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Unifying cubical models of HoTT

There is by now quite a zoo of cubical models:

BCH, CCHM, CHM, AFH, ABCFHL, Dedekind
cubes, Orton-Pitts cubes, cubical assemblies,
equivariant cubes...

How are these models related?

Evan Cavallo, Andrew Swan and I have found a new cubical model that
generalizes (most of) the existing cubical models

https://github.com/mortberg/gen-cart/blob/master/conference-paper.pdf

(To appear in Computer Science Logic 2020)

A. Mörtberg Introduction October 23, 2019 2 / 52

https://github.com/mortberg/gen-cart/blob/master/conference-paper.pdf


Unifying cubical models of HoTT

There is by now quite a zoo of cubical models:

BCH, CCHM, CHM, AFH, ABCFHL, Dedekind
cubes, Orton-Pitts cubes, cubical assemblies,
equivariant cubes...

How are these models related?

Evan Cavallo, Andrew Swan and I have found a new cubical model that
generalizes (most of) the existing cubical models

https://github.com/mortberg/gen-cart/blob/master/conference-paper.pdf

(To appear in Computer Science Logic 2020)
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Univalent and Homotopy Type Theory

In this talk:

Univalent Type Theory = MLTT + Univalence

Homotopy Type Theory = UTT + Higher Inductive Types

Theorem (Voevodsky, Kapulkin-Lumsdaine)

Univalent Type Theory has a model in Kan simplicial sets

Problem: inherently classical, how to make this constructive?

This problem motivated the use of cubical methods in HoTT
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Cubical methods in HoTT

The cubical models can be developed in a constructive metatheory and
have led to:

cubical type theories,

proof assistants with native support for HoTT,

(homotopy) canonicity results,

proof theoretic strength of the univalence axiom,

independence results,

new proofs of results in synthetic homotopy theory,

...
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Cubical methods in HoTT

This talk:

1 Overview of cubical models of HoTT

2 Our generalization

3 A model structure constructed from the model

Our generalization is expressed in the internal language of a LCCC
extended with axioms and has been (mostly) formalized in Agda
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Model structures and models of HoTT

An interesting difference in how the simplicial and cubical models have
been developed is that we reverse the direction of:

Model structure on simplicial sets −→ Model of HoTT

to

Cubical model of HoTT −→ Model structure

Furthermore, the obtained model structure is constructive
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Part I: Cubical models of HoTT



Cubical Methods: BCH

The first breakthrough in finding constructive justifications to UTT was:

Theorem (Bezem-Coquand-Huber, 2013)

Univalent Type Theory has a constructive model in “substructural” Kan
cubical sets (“BCH model”).

This led to development of a variety of cubical set models

�
∧

= [�op,Set]
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Cubical Methods: CCHM

Inspired by BCH we constructed a model based on “structural” cubical
sets with connections and reversals:

Theorem (Cohen-Coquand-Huber-M., 2015)

Univalent Type Theory has a constructive model in De Morgan Kan
cubical sets (“CCHM model”).

We also developed a cubical type theory in which we can prove and
compute with the univalence theorem

ua : (A B : U)→ (PathU A B) ' (A ' B)
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Cubical Methods: cartesian models

In parallel with our developments in Sweden many people at CMU were
working on models based on cartesian cubical sets

These have nice properties compared to CCHM cubes (Awodey, 2016)

The crucial idea for constructing univalent universes in cartesian cubical
sets was found by Angiuli, Favonia, and Harper (AFH, 2017) when
working on computational cartesian cubical type theory. This then led to:

Theorem (Angiuli-Brunerie-Coquand-Favonia-Harper-Licata, 2017)

Univalent Type Theory has a constructive model in cartesian Kan cubical
sets (“ABCFHL model”).
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Cubical Methods: cubical assemblies

Building on CCHM and the work of Orton-Pitts, Taichi Uemura has
constructed yet another cubical model:

Theorem (Uemura, 2018)

Cubical type theory extended with an impredicative univalent universe has
a model in cubical assemblies

Uemura used this to prove independence of a form of propositional
resizing. This model has also been extended to prove the independence of
Church’s thesis (Swan-Uemura, 2019)
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Higher inductive types (HITs)

Types generated by point and path constructors:

base•

loop

S1:

N•

. . .

