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Overview

> Syllepsis
» Higher encode decode method
» A theorem about K(Z/2, n)
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Part 1. Syllepsis
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Theorem (The Eckmann-Hilton argument)
For any k > 2 and any pointed type X, the homotopy group

mk(X)

is abelian.
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Proof

There are two concatenation operations on paths of paths:

all
Bl

v

ol

(L
B

l.e., we have vertical composition « e 3 and horizontal composition
« o ~y. They satisfy

interchange(a 5,,6) : ((a# B) o (7 #8)) = (o) » (80 )
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Now we can construct an identification

eckmann-hilton(s,t) :set=tes

for any s, t : refl = refl by the following calculation:

set = (sorefl) e (reflot)
= (s e refl) o (refl o t)
=sot
= (refl @ 5) o (t @ refl)
= (refl o t) e (s o refl)

=tes.
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Syllepsis is an identification

eckmann-hilton(s, t) e eckmann-hilton(t, s) = refl

In order to construct it, we will use the following:

>

VvYvyVvYvyy

| 2

Three concatenation operations on the third identity type

A fourth concatenation operation on the fourth identity type
Unit laws for all of them

Interchange laws between all of them

Unit laws for the interchange law

A coherence law between the three interchange laws
Simplifications to the special case of Q3.

Persistence

Kristina Sojakova recently formalized this result in a much more
efficient way.
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Definition
For any binary operation f : A — B — C there is a binary action
on paths

ap-bins : (x =x") = (y = y') = (f(x,y) = (X', y")).

The binary action on paths induces n concatenation operations on
the n-th identity type:
> For any x,y,z: A we have

—e—i(x=y)=(y=2)— (x=2).

On the third identity type, this gives a concatenation

operation

x (== v

N\
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» Forany x,y,z:Aandany p,p’: x=yand q,q' : y = z we
have

—o—:(p=p)=(g=4q)—= (peg=p'oq)

On the third identity type, this gives an operation

AON
NOY;

9/29



» On the third identity type, we can now define a third
concatenation operation

—x-i(a=d) > (B=p) > (aof=0d0f)

forany a,a/ :p=p',any 3,8 :qg=4q, p,p' : x =y and

q,q 1y =1z

= =

\J\/

These definitions can be given uniformly by coinduction, using
globular types.
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We have three interchange laws, one for each pair of operations e,

o, and x:
| 2

For any p,q,r: x=y,any o, 8,v: p=gq, any 6,6,( : g = r,
andanyo:a=08,7:8=7vv:0=¢ and ¢:ec=C(, we
have an identification

(cor)o(ved)=(sov)e(rog).
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STTNN 7 1NN

Forany p,q:x=y, u,v:y=2z o,08,7:p=aq,
be,(:u=v,o:a=06,7:f=vv:0=¢€and ¢:ec=_,
we have an identification

(coT)x(veg)=(0xv)e(T*0p).
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and an interchange law that states that the square

interchange(a,vy,¢,m)

(aey)o(cen) (ace)e(yomn)

(ooT)x(vog) (o*v)o(T*¢)
(5 * 5) © (C * 0) interchange(/3,6,¢,0) (/6 © C) * (6 © 0)
commutes.
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Lemma
For any a, B,7,8,¢,(,n,0 : Q3(X), we have a commuting hexagon

((aep)o(ved))*((ce)o(ned))

/

((a e B) x(e0())o((yed)*(neb)) ((aov)e(Bod))x((con)e (b))

| |

((axe)e(BxC))o((yxn)e(dx0)) ((aoy)*(eon))e((Bod)*(Co0))

\ /

((axe)o(yxmn))e((6xC)eo(dx0))
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Lemma

For any s, t : Q3(X), we have four commuting triangles:

sxt

/N

Ssot —— set

Sxt

/N

tos —— set

sxt

/N

sot —— tes

Sxt

/N

tos ——> tes
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Theorem (Syllepsis)
For any s, t : Q3(X), we have

eckmann-hilton(s, t) e eckmann-hilton(t, s) = refl.

