbacks of \mathcal{T} to these elements.

- The whole thing is obtained by repeatedly extending by a variable (X, Y, Z) belonging to a mode type that’s well-defined in the context of the previous variables.
Inverse categories via mini-contexts

[cf. Tsementzis–Weaver, *Finite Inverse Categories as Signatures*]

<table>
<thead>
<tr>
<th>Mode context</th>
<th>Inverse category</th>
</tr>
</thead>
<tbody>
<tr>
<td>((X : \mathcal{T}()), (Y : \mathcal{T}(x : X)))</td>
<td>(X \leftrightarrow Y)</td>
</tr>
<tr>
<td>((X : \mathcal{T}()), (Y : \mathcal{T}(x : X)), (Z : \mathcal{T}(x : X, y : Y(x))))</td>
<td>(X \leftrightarrow Y \leftrightarrow Z)</td>
</tr>
<tr>
<td>((X : \mathcal{T}()), (Y : \mathcal{T}(x : X, x' : X)))</td>
<td>(X \models Y)</td>
</tr>
<tr>
<td>((X : \mathcal{T}()), (Y : \mathcal{T}()), (Z : \mathcal{T}(x : X, y : Y)))</td>
<td>(X \leftrightarrow Y)</td>
</tr>
<tr>
<td>((X : \mathcal{T}()), (Y : \mathcal{T}(x : X)), (Z : \mathcal{T}(x : X)))</td>
<td>(X \leftrightarrow Z)</td>
</tr>
<tr>
<td>((X : \mathcal{T}()), (Y : \mathcal{T}(x : X)), (Z : \mathcal{T}(x : X)),) ((W : \mathcal{T}(x : X, y : Y(x), z : Z(x))))</td>
<td>(X \leftrightarrow Y \leftrightarrow W)</td>
</tr>
</tbody>
</table>
Inverse categories via mini-contexts

[cf. Tsementzis–Weaver, *Finite Inverse Categories as Signatures*]

<table>
<thead>
<tr>
<th>Mode context</th>
<th>Inverse category</th>
</tr>
</thead>
<tbody>
<tr>
<td>((X : \mathcal{I}()), (Y : \mathcal{I}(x : X)))</td>
<td>(X \leftarrow Y)</td>
</tr>
<tr>
<td>((X : \mathcal{I}()), (Y : \mathcal{I}(x : X)), (Z : \mathcal{I}(x : X, y : Y(x))))</td>
<td>(X \leftarrow Y \leftarrow Z)</td>
</tr>
<tr>
<td>((X : \mathcal{I}()), (Y : \mathcal{I}(x : X, x' : X)))</td>
<td>(X \subseteq Y)</td>
</tr>
<tr>
<td>((X : \mathcal{I}()), (Y : \mathcal{I}()), (Z : \mathcal{I}(x : X, y : Y)))</td>
<td>(X \leftarrow Z)</td>
</tr>
<tr>
<td>((X : \mathcal{I}()), (Y : \mathcal{I}(x : X)), (Z : \mathcal{I}(x : X)))</td>
<td>(Y \leftarrow Z)</td>
</tr>
<tr>
<td>((X : \mathcal{I}()), (Y : \mathcal{I}(x : X)), (Z : \mathcal{I}(x : X)), (W : \mathcal{I}(x : X, y : Y(x), z : Z(x))))</td>
<td>(X \leftarrow Y \leftarrow Z \leftarrow W)</td>
</tr>
</tbody>
</table>
Inverse categories via mini-contexts

[cf. Tsementzis–Weaver, *Finite Inverse Categories as Signatures*]