ΣS1:

merid x

•
S

These types are added axiomatically to HoTT and justified semantically1

in “sufficiently nice model categories”, e.g. Kan simplicial sets
(Lumsdaine-Shulman, 2017)

1Modulo issues with universes...
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Higher inductive types

The cubical set models also support HITs:2

De Morgan cubes: CCHM (2015), Coquand-Huber-M. (CHM, 2018)

Cartesian cubes: Cavallo-Harper (2018)

BCH: as far as I know not known even for S1, problems related to
Path(A) := I( A

The CHM construction has been analyzed and generalized so that it
applies to e.g. cubical assemblies (Swan-Uemura, 2019)

2Without universe issues.
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Cubical Type Theory

The cubical models hence model HoTT and there are multiple cubical type
theories inspired by these models, but what makes a type theory cubical?

Add a formal interval I:

r, s ::= 0 | 1 | i

Extend the contexts to include interval variables:

Γ ::= • | Γ, x : A | Γ, i : I
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Proof theory

Γ, i : I ` J
Γ ` J (ε/i)

face

Γ ` J
Γ, i : I ` J

weakening

Γ, i : I, j : I ` J
Γ, j : I, i : I ` J

exchange

Γ, i : I, j : I ` J
Γ, i : I ` J (j/i)

contraction

Semantics

Γ Γ, i : I
diε

Γ, i : I Γ
σi

Γ, j : I, i : I Γ, i : I, j : I
τi,j

Γ, i : I Γ, i : I, j : I
δi,j
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Cubical Type Theory

All cubical set models have face maps, degeneracies and symmetries

BCH does not have contraction/diagonals, making it substructural

The cartesian models have contraction/diagonals, making them a simpler
basis for cubical type theory

We can also consider additional structure on I:

r, s ::= 0 | 1 | i | r ∧ s | r ∨ s | ¬r

Axioms: connection algebra (Orton-Pitts model), distributive lattice
(Dedekind model), De Morgan algebra (CCHM model), Boolean algebra...

Varieties of Cubical Sets - Buchholtz, Morehouse (2017)
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Kan operations / fibrations

To get a model of HoTT we also need to equip all types with Kan
operations: any open box can be filled

Given a specified subset (r, s) of I× I we add operations:

Γ, i : I ` A Γ ` r : I Γ ` s : I
Γ ` ϕ : Φ Γ, ϕ, i : I ` u : A Γ ` u0 : A(r/i)[ϕ 7→ u(r/i)]

Γ ` comr→s
i A [ϕ 7→ u]u0 : A(s/i)[ϕ 7→ u(s/i), (r = s) 7→ u0]

Semantically this corresponds to fibration structures

The choice of which (r, s) to include varies between the different models
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Cube shapes / generating cofibrations

Another parameter: which shapes of open boxes are allowed (Φ)

Semantically this corresponds to specifying the generating cofibrations,
typically these are classified by maps into Φ where Φ is taken to be a
subobject of Ω : �

∧

The crucial idea for supporting univalent universes in AFH was to include
“diagonal cofibrations” – semantically this corresponds to including
∆I : I→ I× I as a generating cofibration
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Cubical set models of HoTT

Structural I operations Kan operations Diag. cofib.

