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Observational Type Theory

Altenkirch, McBride, Swierstra '07. Observational Equality, Now!

It swaps the inductive equality of MLTT for the observational 
equality: a propositional equality defined on a type by type basis
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OTT is an extension of Martin-Löf Type Theory

A : Type t, u : A
t ~  u : PropA

This equality recovers extensionality principles for MLTT
(function extensionality, proposition extensionality...) without
sacrificing computational properties.



Calculus of Inductive Constructions

On top of Martin-Löf Type Theory, it adds 

2

CIC is the type theory behind Coq and Lean

Γ, x : A ⊢ B : PropΓ ⊢ A : Type
Γ ⊢ Π (x : A) . B : Prop

- Two impredicative universes of propositions 

- A comprehensive class of indexed inductive types 

Prop is proof-relevant
SProp is proof-irrelevant



OTT + CIC = <3
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We want an observational Coq!
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We want an observational Coq!

Thus we need to make sure that OTT plays nicely with the features
of the Coq proof assistant

- Extensionality principles + impredicativity = a proof assistant 
for 1-toposes

- Most of mathematics relies on quotients and extensionality 
principles, which are not available in Coq

- Cubical type theories are too complex for ordinary, set-truncated 
math : we do not want to prove that everything is a hset by hand.



OTT + CIC = <3
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TT      : MLTT with SProp and an observational equality

CC     : Adds support for an impredicative SProp

CIC     : Adds support for cast-on-reflexivity, adds support for
general inductive types

A programme unfolded in several steps:

obs

obs

obs



The observational equality
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A : Type t, u : A
t ~  u : SPropA

A : Type t : A
refl(t) : t ~  tA

We equip every type with a propositional relation  ~

This is a strict proposition → any two proofs of equality are convertible
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A : Type t, u : A
t ~  u : SPropA

A : Type t : A
refl(t) : t ~  tA

We equip every type with a propositional relation  ~

This is a strict proposition → any two proofs of equality are convertible

Since strict propositions contains no computational information, we can
postulate all the axioms we want – they won't block computation!

funext : (Π (x : A) . f x ~  g x) → f ~      gB A → B

propext : (P → Q) × (Q → P) → P ~      QSProp
transp : Π (P : A → SProp) (t : A) (x : P t) (u : A) (e : t ~  u) . P uA



The observational equality

6

We also need to define the observational equality for the universe.
Since it cannot be univalent, we ask for the injectivity of type constructors:

Dependent funext and transp are enough to characterize the equality on 
inductive types and dependent products.

π   : (A → B) ~    (A' → B')  → A' ~     A
π   : (A → B) ~     (A' → B')  → B ~     B'
antidiag : A ~      B → ⟂ if A and B have different head constructors

Type Type

Type Type

Type

ε

ε
1

2

etc.



The observational equality
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Since the observational equality contains no computational info, how do
we eliminate it?



The observational equality
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A, B : Type e : A ~    B
cast(A,B,e,t) : B

t : AType A : Type t : A
cast(A,A,refl(A),t) ≡ t

Since the observational equality contains no computational info, how do
we eliminate it? We add a primitive cast operator!
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cast(A → B, ℕ, e, f) ≡ exfalso(ℕ, antidiag(e))

The cast operator computes according to the head constructors of A and B
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A, B : Type e : A ~    B
cast(A,B,e,t) : B

t : AType A : Type t : A
cast(A,A,refl(A),t) ≡ t

Since the observational equality contains no computational info, how do
we eliminate it? We add a primitive cast operator!

With the cast, we can derive the J eliminator for Type-valued predicates:

cast(P t refl(t), P u e, ap P e, e), a) : P y e
P : Π (x : A). t ~  x → Type u : A e : t ~  u a : P tt : A A A

cast(A → B, A' → B', e, f) ≡ λ(x : A'). cast(B, B', π  e, cast(A', A, π  e, x))ε ε
1 2

cast(A → B, ℕ, e, f) ≡ exfalso(ℕ, antidiag(e))

The cast operator computes according to the head constructors of A and B



Indexed Inductive Types
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Inductive eq (A : Type) (a : A) : A → Type := 
| eq_refl : eq A a a

First observation : we need to add new normal forms

Using the induction principle for eq, we can show that

Aeq A t u ⟷ t ~  u

Thus function extensionality is provable for eq, which implies
that not every closed proof of eq reduces to eq_refl
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Inductive eq (A : Type) (a : A) (b : A) : Type := 
| eq_refl : a ~  b → eq A a b

First observation : we need to add new normal forms

Using the induction principle for eq, we can show that

Aeq A t u ⟷ t ~  u

Thus function extensionality is provable for eq, which implies
that not every closed proof of eq reduces to eq_refl

We can recover canonicity by translating indices to parameters

A



Indexed Inductive Types
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Inductive Empty (A : Type) : Type := ∅

Second observation : equality between inductive types should not 
imply equality of the indices. Consider the following type:

