A higher encode decode method

Egbert Rijke

April 8th 2021

Overview

- Syllepsis
- Higher encode decode method
- A theorem about $K(\mathbb{Z} / 2, n)$

Part 1. Syllepsis

Theorem (The Eckmann-Hilton argument)
For any $k \geq 2$ and any pointed type X, the homotopy group

$$
\pi_{k}(X)
$$

is abelian.

Proof

There are two concatenation operations on paths of paths:

I.e., we have vertical composition $\alpha \bullet \beta$ and horizontal composition $\alpha \circ \gamma$. They satisfy
interchange $(\alpha, \beta, \gamma, \delta):((\alpha \bullet \beta) \circ(\gamma \bullet \delta))=((\alpha \circ \gamma) \bullet(\beta \circ \delta))$

Now we can construct an identification

$$
\text { eckmann-hilton }(s, t): s \bullet t=t \bullet s
$$

for any s, t : refl $=$ refl by the following calculation:

$$
\begin{aligned}
s \bullet t & =(s \circ \mathrm{refl}) \bullet(\mathrm{refl} \circ t) \\
& =(s \bullet \mathrm{refl}) \circ(\mathrm{refl} \bullet t) \\
& =s \circ t \\
& =(\mathrm{refl} \bullet s) \circ(t \bullet \mathrm{refl}) \\
& =(\mathrm{refl} \circ t) \bullet(s \circ \mathrm{refl}) \\
& =t \bullet s .
\end{aligned}
$$

Syllepsis is an identification

$$
\text { eckmann-hilton }(s, t) \bullet \text { eckmann-hilton }(t, s)=\text { refl }
$$

In order to construct it, we will use the following:

- Three concatenation operations on the third identity type
- A fourth concatenation operation on the fourth identity type
- Unit laws for all of them
- Interchange laws between all of them
- Unit laws for the interchange law
- A coherence law between the three interchange laws
- Simplifications to the special case of Ω^{3}.
- Persistence

Kristina Sojakova recently formalized this result in a much more efficient way.

Definition

For any binary operation $f: A \rightarrow B \rightarrow C$ there is a binary action on paths

$$
\operatorname{ap-bin}_{f}:\left(x=x^{\prime}\right) \rightarrow\left(y=y^{\prime}\right) \rightarrow\left(f(x, y)=f\left(x^{\prime}, y^{\prime}\right)\right)
$$

The binary action on paths induces n concatenation operations on the n-th identity type:

- For any x, y, z : A we have

$$
-\bullet-:(x=y) \rightarrow(y=z) \rightarrow(x=z)
$$

On the third identity type, this gives a concatenation operation

- For any $x, y, z: A$ and any $p, p^{\prime}: x=y$ and $q, q^{\prime}: y=z$ we have

$$
-\circ-:\left(p=p^{\prime}\right) \rightarrow\left(q=q^{\prime}\right) \rightarrow\left(p \bullet q=p^{\prime} \circ q^{\prime}\right)
$$

On the third identity type, this gives an operation

- On the third identity type, we can now define a third concatenation operation

$$
-*-:\left(\alpha=\alpha^{\prime}\right) \rightarrow\left(\beta=\beta^{\prime}\right) \rightarrow\left(\alpha \circ \beta=\alpha^{\prime} \circ \beta^{\prime}\right)
$$

for any $\alpha, \alpha^{\prime}: p=p^{\prime}$, any $\beta, \beta^{\prime}: q=q^{\prime}, p, p^{\prime}: x=y$ and $q, q^{\prime}: y=z$.

These definitions can be given uniformly by coinduction, using globular types.