BCH 0 → r, 1 → r

CCHM X ∧, ∨, ¬ (DM alg.) 0 → 1

Dedekind X ∧, ∨ (dist. lattice) 0 → 1, 1 → 0

Orton-Pitts X ∧, ∨ (conn. alg.) 0 → 1, 1 → 0

AFH, ABCFHL X r → s X
Cubical assemblies X ∧, ∨ (conn. alg.) 0 → 1, 1 → 0

This work: cartesian cubical set model without diagonal cofibrations

Key idea: don’t require the (r = s) condition in com strictly, but only up
to a path
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A. Mörtberg Cubical Type Theory October 23, 2019 19 / 52



Part II: generalizing cubical models



Orton-Pitts internal language model

We present our generalization in the internal language of �
∧

following

Axioms for Modelling Cubical Type Theory in a Topos
Orton, Pitts (2017)

We also formalize it in Agda and for univalent universes we rely on3

Internal Universes in Models of Homotopy Type Theory
Licata, Orton, Pitts, Spitters (2018)

3Disclaimer: only on paper so far, not yet formalized.
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Orton-Pitts style internal language model

In fact, none of the constructions rely on the subobject classifier Ω : �
∧

, so
we work in the internal language of a LCCC C and do the following:

1 Add an interval I
2 Add a type of cofibrant propositions Φ

3 Define fibration structures

4 Prove that fibration structures are closed under Π, Σ and Path

5 Define univalent fibrant universes of fibrant types

6 Prove that this gives rise to a Quillen model structure

(Disclaimer: parts of the last two steps are not (yet) internal)
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The interval I

The axiomatization begins with an interval type

I : U 0 : I 1 : I

satisfying

ax1 : (P : I→ U)→ ((i : I)→ P i ] ¬(P i))→
((i : I)→ P i) ] ((i : I)→ ¬(P i))

ax2 : ¬(0 = 1)
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Cofibrant propositions

We also assume a universe à la Tarski of generating cofibrant propositions

Φ : U [ ] : Φ→ Prop

with operations

( ≈ 0) : I→ Φ ∨ : Φ→ Φ→ Φ

( ≈ 1) : I→ Φ ∀ : (I→ Φ)→ Φ

satisfying

ax3 : (i : I)→ [ (i ≈ 0) ] = (i = 0)

ax4 : (i : I)→ [ (i ≈ 1) ] = (i = 1)

ax5 : (ϕψ : Φ)→ [ϕ ∨ ψ ] = [ϕ ] ∨ [ψ ]

ax6 : (ϕ : Φ) (A : [ϕ ]→ U) (B : U) (s : (u : [ϕ ])→ A u ∼= B)→
Σ(B′ : U),Σ(s′ : B′ ∼= B), (u : [ϕ ])→ (A u, s u) = (B′, s′)

ax7 : (ϕ : I→ Φ)→ [∀ϕ ] = (i : I)→ [ϕ i ]
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Orton-Pitts style internal language model

1 Add an interval I
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5 Define univalent fibrant universes of fibrant types
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Partial elements

A partial element of A is a term f : [ϕ ]→ A

Given such a partial element f and an element x : A, we define the
extension relation

f ↗ x , (u : [ϕ ])→ f u = x

We write

A[ϕ 7→ f ] , Σ(x : A), f ↗ x

Given f : [ϕ ]→ Path(A) and r : I we write

f · r , λu.f u r : [ϕ ]→ A r
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Weak fibration structures

Given r : I, A : I→ U , ϕ : Φ, f : [ϕ ]→ Path(A) and
x0 : (A r)[ϕ 7→ f · i], a weak composition structure is given by two
operations

wcom : (s : I)→ (A s)[ϕ 7→ f · s]
wcom : fst (wcom r) ∼ fstx0

satisfying (i : I)→ f · r ↗ wcom i.

