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Part 1. Syllepsis

3 / 29



Theorem (The Eckmann-Hilton argument)

For any k ≥ 2 and any pointed type X , the homotopy group

πk(X )

is abelian.
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Proof

There are two concatenation operations on paths of paths:

x y z
α ⇓

β ⇓

γ ⇓

δ ⇓

I.e., we have vertical composition α • β and horizontal composition
α ◦ γ. They satisfy

interchange(α, β, γ, δ) : ((α • β) ◦ (γ • δ)) = ((α ◦ γ) • (β ◦ δ))
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.
Now we can construct an identification

eckmann-hilton(s, t) : s • t = t • s

for any s, t : refl = refl by the following calculation:

s • t = (s ◦ refl) • (refl ◦ t)

= (s • refl) ◦ (refl • t)

= s ◦ t
= (refl • s) ◦ (t • refl)

= (refl ◦ t) • (s ◦ refl)

= t • s.
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Syllepsis is an identification

eckmann-hilton(s, t) • eckmann-hilton(t, s) = refl

In order to construct it, we will use the following:

I Three concatenation operations on the third identity type

I A fourth concatenation operation on the fourth identity type

I Unit laws for all of them

I Interchange laws between all of them

I Unit laws for the interchange law

I A coherence law between the three interchange laws

I Simplifications to the special case of Ω3.

I Persistence

Kristina Sojakova recently formalized this result in a much more
efficient way.

7 / 29



Definition
For any binary operation f : A→ B → C there is a binary action
on paths

ap-binf : (x = x ′)→ (y = y ′)→ (f (x , y) = f (x ′, y ′)).

The binary action on paths induces n concatenation operations on
the n-th identity type:

I For any x , y , z : A we have

– • – : (x = y)→ (y = z)→ (x = z).

On the third identity type, this gives a concatenation
operation

x yV V
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I For any x , y , z : A and any p, p′ : x = y and q, q′ : y = z we
have

– ◦ – : (p = p′)→ (q = q′)→ (p • q = p′ ◦ q′)

On the third identity type, this gives an operation

x y

V

V
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I On the third identity type, we can now define a third
concatenation operation

– ∗ – : (α = α′)→ (β = β′)→ (α ◦ β = α′ ◦ β′)

for any α, α′ : p = p′, any β, β′ : q = q′, p, p′ : x = y and
q, q′ : y = z .

x y zV V

These definitions can be given uniformly by coinduction, using
globular types.
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We have three interchange laws, one for each pair of operations •,
◦, and ∗:
I

x y

V V

V V

For any p, q, r : x = y , any α, β, γ : p = q, any δ, ε, ζ : q = r ,
and any σ : α = β, τ : β = γ, ν : δ = ε, and φ : ε = ζ, we
have an identification

(σ • τ) ◦ (ν • φ) = (σ ◦ ν) • (τ ◦ φ).
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I

x y zV V V V

For any p, q : x = y , u, v : y = z , α, β, γ : p = q,
δ, ε, ζ : u = v , σ : α = β, τ : β = γ, ν : δ = ε, and φ : ε = ζ,
we have an identification

(σ • τ) ∗ (ν • φ) = (σ ∗ ν) • (τ ∗ φ).
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I

x y z

V

V

V

V

and an interchange law that states that the square

(α • γ) ◦ (ε • η) (α ◦ ε) • (γ ◦ η)

(β • δ) ◦ (ζ • θ) (β ◦ ζ) • (δ ◦ θ)

(σ◦τ)∗(ν◦φ)

interchange(α,γ,ε,η)

(σ∗ν)◦(τ∗φ)

interchange(β,δ,ζ,θ)

commutes.
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x y z

V V

V V

V V

V V

14 / 29



Lemma
For any α, β, γ, δ, ε, ζ, η, θ : Ω3(X ), we have a commuting hexagon

((α • β) ◦ (γ • δ)) ∗ ((ε • ζ) ◦ (η • θ))

((α • β) ∗ (ε • ζ)) ◦ ((γ • δ) ∗ (η • θ)) ((α ◦ γ) • (β ◦ δ)) ∗ ((ε ◦ η) • (ζ ◦ θ))

((α ∗ ε) • (β ∗ ζ)) ◦ ((γ ∗ η) • (δ ∗ θ)) ((α ◦ γ) ∗ (ε ◦ η)) • ((β ◦ δ) ∗ (ζ ◦ θ))

((α ∗ ε) ◦ (γ ∗ η)) • ((β ∗ ζ) ◦ (δ ∗ θ))
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Lemma
For any s, t : Ω3(X ), we have four commuting triangles:

s ∗ t s ∗ t

s ◦ t s • t s ◦ t t • s

s ∗ t s ∗ t

t ◦ s s • t t ◦ s t • s
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Theorem (Syllepsis)

For any s, t : Ω3(X ), we have

eckmann-hilton(s, t) • eckmann-hilton(t, s) = refl.