If Empty A ~     Empty B implies A ~     B, then we have a 
retract of Type inside Type, which is inconsistent

Type Type

Instead, we use the equality of the constructor arguments



Indexed Inductive Types
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Inductive vect (A : Type) : ℕ → Type :=
| vnil : vect A 0
| vcons : Π (m : ℕ) . A → vect A m → vect A (S m)



Indexed Inductive Types
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Inductive vect (A : Type) (n : ℕ) : Type :=
| vnil : n ~  0 → vect A n
| vcons : Π (m : ℕ) . A → vect A m → n ~  S m → vect A n

ℕ

ℕ



Indexed Inductive Types
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Inductive vect (A : Type) (n : ℕ) : Type :=
| vnil : n ~  0 → vect A n
| vcons : Π (m : ℕ) . A → vect A m → n ~  S m → vect A n

ℕ

ℕ

from e : vect A n ~     vect A' n', we obtainType

vnil   : (n ~  0) ~      (n' ~  0) 

vcons : Π (m : ℕ) . (n ~  S m) ~      (n' ~  S m) 

vcons   : A ~     A'
vcons   : Π (m : ℕ) . vect A m ~     vect A' m

Type

Type

SProp

SProp

ℕ ℕ

ℕ ℕ

ε

ε

ε

ε

1

1

2

3



Impredicativity
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Our sort of strict propositions is impredicative, and supports
large elimination for the observational equality 
Thus we need to be careful in our implementation: the algorithm 
used by Lean in a similar setting is non-terminating.

Abel, Coquand '19. Failure of Normalization in Impredicative Type Theory with Proof-Irrelevant Propositional Equality
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Our sort of strict propositions is impredicative, and supports
large elimination for the observational equality 
Thus we need to be careful in our implementation: the algorithm 
used by Lean in a similar setting is non-terminating.

Abel, Coquand '19. Failure of Normalization in Impredicative Type Theory with Proof-Irrelevant Propositional Equality

δ := λ (x : ⟂) . x (⟂→⟂) x
Ω := δ (λX. cast(⟂→⟂, X) δ)

⟂ := Π (X : SProp) . X
Ω ⤳ Ω ⤳ Ω ⤳ ...

However, this is not a problem if we don't reduce irrelevant proofs



Models in Grothendieck Toposes
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Theorem : CIC    has a model in any Grothendieck 1-topos, where 
the interpretation of the universe hierarchy contains codes for 
every object of the topos.

obs

Gratzer '22, An inductive-recursive universe generic for small families
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Theorem : CIC    has a model in any Grothendieck 1-topos, where 
the interpretation of the universe hierarchy contains codes for 
every object of the topos.

Proof sketch : given a hierarchy of strict universes U0 < U1 < U2...

obs

for the topos, we use small induction to build a new hierarchy of 
universes of codes

Vi : Ui → Ui+1 :=
| embed : Π (X : Ui) . Vi X
| codeΠ : Π (X : Ui) (Xε : Vi X) (Y : X → Ui) (Yε : (x : X) → Vi (Y x)) . Vi (Π X Y)
| ....

Gratzer '22, An inductive-recursive universe generic for small families
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Is CIC     a reasonable language for 1-toposes?

- It is much more powerful than the theory of elementary toposes:
we get not only a natural number object, but also some limited 
amount of replacement (enough to define ℕ + P(ℕ) + P(P(ℕ)) + ...) 
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Corollary : CIC     is consistent.obs

Is CIC     a reasonable language for 1-toposes?

- It is much more powerful than the theory of elementary toposes:
we get not only a natural number object, but also some limited 
amount of replacement (enough to define ℕ + P(ℕ) + P(P(ℕ)) + ...) 

obs

- And yet, we don't get the principle of unique choice:
(R : A → B → SProp) × (Π (a : A) . ∃! (b : B) . R a b)
→ Σ (f : A → B) .  (Π (a : A) . R a (f a))



Normalization Models
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Theorem : every well-typed term of CIC     is normalizing.obs

Proof sketch : we build a normalization model in MLTT (formalized
in Agda), using Abel et al.'s framework. 
The cast operator is fundamentally non-parametric, which implies 
that we need a proof-irrelevant reducibility predicate.
Unsurprisingly, this prevents us from supporting Prop in our model.
But with a simple trick, we can have SProp!

Corollary : the typing relation for CIC     is decidable.obs



Normalization Models
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Corollary : every integer function that can be defined as a closed
term of type ℕ → ℕ in CIC      can also be defined in bare MLTT.obs

This is connected to the lack of unique choice:
even though we can use impredicativity to show that there exist 
functional relations that cannot be defined in MLTT, we cannot
extract them to terms of type ℕ → ℕ 



Normalization Models
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Corollary : every integer function that can be defined as a closed
term of type ℕ → ℕ in MLTT+Univalence can also be defined in 
bare MLTT.

Proof sketch : we can use the cubical model of Cohen et al. to
embed MLTT+Univalence in CICobs