A weak fibration (A,α) over Γ : U is a family A : Γ→ U equipped with

isFib A , (r : I) (p : I→ Γ) (ϕ : Φ) (f : [ϕ ]→ (i : I)→ A(p i))

(x0 : A(p r)[ϕ 7→ f · r])→WComp r (A ◦ p) ϕ f x0
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Example: weak composition

Given u0 and u1 at (j ≈ 0) and (j ≈ 1) together with x0 : A r at (i ≈ r),
the weak composition and path from r to i is

i
j

k

u0

r−
u1

x0

7→
u0

r−
u1

x0

With suitable notations:

wcomr→i
A [(j ≈ 0) 7→ u0, (j ≈ 1) 7→ u1]x0 : A i

wcomr;i
A [ϕ 7→ f ]x0 : wcomr→i

A [(j ≈ 0) 7→ u0, (j ≈ 1) 7→ u1]x0 ∼ x0
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A. Mörtberg October 23, 2019 30 / 52



Weak fibration structures diagrammatically

We can also see these operations as a lifting diagram:

A

Γ
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Orton-Pitts style internal language model

1 Add an interval I
2 Add a type of cofibrant propositions Φ

3 Define fibration structures

4 Prove that fibration structures are closed under Π, Σ and Path

5 Define univalent fibrant universes of fibrant types

6 Prove that this gives rise to a Quillen model structure
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A model of HoTT based on weak fibrations

Using ax1 − ax5 we can prove that isFib is closed under Σ, Π, Path and
that natural numbers are fibrant if C has a NNO

The proofs are straightforward adaptations of the AFH/ABCFHL proofs,
but extra care has to be taken to compensate for the weakness

Semantically closure of isFib under Π corresponds to the “Frobenius
property” (pullback along fibrations preserve trivial cofibrations)
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A model of HoTT based on weak fibrations

Following Orton-Pitts we can use ax6 to define Glue types and using ax7

we can prove that they are also fibrant (by far the most complicated part)

Semantically this corresponds to the “Equivalence Extension Property”:
equivalences between fibrations extend along cofibrations

Theorem (Universe construction, LOPS)

If I is tiny, then we can construct a universe U with a fibration El that is
classifying in the sense of LOPS Theorem 5.2
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A model of HoTT based on weak fibrations

The model also supports identity types (3 different constructions in the
formalization) and higher inductive types

We hence get a class of models of HoTT based on cartesian cubical sets
with weak fibrations, without using diagonal cofibrations

What is the relationship to the other models?
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AFH fibrations

As in AFH and ABCFHL we can define

isAFHFib A , (r : I)(p : I→ Γ)(ϕ : Φ)(f : [ϕ ]→ (i : I)→ A(p i))

(x0 : A(p r)[ϕ 7→ f · r])→ AFHComp r (A ◦ p) ϕ f x0

If we assume diagonal cofibrations

( ≈ ) : I→ I→ Φ

ax∆ : (r s : I)→ [ (r ≈ s) ] = (r = s)

then we can prove

Theorem

Given Γ : U and A : Γ→ U , we have isAFHFib A iff we have isFib A.
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CCHM fibrations

Inspired by Orton-Pitts we can define:

isCCHMFib A , (ε : {0, 1})(p : I→ Γ)(ϕ : Φ)(f : [ϕ ]→ (i : I)→ A(p i))

(x0 : A(p ε)[ϕ 7→ f · r])→ CCHMComp ε (A ◦ p) ϕ f x0

If we assume a connection algebra

u, t : I→ I→ I
axu : (r : I)→ (0 u r = 0 = r u 0) ∧ (1 u r = r = r u 1)

axt : (r : I)→ (0 t r = r = r t 0) ∧ (1 t r = 1 = r t 1)

then we can prove

Theorem

Given Γ : U and A : Γ→ U , we have isCCHMFib A iff we have isFib A.
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Cubical set models of HoTT

This hence generalizes the structural models in:

Structural I operations Kan operations Diag. cofib.