We have three interchange laws, one for each pair of operations •, \circ, and *:

For any $p, q, r: x=y$, any $\alpha, \beta, \gamma: p=q$, any $\delta, \epsilon, \zeta: q=r$, and any $\sigma: \alpha=\beta, \tau: \beta=\gamma, \nu: \delta=\epsilon$, and $\phi: \epsilon=\zeta$, we have an identification

$$
(\sigma \bullet \tau) \circ(\nu \bullet \phi)=(\sigma \circ \nu) \bullet(\tau \circ \phi)
$$

For any $p, q: x=y, u, v: y=z, \alpha, \beta, \gamma: p=q$,
$\delta, \epsilon, \zeta: u=v, \sigma: \alpha=\beta, \tau: \beta=\gamma, \nu: \delta=\epsilon$, and $\phi: \epsilon=\zeta$, we have an identification

$$
(\sigma \bullet \tau) *(\nu \bullet \phi)=(\sigma * \nu) \bullet(\tau * \phi)
$$

and an interchange law that states that the square

$$
\begin{gathered}
(\alpha \bullet \gamma) \circ(\epsilon \bullet \eta) \xlongequal{\text { interchange }(\alpha, \gamma, \epsilon, \eta)}(\alpha \circ \epsilon) \bullet(\gamma \circ \eta) \\
(\sigma \circ \tau) *(\nu \circ \phi) \|(\sigma * \nu) \circ(\tau * \phi) \\
(\beta \bullet \delta) \circ(\zeta \bullet \theta) \xlongequal{\text { interchange }(\beta, \delta, \zeta, \theta)}(\beta \circ \zeta) \bullet(\delta \circ \theta)
\end{gathered}
$$

commutes.

Lemma

For any $\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta: \Omega^{3}(X)$, we have a commuting hexagon

$$
\begin{array}{cc}
((\alpha \bullet \beta) \circ(\gamma \bullet \delta)) *((\epsilon \bullet \zeta) \circ(\eta \bullet \theta)) \\
((\alpha \bullet \beta) *(\epsilon \bullet \zeta)) \circ((\gamma \bullet \delta) *(\eta \bullet \theta)) & ((\alpha \circ \gamma) \bullet(\beta \circ \delta)) *((\epsilon \circ \eta) \bullet(\zeta \circ \theta)) \\
((\alpha * \epsilon) \bullet(\beta * \zeta)) \circ((\gamma * \eta) \bullet(\delta * \theta)) & ((\alpha \circ \gamma) *(\epsilon \circ \eta)) \bullet((\beta \circ \delta) *(\zeta \circ \theta)) \\
(\underbrace{\downarrow}) \\
((\alpha * \epsilon) \circ(\gamma * \eta)) \bullet((\beta * \zeta) \circ(\delta * \theta))
\end{array}
$$

Lemma

For any $s, t: \Omega^{3}(X)$, we have four commuting triangles:

Theorem (Syllepsis)
For any $s, t: \Omega^{3}(X)$, we have

$$
\text { eckmann-hilton }(s, t) \bullet \text { eckmann-hilton }(t, s)=\text { refl. }
$$

Proof.

Part 2. A higher encode decode method

The encode decode method

Theorem (The fundamental theorem of identity types)
Consider a type A with base point a: A. Let B be a type family over A equipped with a point $b: B(a)$. Then the following are equivalent:

1. Any family of maps (in particular the canonical family of maps)

$$
(a=x) \rightarrow B(x)
$$

indexed by x : A, is a family of equivalences.
2. The type

$$
\sum_{(x: A)} B(x)
$$

is contractible.
3. The family B is a (unary) identity system on A.

Theorem

Let X be a pointed type. Let P be a family of $(n+1)$-truncated types over $\|X\|_{n}$ equipped with a commuting triangle

If f is $(n+1)$-connected, then

$$
P\left(\eta\left(x_{0}\right)\right) \simeq K\left(\pi_{n+1}(X), n+1\right)
$$

Proof.