Proof.

s ∗ t

s • t s ◦ t t • s t ◦ s s • t
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Part 2. A higher encode decode method
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The encode decode method

Theorem (The fundamental theorem of identity types)

Consider a type A with base point a : A. Let B be a type family
over A equipped with a point b : B(a). Then the following are
equivalent:

1. Any family of maps (in particular the canonical family of
maps)

(a = x)→ B(x)

indexed by x : A, is a family of equivalences.

2. The type ∑
(x :A)

B(x)

is contractible.

3. The family B is a (unary) identity system on A.
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Theorem
Let X be a pointed type. Let P be a family of (n + 1)-truncated
types over ‖X‖n equipped with a commuting triangle∑

(x :‖X‖n) P(x)

X ‖X‖n.

f

η

If f is (n + 1)-connected, then

P(η(x0)) ' K (πn+1(X ), n + 1).
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Proof.
The type

∑
(x :‖X‖n) P(x) is (n + 1)-truncated, so any

(n + 1)-connected map into it is an (n + 1)-truncation. Therefore
we have

X

∑
(x :‖X‖n) P(x) ‖X‖n+1

‖X‖n

'

and by the bottom triangle we obtain the fiberwise equivalence
that induces

P(η(x0)) ' K (πn+1(X ), n + 1).
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The higher encode decode method

To show that πn+1(X ) = G , we can proceed as follows:

1. Define a pointed map

P : ‖X‖n →
∑
(X :U)

‖K (G , n + 1) ' X‖

2. Construct a commuting triangle∑
(x :‖X‖n) P(x)

X ‖X‖n

f

η

such that f is (n + 1)-connected.
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To apply this method in general, we need:

I A universal property of η : X → ‖X‖n with respect to
(n + 2)-types. In general, the map

(‖X‖n → Y )→ (X → Y )

is 0-truncated, if Y is (n + 2)-truncated.

I A dependent universal property of η : X → ‖X‖n with respect
to (n + 1)-types.

I A good handle on the type

EM(G , n) :=
∑
(X :U)

‖K (G , n) ' X‖.

The first two would be generalisations of results of Kraus. The
space EM(G , n) is studied by Scoccola.
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Part 3. A theorem about K (Z/2, n).
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Theorem

K (Z/2, n + 1) '
∑
(X :U)

‖K (Z/2, n) ' X‖

Lemma (Buchholtz, van Doorn, Rijke)

Let n ≥ 1. For any two groups G and H (required to be both
abelian in case n ≥ 2) there is an equivalence

Grp(G ,H) '
∑

(f :K(G ,n)→K(H,n))

f (∗) = ∗.

Furthermore, there is an equivalence

(G ∼= H) '
∑

(e:K(G ,n)'K(H,n))

e(∗) = ∗.
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Theorem
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Proof. It suffices to show that the type∑
(X :U)

∑
(p:‖K(Z/2,n)'X‖)

X

is contractible. In the case n = 0 this is a theorem of Buchholtz
and Rijke. We may therefore assume n > 0, and in particular that
K (Z/2, n) is connected.

I Center of contraction: (K (Z/2, n), η(id), ∗).
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.
I Contraction: Let X : U such that ‖K (Z/2, n) ' X‖ and

x : X . Now it suffices to show that∑
(e:K(Z/2,n)'X )

e(∗) = x

is contractible. Since that is a proposition, we may assume
e : K (Z/2, n) ' X , and that e(∗) = x . Therefore it suffices to
show that ∑

(e:K(Z/2,n)'K(Z/2,n))

e(∗) = ∗

is contractible. By the lemma, this type is equivalent to the
type of group isomorphisms

Z/2 ∼= Z/2.
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Corollary

For any n : N we have

K (Z/2, n) ' (K (Z/2, n) ' K (Z/2, n)).
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Corollary

Any fiber sequence K (Z/2, 4) ↪→ E � ‖S3‖3 is equivalently
described by a map

K (Z, 3)→ K (Z/2, 5)
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