BCH 0 → r, 1 → r

CCHM X ∧, ∨, ¬ (DM alg.) 0 → 1

Dedekind X ∧, ∨ (dist. lattice) 0 → 1, 1 → 0

Orton-Pitts X ∧, ∨ (conn. alg.) 0 → 1, 1 → 0

AFH, ABCFHL X r → s X
Cubical assemblies X ∧, ∨ (conn. alg.) 0 → 1, 1 → 0

Cavallo-M.-Swan X r → s, weak

Bonus model: cubical assemblies without connections and diagonal
cofibrations
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Part III: A model structure



Cubical set models of HoTT

Which of these cubical set models give rise to model structures where the
fibrations correspond to the Kan operations?

Theorem (Sattler, 2017)

General construction of model structures using ideas from CCHM model
(in particular fibrant universes)

This gives model structures for the cubical sets with connections, it also
generalizes to cartesian cubical sets with AFH/ABCFHL fibrations and
diagonal cofibrations (Coquand-Sattler, Awodey)
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A model of HoTT based on weak fibrations

We also use Sattler’s theorem to get a model structure from our cartesian
cubical set model without connections and diagonal cofibrations

There are 3 parts involved in proving this:

1 Cofibration - Trivial Fibration awfs

2 Trivial Cofibration - Fibration awfs

3 2-out-of-3 for weak equivalences
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Cofibration-trivial fibration awfs

Cofibrant propositions [− ] : Φ→ Prop correspond to a monomorphism

> : Φtrue� Φ

where Φtrue , Σ(ϕ : Φ), [ϕ ] = 1

Definition (Generating cofibrations)

Let m : A→ B be a map in C. We say that m is a generating cofibration
if it is a pullback of >

Get (C,F t) awfs by a version of the small object argument
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Trivial cofibration-fibration awfs

Given m : A→ B we write A
L(m)−→ Cyl(m)

R(m)−→ B for the mapping
cylinder factorization defined by a suitable pushout

Theorem (Weak fibrations and fibrations)

f is a weak fibration iff it has the right lifting property against the map
L(∆) ×̂ > in C/(I× Φ) where ∆ is the map 1I×Φ → II×Φ defined as the
diagonal map I× Φ→ I× I× Φ

Get (Ct, F ) awfs by a version of the small object argument as well
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Weak left lifting problems

We say that m : A→ B has the weak left lifting property against
f : X → Y if there is a diagonal map as in

A X

B Y

a

m
∼

f

b

Theorem (Weak fibrations and weak LLP)

f is a weak fibration iff for every object B, every map r : 1B → IB and
generating cofibration m : A→ B in C, r has the weak left lifting property
against ˆhomB(B∗(m), f).
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A model structure based on weak fibrations

By adapting Sattler’s theorem we obtain a full model structure

Theorem (Model structure)

Suppose that C satisfies axioms ax1–ax5 and that every fibration is
U-small for some universe of small fibrations where the underlying object U
is fibrant. Let (C,F t) and (Ct, F ) be the awfs defined above, then C and
F form the cofibrations and fibrations of a model structure on C.

Theorem (Minimality of the model structure)

The class Ct is as small as possible subject to

1 For every object B, the map δB0 : B → B × I belongs to Ct.

2 C and Ct form the cofibrations and trivial cofibrations of a model
structure.
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Model structure comparison

What is the relationship to the existing model structures constructed from
cubical set models of HoTT?

As the (co)fibrations coincide with the ones in the other model structures
we recover them when assuming appropriate additional structure (diagonal
cofibrations for cartesian and connections for Dedekind)

We have hence not only generalized the cubical models of HoTT, but also
the model structures constructed from these models
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Summary

We have:

Constructed a model of HoTT that generalizes the earlier cubical set
models, except for the BCH model

Mostly formalized in Agda

Adapted Sattler’s model structure construction to this setting

Future work:

Formalize the universe construction and model structure in Agda-[

What about BCH? Is it inherently different or does it fit into this
generalization?

Relationship between model structures and the standard one on Kan
simplicial sets? Can we also incorporate the equivariant model?
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� Thank you for your attention! �
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