<table>
<thead>
<tr>
<th>Mode context</th>
<th>Inverse category</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle X : \mathcal{T}(), Y : \mathcal{T}(x : X) \rangle$</td>
<td>$X \leftarrow Y$</td>
</tr>
<tr>
<td>$\langle X : \mathcal{T}(), Y : \mathcal{T}(x : X), Z : \mathcal{T}(x : X, y : Y(x)) \rangle$</td>
<td>$X \leftarrow Y \leftarrow Z$</td>
</tr>
<tr>
<td>$\langle X : \mathcal{T}(), Y : \mathcal{T}(x : X, x' : X) \rangle$</td>
<td>$X \sqsubseteq Y$</td>
</tr>
<tr>
<td>$\langle X : \mathcal{T}(), Y : \mathcal{T}(), Z : \mathcal{T}(x : X, y : Y) \rangle$</td>
<td>$X \leftarrow Z \leftarrow Y$</td>
</tr>
<tr>
<td>$\langle X : \mathcal{T}(), Y : \mathcal{T}(x : X), Z : \mathcal{T}(x : X) \rangle$</td>
<td>$X \leftarrow Y \leftarrow Z$</td>
</tr>
<tr>
<td>$\langle X : \mathcal{T}(), Y : \mathcal{T}(x : X), Z : \mathcal{T}(x : X), W : \mathcal{T}(x : X, y : Y(x), z : Z(x)) \rangle$</td>
<td>$X \leftarrow Y \leftarrow Z \leftarrow W$</td>
</tr>
</tbody>
</table>
Inverse categories via mini-contexts

[cf. Tsementzis–Weaver, *Finite Inverse Categories as Signatures*]

<table>
<thead>
<tr>
<th>Mode context</th>
<th>Inverse category</th>
</tr>
</thead>
<tbody>
<tr>
<td>((X : \mathcal{T}()), (Y : \mathcal{T}(x : X)))</td>
<td>(X \leftrightarrow Y)</td>
</tr>
<tr>
<td>((X : \mathcal{T}()), (Y : \mathcal{T}(x : X)), (Z : \mathcal{T}(x : X, y : Y(x))))</td>
<td>(X \leftrightarrow Y \leftrightarrow Z)</td>
</tr>
<tr>
<td>((X : \mathcal{T}()), (Y : \mathcal{T}(x : X, x' : X)))</td>
<td>(X \equiv Y)</td>
</tr>
<tr>
<td>((X : \mathcal{T}()), (Y : \mathcal{T}()), (Z : \mathcal{T}(x : X, y : Y)))</td>
<td>(X \leftrightarrow Z)</td>
</tr>
<tr>
<td>((X : \mathcal{T}()), (Y : \mathcal{T}(x : X)), (Z : \mathcal{T}(x : X)))</td>
<td>(X \leftrightarrow Y)</td>
</tr>
<tr>
<td>((X : \mathcal{T}()), (Y : \mathcal{T}(x : X)), (Z : \mathcal{T}(x : X)), (W : \mathcal{T}(x : X, y : Y(x), z : Z(x))))</td>
<td>(X \leftrightarrow Y \leftrightarrow Z \leftrightarrow W)</td>
</tr>
</tbody>
</table>
Inverse categories via mini-contexts

[cf. Tsmentzis–Weaver, *Finite Inverse Categories as Signatures*]

<table>
<thead>
<tr>
<th>Mode context</th>
<th>Inverse category</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(X : \mathcal{C}()), (Y : \mathcal{C}(x : X))$</td>
<td>$X \leftrightarrow Y$</td>
</tr>
<tr>
<td>$(X : \mathcal{C}()), (Y : \mathcal{C}(x : X)), (Z : \mathcal{C}(x : X, y : Y(x)))$</td>
<td>$X \leftrightarrow Y \leftrightarrow Z$</td>
</tr>
<tr>
<td>$(X : \mathcal{C}()), (Y : \mathcal{C}(x : X, x' : X))$</td>
<td>$X \leftrightarrow Y$</td>
</tr>
<tr>
<td>$(X : \mathcal{C}()), (Y : \mathcal{C}()), (Z : \mathcal{C}(x : X, y : Y))$</td>
<td>$X \leftrightarrow Z$</td>
</tr>
<tr>
<td>$(X : \mathcal{C}()), (Y : \mathcal{C}(x : X)), (Z : \mathcal{C}(x : X))$</td>
<td>$Y \leftrightarrow Z$</td>
</tr>
<tr>
<td>$(X : \mathcal{C}()), (Y : \mathcal{C}(x : X)), (Z : \mathcal{C}(x : X)),$</td>
<td>$X \leftrightarrow Y$</td>
</tr>
<tr>
<td>$(W : \mathcal{C}(x : X, y : Y(x), z : Z(x)))$</td>
<td>$X \leftrightarrow Z \leftrightarrow W$</td>
</tr>
</tbody>
</table>
Inverse categories via mini-contexts

