
OTTObservational Type
Theory

CICThe Calculus of
Inductive Constructions

Observational Type Theory

Altenkirch, McBride, Swierstra '07. Observational Equality, Now!

It swaps the inductive equality of MLTT for the observational
equality: a propositional equality defined on a type by type basis

1

OTT is an extension of Martin-Löf Type Theory

A : Type t, u : A
t ~ u : PropA

This equality recovers extensionality principles for MLTT
(function extensionality, proposition extensionality...) without
sacrificing computational properties.

Calculus of Inductive Constructions

On top of Martin-Löf Type Theory, it adds

2

CIC is the type theory behind Coq and Lean

Γ, x : A ⊢ B : PropΓ ⊢ A : Type
Γ ⊢ Π (x : A) . B : Prop

- Two impredicative universes of propositions

- A comprehensive class of indexed inductive types

Prop is proof-relevant
SProp is proof-irrelevant

OTT + CIC = <3

3

We want an observational Coq!

OTT + CIC = <3

3

We want an observational Coq!
- Most of mathematics relies on quotients and extensionality
principles, which are not available in Coq

OTT + CIC = <3

3

We want an observational Coq!
- Most of mathematics relies on quotients and extensionality
principles, which are not available in Coq

- Cubical type theories are too complex for ordinary, set-truncated
math : we do not want to prove that everything is a hset by hand.

OTT + CIC = <3

3

We want an observational Coq!

- Extensionality principles + impredicativity = a proof assistant
for 1-toposes

- Most of mathematics relies on quotients and extensionality
principles, which are not available in Coq

- Cubical type theories are too complex for ordinary, set-truncated
math : we do not want to prove that everything is a hset by hand.

OTT + CIC = <3

3

We want an observational Coq!

Thus we need to make sure that OTT plays nicely with the features
of the Coq proof assistant

- Extensionality principles + impredicativity = a proof assistant
for 1-toposes

- Most of mathematics relies on quotients and extensionality
principles, which are not available in Coq

- Cubical type theories are too complex for ordinary, set-truncated
math : we do not want to prove that everything is a hset by hand.

OTT + CIC = <3

4

TT : MLTT with SProp and an observational equality

CC : Adds support for an impredicative SProp

CIC : Adds support for cast-on-reflexivity, adds support for
general inductive types

A programme unfolded in several steps:

obs

obs

obs

The observational equality

5

A : Type t, u : A
t ~ u : SPropA

A : Type t : A
refl(t) : t ~ tA

We equip every type with a propositional relation ~

This is a strict proposition → any two proofs of equality are convertible

The observational equality

5

A : Type t, u : A
t ~ u : SPropA

A : Type t : A
refl(t) : t ~ tA

We equip every type with a propositional relation ~

This is a strict proposition → any two proofs of equality are convertible

Since strict propositions contains no computational information, we can
postulate all the axioms we want – they won't block computation!

funext : (Π (x : A) . f x ~ g x) → f ~ gB A → B

propext : (P → Q) × (Q → P) → P ~ QSProp
transp : Π (P : A → SProp) (t : A) (x : P t) (u : A) (e : t ~ u) . P uA

The observational equality

6

We also need to define the observational equality for the universe.
Since it cannot be univalent, we ask for the injectivity of type constructors:

Dependent funext and transp are enough to characterize the equality on
inductive types and dependent products.

π : (A → B) ~ (A' → B') → A' ~ A
π : (A → B) ~ (A' → B') → B ~ B'
antidiag : A ~ B → ⟂ if A and B have different head constructors

Type Type

Type Type

Type

ε

ε
1

2

etc.

The observational equality

7

Since the observational equality contains no computational info, how do
we eliminate it?

The observational equality

7

A, B : Type e : A ~ B
cast(A,B,e,t) : B

t : AType A : Type t : A
cast(A,A,refl(A),t) ≡ t

Since the observational equality contains no computational info, how do
we eliminate it? We add a primitive cast operator!

