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The Calculus of
Inductive Constructions



Observational Type Theory

OTT is an extension of Martin-Lof Type Theory
It swaps the inductive equality of MLTT for the observational
equality: a propositional equality defined on a type by type basis

A : Type t,u:A
t ~5 u:Prop

This equality recavers extensionality principles for MLTT

(function extensionality, prapasition extensionality...) without
sacrificing computational properties.

Altenkirch, McBride, Swierstra '07. Observational Equality, Now!



Calculus of Inductive Constructions

CIC is the type theory behind Coq and Lean
On top of Martin-Ladf Type Theory, it adds

- A comprehensive class of indexed inductive types

- Two impredicative universes of prapasitions

[ A: Type [, x:AF B:Prop
=M (x:A).B:Prop
Praop is proof-relevant
SPrap is proof-irrelevant
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We want an observational Coq!

- Most of mathematics relies an quotients and extensionality
principles, which are not available in Coq

- Cubical type thearies are too complex far ordinary, set-truncated
math : we do not want to prove that everything is a hset by hand.

- Extensionality principles + impredicativity = a proof assistant
for 1-toposes

Thus we need to make sure that OTT plays nicely with the features

of the Coq proof assistant ;



0TT + CIC =<3

A programme unfolded in several steps:

TT% . MLTT with SProp and an observational equality

cc"™ : Adds support for an impredicative SPrap

CIC™ : Adds support for cast-on-reflexivity, adds support for
general inductive types
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The abservational equality

We equip every type with a propositional relation ~

A : Type tu:A A : Type t: A
t ~, u:SPrap refl(t) : t ~p t

This is a strict proposition — any two proofs of equality are convertible

Since strict propasitions contains no computational information, we can
postulate all the axioms we want — they won't black computation!

funext: (M (x:A).fx ~ggx) > f~p,80
propext: (P — Q) x (Q = P) » P ~gp,q,
transp: 1 (P:A— SProp) (t: A)(x:Pt)(u:A)(e:t~pu).Pu 5



The abservational equality

Dependent funext and transp are enough to characterize the equality on
inductive types and dependent products.

We also need to define the abservational equality for the universe.
Since it cannat be univalent, we ask for the injectivity of type constructors:

5 (A= B) ~pp (A= B) = A"~y A

15 :(A—B) ~type (A > B) = B ~1ype B

antidiag : A ~1,, B— L if Aand B have different head constructors
etc.
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The abservational equality

Since the abservational equality contains no computational info, how do
we eliminate it? We add a primitive cast operator!

A,B:Type e:A ~tpeB t:A A : Type t: A
cast(A,B,e,t) : B cast(A,A,refl(A),t) = t

The cast aperator computes according to the head constructors of A and B

cast(A — B, A' - B, e, f) = A(x: A). cast(B, B, rt7e, cast(A', A, 56, X))
cast(A — B, N, e, f) = exfalso(N, antidiag(e))

With the cast, we can derive the J eliminator for Type-valued predicates:
t:A P:M(x:A.t~px—>Type u:A e:t~pu a:Pt

cast(P t refl(t), Pue,apPe,e),a):Pye 7




Indexed Inductive Types

First observation : we need to add new narmal forms

Inductive eq (A : Type) (a: A): A - Type :=
| eq_refl:eq A aa

Using the induction principle for eq, we can show that
eqAtue— t~, u

Thus function extensianality is pravable for eq, which implies
that not every closed proof of eq reduces to eq_refl



Indexed Inductive Types

First observation : we need to add new narmal forms

Inductive eq (A : Type) (a: A) (b: A) : Type :=
| eq_refl:a ~yb—eqAab

Using the induction principle for eq, we can show that
eqAtue—t~,u

Thus function extensianality is pravable for eq, which implies
that not every closed proof of eq reduces to eq_refl

We can recaver canonicity by translating indices to parameters



Indexed Inductive Types

Secand abservation : equality between inductive types should not
imply equality of the indices. Cansider the following type:

Inductive Empty (A : Type) : Type := @

If Empty A ~, . Empty B implies A ~ 1, B, then we have a
retract of Type inside Type, which is inconsistent

Instead, we use the equality of the constructor arguments



Indexed Inductive Types

Inductive vect (A : Type) : N — Type :=
vnil : vect A 0
veons : M1 (m:N).A— vect Am — vect A (S m)
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Indexed Inductive Types

Inductive vect (A : Type) (n: N) : Type :=
vnil : n ~y0 - vectAn
veons : MM (m:N).A—>vectAm—-n~ Sm-vectAn

frome :vect An ~ype Vect A n', we obtain

vnil 7 : (n ~y 0) ~sprop (n' ~n 0)

veons : A ~q, A

veons5 : M1 (m:N).vect Am ~y . vect A'm
veons, : M1 (m:N).(n ~y8 m) ~gprp (N ~yS m)

10
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