[cf. Tsementzis–Weaver, *Finite Inverse Categories as Signatures*]

<table>
<thead>
<tr>
<th>Mode context</th>
<th>Inverse category</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(X : \mathcal{I}())$, $(Y : \mathcal{I}(x : X))$</td>
<td>$X \leftarrow Y$</td>
</tr>
<tr>
<td>$(X : \mathcal{I}())$, $(Y : \mathcal{I}(x : X))$, $(Z : \mathcal{I}(x : X, y : Y(x)))$</td>
<td>$X \leftarrow Y \leftarrow Z$</td>
</tr>
<tr>
<td>$(X : \mathcal{I}())$, $(Y : \mathcal{I}(x : X, x' : X))$</td>
<td>$X \leq Y$</td>
</tr>
<tr>
<td>$(X : \mathcal{I}())$, $(Y : \mathcal{I}())$, $(Z : \mathcal{I}(x : X, y : Y))$</td>
<td></td>
</tr>
<tr>
<td>$(X : \mathcal{I}())$, $(Y : \mathcal{I}(x : X))$, $(Z : \mathcal{I}(x : X))$</td>
<td></td>
</tr>
<tr>
<td>$(X : \mathcal{I}())$, $(Y : \mathcal{I}(x : X))$, $(Z : \mathcal{I}(x : X))$, $(W : \mathcal{I}(x : X, y : Y(x), z : Z(x)))$</td>
<td>$X \leftarrow Y \leftarrow W$</td>
</tr>
</tbody>
</table>

$\mathcal{I}()$ represents a context, and $\mathcal{I}(x : X)$ represents a context with a single variable x of type X. The mode context $(X : \mathcal{I}())$ indicates that X is a type without any context. The notation $X \leftarrow Y$ represents an inverse category relation between X and Y.
Inverse categories via mini-contexts

[cf. Tsementzis–Weaver, *Finite Inverse Categories as Signatures*]

<table>
<thead>
<tr>
<th>Mode context</th>
<th>Inverse category</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(X : \mathcal{I}()), (Y : \mathcal{I}(x : X))$</td>
<td>$X \leftarrow Y$</td>
</tr>
<tr>
<td>$(X : \mathcal{I}()), (Y : \mathcal{I}(x : X)), (Z : \mathcal{I}(x : X, y : Y(x)))$</td>
<td>$X \leftarrow Y \leftarrow Z$</td>
</tr>
<tr>
<td>$(X : \mathcal{I}()), (Y : \mathcal{I}(x : X, x' : X))$</td>
<td>$X \equiv Y$</td>
</tr>
<tr>
<td>$(X : \mathcal{I}()), (Y : \mathcal{I}()), (Z : \mathcal{I}(x : X, y : Y))$</td>
<td>$X \leftarrow Y$</td>
</tr>
<tr>
<td>$(X : \mathcal{I}()), (Y : \mathcal{I}(x : X)), (Z : \mathcal{I}(x : X))$</td>
<td>$X \leftarrow Y$</td>
</tr>
<tr>
<td>$(X : \mathcal{I}()), (Y : \mathcal{I}(x : X)), (Z : \mathcal{I}(x : X)), (W : \mathcal{I}(x : X, y : Y(x), z : Z(x)))$</td>
<td>$X \leftarrow Y \leftarrow W \leftarrow Z$</td>
</tr>
</tbody>
</table>
Dependent type theory over dependent type 2-theory

Semantically, we have a **fibration of comprehension 2-categories** over $\mathcal{D} \to \mathcal{M}$→. Syntactically, we have judgments-over-judgments:

\[(a : A), (b : B(a)) \vdash C(a, b) \text{ type}\]
\[(X : \mathcal{I}()), (Y : \mathcal{I}(x : X)) \vdash \mathcal{I}(x : X, y : Y(x)) \text{ mode}\]

\[(a : A), (b : B) \vdash C(a, b) \text{ type}\]
\[(X : \mathcal{I}()), (Y : \mathcal{I}()) \vdash \mathcal{I}(x : X, y : Y) \text{ mode}\]