The observational equality

7

A, B : Type e : A ~ B
cast(A,B,e,t) : B

t : AType A : Type t : A
cast(A,A,refl(A),t) ≡ t

Since the observational equality contains no computational info, how do
we eliminate it? We add a primitive cast operator!

cast(A → B, A' → B', e, f) ≡ λ(x : A'). cast(B, B', π e, cast(A', A, π e, x))ε ε
1 2

cast(A → B, ℕ, e, f) ≡ exfalso(ℕ, antidiag(e))

The cast operator computes according to the head constructors of A and B

The observational equality

7

A, B : Type e : A ~ B
cast(A,B,e,t) : B

t : AType A : Type t : A
cast(A,A,refl(A),t) ≡ t

Since the observational equality contains no computational info, how do
we eliminate it? We add a primitive cast operator!

With the cast, we can derive the J eliminator for Type-valued predicates:

cast(P t refl(t), P u e, ap P e, e), a) : P y e
P : Π (x : A). t ~ x → Type u : A e : t ~ u a : P tt : A A A

cast(A → B, A' → B', e, f) ≡ λ(x : A'). cast(B, B', π e, cast(A', A, π e, x))ε ε
1 2

cast(A → B, ℕ, e, f) ≡ exfalso(ℕ, antidiag(e))

The cast operator computes according to the head constructors of A and B

Indexed Inductive Types

8

Inductive eq (A : Type) (a : A) : A → Type :=
| eq_refl : eq A a a

First observation : we need to add new normal forms

Using the induction principle for eq, we can show that

Aeq A t u ⟷ t ~ u

Thus function extensionality is provable for eq, which implies
that not every closed proof of eq reduces to eq_refl

Indexed Inductive Types

8

Inductive eq (A : Type) (a : A) (b : A) : Type :=
| eq_refl : a ~ b → eq A a b

First observation : we need to add new normal forms

Using the induction principle for eq, we can show that

Aeq A t u ⟷ t ~ u

Thus function extensionality is provable for eq, which implies
that not every closed proof of eq reduces to eq_refl

We can recover canonicity by translating indices to parameters

A

Indexed Inductive Types

9

Inductive Empty (A : Type) : Type := ∅

Second observation : equality between inductive types should not
imply equality of the indices. Consider the following type:

If Empty A ~ Empty B implies A ~ B, then we have a
retract of Type inside Type, which is inconsistent

Type Type

Instead, we use the equality of the constructor arguments

Indexed Inductive Types

10

Inductive vect (A : Type) : ℕ → Type :=
| vnil : vect A 0
| vcons : Π (m : ℕ) . A → vect A m → vect A (S m)

Indexed Inductive Types

10

Inductive vect (A : Type) (n : ℕ) : Type :=
| vnil : n ~ 0 → vect A n
| vcons : Π (m : ℕ) . A → vect A m → n ~ S m → vect A n

ℕ

ℕ

Indexed Inductive Types

10

Inductive vect (A : Type) (n : ℕ) : Type :=
| vnil : n ~ 0 → vect A n
| vcons : Π (m : ℕ) . A → vect A m → n ~ S m → vect A n

ℕ

ℕ

from e : vect A n ~ vect A' n', we obtainType

vnil : (n ~ 0) ~ (n' ~ 0)

vcons : Π (m : ℕ) . (n ~ S m) ~ (n' ~ S m)

vcons : A ~ A'
vcons : Π (m : ℕ) . vect A m ~ vect A' m

Type

Type

SProp

SProp

ℕ ℕ

ℕ ℕ

ε

ε

ε

ε

1

1

2

3

Impredicativity

11

Our sort of strict propositions is impredicative, and supports
large elimination for the observational equality
Thus we need to be careful in our implementation: the algorithm
used by Lean in a similar setting is non-terminating.

Abel, Coquand '19. Failure of Normalization in Impredicative Type Theory with Proof-Irrelevant Propositional Equality

Impredicativity

11

Our sort of strict propositions is impredicative, and supports
large elimination for the observational equality
Thus we need to be careful in our implementation: the algorithm
used by Lean in a similar setting is non-terminating.