Proof.
Skt
1 \\
Set sot tes tos Set
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Part 2. A higher encode decode method
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The encode decode method

Theorem (The fundamental theorem of identity types)

Consider a type A with base point a: A. Let B be a type family
over A equipped with a point b : B(a). Then the following are
equivalent:

1. Any family of maps (in particular the canonical family of
maps)
(a = x) = B(x)

indexed by x : A, is a family of equivalences.

2. The type
> B(x)
(x:A)

is contractible.

3. The family B is a (unary) identity system on A.
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Theorem

Let X be a pointed type. Let P be a family of (n+ 1)-truncated
types over || X||, equipped with a commuting triangle

2 lixtlny P(X)

1
- l

X ——— [IX[ln-
If f is (n + 1)-connected, then

P(n(x0)) =~ K(mn+1(X), n+1).
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Proof.
The type >~ .(ix|I) P(x? is (.n + 1)-truncated, so any
(n + 1)-connected map into it is an (n + 1)-truncation. Therefore

we have
X

X ixny PO — [IX[ln+1

NS

X[

and by the bottom triangle we obtain the fiberwise equivalence

that induces
P(n(x0)) = K(mns1(X),n+1). =
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The higher encode decode method

To show that m,4+1(X) = G, we can proceed as follows:

1. Define a pointed map

PolXlln— D IK(G,n+1)=X]|
(X:U)

2. Construct a commuting triangle

2 lx(lm) P(X)

1
-
-
-
-
-
-~
-
-

X ——— Xl

such that f is (n + 1)-connected.
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To apply this method in general, we need:

» A universal property of 1 : X — || X||, with respect to
(n 4+ 2)-types. In general, the map

(IX[[n = Y) = (X = Y)

is O-truncated, if Y is (n + 2)-truncated.

» A dependent universal property of 1 : X — || X||, with respect
o (n+ 1)-types.
> A good handle on the type

=Y |K(G,n)~X]|.

(X:U)

The first two would be generalisations of results of Kraus. The
space EM(G, n) is studied by Scoccola.

23/29



Part 3. A theorem about K(Z/2, n).
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Theorem

K(Z/2,n+ 1)~ > ||K(Z/2,n) ~ X||
(X:U)
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Theorem

K(Z/2,n+ 1)~ > ||K(Z/2,n) ~ X||
(X:U)

Lemma (Buchholtz, van Doorn, Rijke)

Let n > 1. For any two groups G and H (required to be both
abelian in case n > 2) there is an equivalence

Grp(G, H) ~ > F(x) = *.

(f:K(G,n)—K(H,n))

Furthermore, there is an equivalence

(G=H)~ Y e(x)=x

(e:K(G,n)~K(H,n))
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Proof. It suffices to show that the type

> > X

(X:u) (p:|IK(Z/2,m)~X]|)

is contractible. In the case n = 0 this is a theorem of Buchholtz
and Rijke. We may therefore assume n > 0, and in particular that
K(Z/2, n) is connected.

» Center of contraction: (K(Z/2, n),n(id), *).
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» Contraction: Let X : U such that ||K(Z/2,n) ~ X|| and
x : X. Now it suffices to show that

Z e(x) = x
(e:K(Z/2,n)~=X)

is contractible. Since that is a proposition, we may assume
e: K(Z/2,n) ~ X, and that e(x) = x. Therefore it suffices to

show that
Z e(x) = x

(e:K(Z/2,n)~K(Z/2,n))

is contractible. By the lemma, this type is equivalent to the
type of group isomorphisms

7)2=7)2. O
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Corollary
For any n: N we have

K(Z/2,n) ~ (K(Z/2, n) ~ K(Z/2, n)).
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Corollary
Any fiber sequence K(Z/2,4) — E — ||S3||3 is equivalently
described by a map

K(Z,3) — K(Z/2,5)
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