\[(a : A), (b : B(a)) \vdash C(a)\]
\[(X : \mathcal{I}()), (Y : \mathcal{I}(x : X)) \vdash \mathcal{I}(x : X) \text{ mode}\]
Now suppose we have two comprehension objects $\mathcal{T}_s \to C_s$ and $\mathcal{T}_e \to C_e$, with a “comprehension morphism” consisting of terms

\[
(\Gamma : C_s) \vdash p\Gamma : C_e
\]

\[
(\Gamma : C_s), (X : \mathcal{T}_s(\Gamma)) \vdash pX : \mathcal{T}_e(p\Gamma)
\]

which “commute with comprehension”. We have a “purely s” 2-DTT and a “purely e” 2-DTT, plus e.g.

<table>
<thead>
<tr>
<th>Mode context</th>
<th>“Inverse category”</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(X : \mathcal{T}_s())$, $(Y : \mathcal{T}_e(x : pX))$</td>
<td>$p^*(X) \leftarrow Y$</td>
</tr>
<tr>
<td>$(X : \mathcal{T}_s())$, $(Y : \mathcal{T}_e(x : pX))$,</td>
<td>$p^*(X) \leftarrow Y \leftarrow Z$</td>
</tr>
<tr>
<td>$(Z : \mathcal{T}_e(x : pX, y : Y(x)))$</td>
<td>$p^(X) \leftarrow p^(Y) \leftarrow Z$</td>
</tr>
<tr>
<td>$(X : \mathcal{T}_s())$, $(Y : \mathcal{T}_s(x : X))$,</td>
<td>$p^(X) \leftarrow p^(Y)$</td>
</tr>
<tr>
<td>$(Z : \mathcal{T}_e(x : pX, y : pY(x)))$</td>
<td>$p^*(Y) \leftarrow Z$</td>
</tr>
<tr>
<td>$(X : \mathcal{T}_s())$, $(Y : \mathcal{T}_e(x : pX))$,</td>
<td>$p^(X) \leftarrow p^(Y)$</td>
</tr>
<tr>
<td>$(Z : \mathcal{T}_s(x : X))$</td>
<td>$p^*(Y) \leftarrow Z$</td>
</tr>
</tbody>
</table>
Now suppose we have two comprehension objects $\mathcal{T}_s \rightarrow \mathcal{C}_s^\to$ and $\mathcal{T}_e \rightarrow \mathcal{C}_e^\to$, with a “comprehension morphism” consisting of terms

$$(\Gamma : \mathcal{C}_s) \vdash p\Gamma : \mathcal{C}_e$$

$$(\Gamma : \mathcal{C}_s), (X : \mathcal{T}_s(\Gamma)) \vdash pX : \mathcal{T}_e(p\Gamma)$$

which “commute with comprehension”. We have a “purely s” 2-DTT and a “purely e” 2-DTT, plus e.g.

<table>
<thead>
<tr>
<th>Mode context</th>
<th>“Inverse category”</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(X : \mathcal{T}_s())$, $(Y : \mathcal{T}_e(x : pX))$</td>
<td>$p^*(X) \leftarrow Y$</td>
</tr>
<tr>
<td>$(X : \mathcal{T}_s())$, $(Y : \mathcal{T}_e(x : pX))$, $(Z : \mathcal{T}_e(x : pX, y : Y(x)))$</td>
<td>$p^*(X) \leftarrow Y \leftarrow Z$</td>
</tr>
<tr>
<td>$(X : \mathcal{T}_s())$, $(Y : \mathcal{T}_s(x : X))$, $(Z : \mathcal{T}_e(x : pX, y : pY(x)))$</td>
<td>$p^(X) \leftarrow p^(Y) \leftarrow Z$</td>
</tr>
<tr>
<td>$(X : \mathcal{T}_s())$, $(Y : \mathcal{T}_e(x : pX))$, $(Z : \mathcal{T}_s(x : X))$</td>
<td>$p^(X) \leftarrow p^(Y)$</td>
</tr>
</tbody>
</table>
Dependent type 2-theory for an adjunction

Now suppose we have two comprehension objects \(\mathcal{T}_s \to \mathcal{C}_s \rightarrow \) and \(\mathcal{T}_e \to \mathcal{C}_e \rightarrow \), with a “comprehension morphism” consisting of terms

\[
(\Gamma : \mathcal{C}_s) \vdash p\Gamma : \mathcal{C}_e \\
(\Gamma : \mathcal{C}_s), (X : \mathcal{T}_s(\Gamma)) \vdash pX : \mathcal{T}_e(p\Gamma)
\]

which “commute with comprehension”. We have a “purely \(s \)” 2-DTT and a “purely \(e \)” 2-DTT, plus e.g.