Abel, Coquand '19. Failure of Normalization in Impredicative Type Theory with Proof-Irrelevant Propositional Equality

δ := λ (x : ⟂) . x (⟂→⟂) x
Ω := δ (λX. cast(⟂→⟂, X) δ)

⟂ := Π (X : SProp) . X
Ω ⤳ Ω ⤳ Ω ⤳ ...

Impredicativity

11

Our sort of strict propositions is impredicative, and supports
large elimination for the observational equality
Thus we need to be careful in our implementation: the algorithm
used by Lean in a similar setting is non-terminating.

Abel, Coquand '19. Failure of Normalization in Impredicative Type Theory with Proof-Irrelevant Propositional Equality

δ := λ (x : ⟂) . x (⟂→⟂) x
Ω := δ (λX. cast(⟂→⟂, X) δ)

⟂ := Π (X : SProp) . X
Ω ⤳ Ω ⤳ Ω ⤳ ...

However, this is not a problem if we don't reduce irrelevant proofs

Models in Grothendieck Toposes

12

Theorem : CIC has a model in any Grothendieck 1-topos, where
the interpretation of the universe hierarchy contains codes for
every object of the topos.

obs

Gratzer '22, An inductive-recursive universe generic for small families

Models in Grothendieck Toposes

12

Theorem : CIC has a model in any Grothendieck 1-topos, where
the interpretation of the universe hierarchy contains codes for
every object of the topos.

Proof sketch : given a hierarchy of strict universes U0 < U1 < U2...

obs

for the topos, we use small induction to build a new hierarchy of
universes of codes

Vi : Ui → Ui+1 :=
| embed : Π (X : Ui) . Vi X
| codeΠ : Π (X : Ui) (Xε : Vi X) (Y : X → Ui) (Yε : (x : X) → Vi (Y x)) . Vi (Π X Y)
|

Gratzer '22, An inductive-recursive universe generic for small families

Models in Grothendieck Toposes

13

Corollary : CIC is consistent.obs

Models in Grothendieck Toposes

13

Corollary : CIC is consistent.obs

Is CIC a reasonable language for 1-toposes?

- It is much more powerful than the theory of elementary toposes:
we get not only a natural number object, but also some limited
amount of replacement (enough to define ℕ + P(ℕ) + P(P(ℕ)) + ...)

obs

Models in Grothendieck Toposes

13

Corollary : CIC is consistent.obs

Is CIC a reasonable language for 1-toposes?

- It is much more powerful than the theory of elementary toposes:
we get not only a natural number object, but also some limited
amount of replacement (enough to define ℕ + P(ℕ) + P(P(ℕ)) + ...)

obs

- And yet, we don't get the principle of unique choice:
(R : A → B → SProp) × (Π (a : A) . ∃! (b : B) . R a b)
→ Σ (f : A → B) . (Π (a : A) . R a (f a))

Normalization Models

14

Theorem : every well-typed term of CIC is normalizing.obs

Proof sketch : we build a normalization model in MLTT (formalized
in Agda), using Abel et al.'s framework.
The cast operator is fundamentally non-parametric, which implies
that we need a proof-irrelevant reducibility predicate.
Unsurprisingly, this prevents us from supporting Prop in our model.
But with a simple trick, we can have SProp!

Corollary : the typing relation for CIC is decidable.obs

Normalization Models

15

Corollary : every integer function that can be defined as a closed
term of type ℕ → ℕ in CIC can also be defined in bare MLTT.obs

This is connected to the lack of unique choice:
even though we can use impredicativity to show that there exist
functional relations that cannot be defined in MLTT, we cannot
extract them to terms of type ℕ → ℕ

Normalization Models

16

Corollary : every integer function that can be defined as a closed
term of type ℕ → ℕ in MLTT+Univalence can also be defined in
bare MLTT.

Proof sketch : we can use the cubical model of Cohen et al. to
embed MLTT+Univalence in CICobs