The type $\sum_{\left(x:\|X\|_{n}\right)} P(x)$ is $(n+1)$-truncated, so any $(n+1)$-connected map into it is an $(n+1)$-truncation. Therefore we have

and by the bottom triangle we obtain the fiberwise equivalence that induces

$$
P\left(\eta\left(x_{0}\right)\right) \simeq K\left(\pi_{n+1}(X), n+1\right)
$$

The higher encode decode method

To show that $\pi_{n+1}(X)=G$, we can proceed as follows:

1. Define a pointed map

$$
P:\|X\|_{n} \rightarrow \sum_{(X: \mathcal{U})}\|K(G, n+1) \simeq X\|
$$

2. Construct a commuting triangle

such that f is $(n+1)$-connected.

To apply this method in general, we need:

- A universal property of $\eta: X \rightarrow\|X\|_{n}$ with respect to ($n+2$)-types. In general, the map

$$
\left(\|X\|_{n} \rightarrow Y\right) \rightarrow(X \rightarrow Y)
$$

is 0 -truncated, if Y is $(n+2)$-truncated.

- A dependent universal property of $\eta: X \rightarrow\|X\|_{n}$ with respect to ($n+1$)-types.
- A good handle on the type

$$
\operatorname{EM}(G, n):=\sum_{(X: \mathcal{U})}\|K(G, n) \simeq X\| .
$$

The first two would be generalisations of results of Kraus. The space $\operatorname{EM}(G, n)$ is studied by Scoccola.

Part 3. A theorem about $K(\mathbb{Z} / 2, n)$.

Theorem

$$
K(\mathbb{Z} / 2, n+1) \simeq \sum_{(X: \mathcal{U})}\|K(\mathbb{Z} / 2, n) \simeq X\|
$$

Theorem

$$
K(\mathbb{Z} / 2, n+1) \simeq \sum_{(X: \mathcal{U})}\|K(\mathbb{Z} / 2, n) \simeq X\|
$$

Lemma (Buchholtz, van Doorn, Rijke)

Let $n \geq 1$. For any two groups G and H (required to be both abelian in case $n \geq 2$) there is an equivalence

$$
\operatorname{Grp}(G, H) \simeq \sum_{(f: K(G, n) \rightarrow K(H, n))} f(*)=* .
$$

Furthermore, there is an equivalence

$$
(G \cong H) \simeq \sum_{(e: K(G, n) \simeq K(H, n))} e(*)=* .
$$

Proof. It suffices to show that the type

$$
\sum_{(X: \mathcal{U})} \sum_{(p:\|K(\mathbb{Z} / 2, n) \simeq X\|)} X
$$

is contractible. In the case $n=0$ this is a theorem of Buchholtz and Rijke. We may therefore assume $n>0$, and in particular that $K(\mathbb{Z} / 2, n)$ is connected.

- Center of contraction: $(K(\mathbb{Z} / 2, n), \eta(i d), *)$.
- Contraction: Let $X: \mathcal{U}$ such that $\|K(\mathbb{Z} / 2, n) \simeq X\|$ and $x: X$. Now it suffices to show that

$$
\sum_{(e: K(\mathbb{Z} / 2, n) \simeq X)} e(*)=x
$$

is contractible. Since that is a proposition, we may assume $e: K(\mathbb{Z} / 2, n) \simeq X$, and that $e(*)=x$. Therefore it suffices to show that

$$
\sum_{(e: K(\mathbb{Z} / 2, n) \simeq K(\mathbb{Z} / 2, n))} e(*)=*
$$

is contractible. By the lemma, this type is equivalent to the type of group isomorphisms

$$
\mathbb{Z} / 2 \cong \mathbb{Z} / 2
$$

Corollary

For any $n: \mathbb{N}$ we have

$$
K(\mathbb{Z} / 2, n) \simeq(K(\mathbb{Z} / 2, n) \simeq K(\mathbb{Z} / 2, n))
$$

Corollary
Any fiber sequence $K(\mathbb{Z} / 2,4) \hookrightarrow E \rightarrow\left\|S^{3}\right\|_{3}$ is equivalently described by a map

$$
K(\mathbb{Z}, 3) \rightarrow K(\mathbb{Z} / 2,5)
$$