<table>
<thead>
<tr>
<th>Mode context</th>
<th>“Inverse category”</th>
</tr>
</thead>
<tbody>
<tr>
<td>((X : \mathcal{T}_s()), (Y : \mathcal{T}_e(x : pX)))</td>
<td>(p^*(X) \leftarrow Y)</td>
</tr>
<tr>
<td>((X : \mathcal{T}_s()), (Y : \mathcal{T}_e(x : pX)), (Z : \mathcal{T}_e(x : pX, y : Y(x))))</td>
<td>(p^*(X) \leftarrow Y \leftarrow Z)</td>
</tr>
<tr>
<td>((X : \mathcal{T}_s()), (Y : \mathcal{T}_s(x : X)), (Z : \mathcal{T}_e(x : pX, y : pY(x))))</td>
<td>(p^(X) \leftarrow p^(Y) \leftarrow Z)</td>
</tr>
<tr>
<td>((X : \mathcal{T}_s()), (Y : \mathcal{T}_e(x : pX)), (Z : \mathcal{T}_s(x : X)))</td>
<td>(p^(X) \leftarrow) (p^(Y)) (\leftarrow Z)</td>
</tr>
</tbody>
</table>
Now suppose we have two comprehension objects $\mathcal{T}_s \to \mathcal{C}_s$ and $\mathcal{T}_e \to \mathcal{C}_e$, with a “comprehension morphism” consisting of terms

$$(\Gamma : \mathcal{C}_s) \vdash p\Gamma : \mathcal{C}_e$$

$$(\Gamma : \mathcal{C}_s), (X : \mathcal{T}_s(\Gamma)) \vdash pX : \mathcal{T}_e(p\Gamma)$$

which “commute with comprehension”. We have a “purely s” 2-DTT and a “purely e” 2-DTT, plus e.g.

<table>
<thead>
<tr>
<th>Mode context</th>
<th>“Inverse category”</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(X : \mathcal{T}_s()), (Y : \mathcal{T}_e(x : pX))$</td>
<td>$p^*(X) \leftarrow Y$</td>
</tr>
<tr>
<td>$(X : \mathcal{T}_s()), (Y : \mathcal{T}_e(x : pX)), (Z : \mathcal{T}_e(x : pX, y : Y(x)))$</td>
<td>$p^*(X) \leftarrow Y \leftarrow Z$</td>
</tr>
<tr>
<td>$(X : \mathcal{T}_s()), (Y : \mathcal{T}_s(x : X)), (Z : \mathcal{T}_e(x : pX, y : pY(x)))$</td>
<td>$p^(X) \leftarrow p^(Y) \leftarrow Z$</td>
</tr>
<tr>
<td>$(X : \mathcal{T}_s()), (Y : \mathcal{T}_e(x : pX)), (Z : \mathcal{T}_s(x : X))$</td>
<td>$p^(X) \leftarrow p^(Y)$</td>
</tr>
<tr>
<td></td>
<td>Z</td>
</tr>
</tbody>
</table>

Dependent type 2-theory for an adjunction
Now suppose we have two comprehension objects $\mathcal{T}_s \to \mathcal{C}_s$ and $\mathcal{T}_e \to \mathcal{C}_e$, with a “comprehension morphism” consisting of terms

$$(\Gamma : \mathcal{C}_s) \vdash p\Gamma : \mathcal{C}_e$$

$$(\Gamma : \mathcal{C}_s), (X : \mathcal{T}_s(\Gamma)) \vdash pX : \mathcal{T}_e(p\Gamma)$$

which “commute with comprehension”. We have a “purely s” 2-DTT and a “purely e” 2-DTT, plus e.g.

<table>
<thead>
<tr>
<th>Mode context</th>
<th>“Inverse category”</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(X : \mathcal{T}_s())$, $(Y : \mathcal{T}_e(x : pX))$</td>
<td>$p^*(X) \leftarrow Y$</td>
</tr>
<tr>
<td>$(X : \mathcal{T}_s())$, $(Y : \mathcal{T}_e(x : pX))$, $(Z : \mathcal{T}_e(x : pX, y : Y(x)))$</td>
<td>$p^*(X) \leftarrow Y \leftarrow Z$</td>
</tr>
<tr>
<td>$(X : \mathcal{T}_s())$, $(Y : \mathcal{T}_s(x : X))$, $(Z : \mathcal{T}_e(x : pX, y : pY(x)))$</td>
<td>$p^(X) \leftarrow p^(Y) \leftarrow Z$</td>
</tr>
<tr>
<td>$(X : \mathcal{T}_s())$, $(Y : \mathcal{T}_e(x : pX))$, $(Z : \mathcal{T}_s(x : X))$</td>
<td>$p^(X) \leftarrow p^(Y)$</td>
</tr>
</tbody>
</table>
Dependent type theory for an adjunction

\[(x : X)_5, \quad (a : A(x))_e \quad \vdash \quad B(x, a) \text{ type}_e\]
\[(X : \mathcal{I}_5()), \quad (Y : \mathcal{I}_e(x : p(X))) \quad \vdash \quad \mathcal{I}_e(x : p(X), y : Y(x)) \text{ mode}\]

\[(x : X)_5, \quad (y : Y(x))_5 \quad \vdash \quad A(x, y) \text{ type}_e\]
\[(X : \mathcal{I}_5()), \quad (Y : \mathcal{I}_5(x : X)) \quad \vdash \quad \mathcal{I}_e(x : p(X), y : p(Y)(x)) \text{ mode}\]

\[(x : X)_5, \quad (a : A(x))_e \quad \vdash \quad B(x) \text{ type}_5\]
\[(X : \mathcal{I}_5()), \quad (Y : \mathcal{I}_e(x : p(X))) \quad \vdash \quad \mathcal{I}_5(x : X) \text{ mode}\]
The 2-dimensional aspect of 2-DTT

\[(X : \mathcal{T}()) \mid (x : X) \vdash (x, x) : (x_1 : X, x_2 : X) : \mathcal{C} \]

\[(X : \mathcal{T}()) \Downarrow (x,x) \]

\[\Downarrow (x_1:X, x_2:X) \]

as well as generating 2-cells between generating mode morphisms:

\[(X : \mathcal{T}_m()) \mid (x : pX) \vdash u(x) : qX : \mathcal{T}_n() \]

\[(X : \mathcal{T}_m()) \Downarrow u \]

\[\Downarrow qX \]
Suppose comprehension objects labeled m, n, e with morphisms

$$p : m \to n \quad q : n \to e \quad r : m \to e$$

and a 2-cell $u : r \Rightarrow qp$. Then we have a mode context

$$(X : \mathcal{T}_m()), (Y : \mathcal{T}_n(x : pX)), (Z : \mathcal{T}_e(x : rX, y : qY(u(x))))$$

Note how the type of Z typechecks: $x : rX$, so $u(x) : qp(X)$ which is what qY depends on.
Modal dependency, semantically

\[(a : A)_m, \ (b : B(a))_n \vdash C(a, b) \text{ type}_e\]
\[(X : \mathcal{T}_m()), \ (Y : \mathcal{T}_n(x : pX)) \vdash (Z : \mathcal{T}_e(x : rX, y : qY(u(x)))) \text{ mode}\]

In general, what we get semantically is the oplax limit of an oplax diagram of comprehension categories.
All kinds of “type doctrines”, including geometric morphisms, modalities, non-cartesian monoidal structures, and all kinds of dependency, can be expressed syntactically as “dependent type 2-theories”.

Each such 2-theory generates a class of 1-theories that specialize to “dependent modal type theories” for describing structures on, and diagrams of, $(\infty, 1)$-toposes.

We can hope to prove metatheorems like canonicity and initiality once and for all, and then simply specialize them to every new 2-theory.