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Parametricity for type theory

Intuition

Polymorphic terms treats type input uniformly.

I Types, abstraction and parametric polymorphism.
[Reynolds 83]

I Theorems for free! [Wadler 89]

I Parametricity and dependent types.
[Bernardy, Jansson, Paterson 10]
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Cubical models

Intuition

Cubical structures are used to model parametricity and univalence.

I A model of type theory in cubical sets.
[Bezem, Coquand, Huber 14]

I Cubical type theory: a constructive interpretation of the
univalence axiom. [Cohen, Coquand, Huber, Mörtberg 15]

I A presheaf model of parametric type theory.
[Bernardy, Coquand, Moulin 15]

I Internal parametricity for cubical type theory.
[Cavallo, Harper 20]
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Univalence as a form of parametricity

I Towards a cubical type theory without an interval.
[Altenkirch, Kaposi 15]

I The marriage of univalence and parametricity.
[Tabareau, Tanter, Sozeau 20]
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Parametric models

Intuition

A model of type theory is parametric if:

I Every type comes with a relation.

I Every term respects these.

This implies that polymorphic terms treat type inputs uniformly.
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Big picture

The forgetful functor:

{Parametric models} → {Models of type theory}

tend to have a right adjoint, building cubical models.

In this talk

We get various cubical structures by using:

I Various notions of model of type theory.

I Various notions of parametricity.
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A first example

Definition

The category � of semi-cubes is monoidal generated by:

I An object I.
I Two morphisms:

d0, d1 : I→ 1

A semi-cubical object in C is an object in C�.

Definition

A category is parametric if we are given:

I An endofunctor ∗.

I Two natural transformations:
0, 1 : X∗ → X
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Theorem

The forgetful functor:

{Parametric categories} → {Categories}

has a right adjoint:
C 7→ C�
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Summary

Theorem [LICS 21]

The forgetful functor:

{Parametric CwF with Π,U} → {CwF with Π,U}

has a right adjoint, building semi-cubical models.

In two steps:

I Axiomatize parametricity as an interpretation.

I Build a right adjoint from any interpretation.
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Parametricity for type theory

We can define unary operations (∗) inductively:

Γ ` gives Γ0, Γ1 ` Γ∗
Γ ` A gives Γ0, Γ1, Γ∗,A0,A1 ` A∗

Γ ` a : A gives Γ0, Γ1, Γ∗ ` a∗ : A∗[a0, a1]

By equations (E ) including:

(A× B)∗[(x0, y0), (x1, y1)] = A∗[x0, x1]× B∗[y0, y1]

(A→ B)∗[λx0.t0, λx1.t1] = Π(x0,x1:A) A∗[x0, x1]→ B∗[t0, t1]

U∗[X0,X1] = X0 → X1 → U
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Interpretation

Definition

A CwF is called parametric if it has:

I Operations (∗)
I Obeying equations (E )

The initial CwF is parametric.
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Definition [LICS 21]

An extension of the theory of CwF by:

I A family of unary operations.

I Equations defining them inductively.

is called an interpretation of CwF.

Parametricity is an interpretation of CwF.

Theorem

The functor forgetting an interpretation has a right adjoint.
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The right adjoint

Assume an interpretation of CwF by (∗) and (E ). Then:

U : {CwF + (∗) + (E )} → {CwF}

has a right adjoint:

R : {CwF} → {CwF + (∗) + (E )}

Intuition

I A type in R(C) is a type in C with iterated images by (∗).

I Same for contexts and terms.

I Operations in R(C) are defined using operations in C and (E ).
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Example:

Ctx
∗ // Ty ∗

uu

Tm ∗
rr

A type in R(C) is:

A cubical type is:

`C Γ A type of points

Γ0, Γ1 `C Γ∗ For any two points,
a type of paths.

Γ00, Γ01, Γ0∗, Γ10, Γ11, Γ1∗, Γ∗0, Γ∗1 For any square,
`C Γ∗∗ a type of fillers.

· · · · · ·
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We can add reflexivities (when there is no Π or U):

Γ ` gives Γ ` rΓ : Γ∗[γ, γ]
Γ ` A gives Γ,A ` rA : A∗[rΓ, a, a]

Γ ` a : A gives a∗[rΓ] = rA[a]

As represented:

Ctx

r
!!

∗ // Ty ∗
uu

r

��

Tm

∗

YY

r // EqTm

A type in the new CwF is then a sequence (A∗n)n:N with:(
(rA∗m)∗n

)
m,n:N

obeying some equations.
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This approach is very modular:

I In the notion of model of type theory.

I In the unary operations added.

Example

To add N, it is enough to define:
N∗ = EqN : N→ N→ U
0∗ = : EqN(0, 0)

s∗ = : EqN(m, n)→ EqN(m + 1, n + 1)

indN
∗ = :
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Negative result

Problem

We can’t define:
rA→B

?
= φ(rA, rB)

Reflexivities are not part of an interpretation for exponentials.

Intuition

I Exponentials of cubical objects are not computed pointwise.

I Interpretations compute constructors pointwise.

From now on we forget about exponentials and universes.
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General parametricity for categories

Goal

We want to define various parametricities for categories.

Definition

A notion of parametricity for categories is a monoidal category �.

Definition

A category C is �-parametric if we are given a monoidal functor:

�→ End(C)

This is precisely an action of monoid in {Categories}.
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Examples

Semi-cubes

The category of semi-cubes is monoidal generated by:

d0, d1 : I→ 1

So a parametric category has natural transformations:

0, 1 : X∗ → X
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Cubes

The category of cubes is monoidal generated by:

d0, d1 : I→ 1

r : 1→ I
d0 ◦ r = id1

d1 ◦ r = id1

The corresponding parametricity is called internal.

Varieties of cubes

All cube categories in [Bucholtz, Morehouse 17] are monoidal.
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Main result

Let � be a monoidal category.

Theorem

The forgetful functor:

{�-Parametric categories} → {Categories}

has a right adjoint:
C 7→ C�

26



Proof

Let M be a monoid in a cartesian closed category C.

Lemma

The forgetful functor:

{M-action} → C

has a right adjoint:
X 7→ XM

Proved using simply typed λ-calculus.
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Proof using interpretations

Theorem

�-parametricity is an interpretation of categories.

Straightforward assuming a presentation:

I Functors are inductively defined on morphisms.

I Naturality is inductively provable on morphisms.

I · · ·

Corollary

The sequences build by interpretations are cubical objects.
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Basic framework

We start from a type theory with two notions of types:

Sets Γ `S A
Propositions Γ `P A

With > and Σ for propositions (and possibly for sets).

Definition

The canonical model is such that:

I Γ ` means Γ set.

I Γ `S A means A set over Γ.

I Γ `P A means A a part of Γ.

30
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Setoid type theory

We add operations (∗):

Γ ` gives Γ0, Γ1 `P Γ∗
and Γ ` rΓ : Γ∗

Γ `S A gives Γ0, Γ1, Γ∗,A0,A1 `P A∗
and Γ,A ` rA : A∗[rΓ]

Γ `P A gives Γ0, Γ1, Γ∗,A0 `
−→
coeA : A1

and Γ0, Γ1, Γ∗,A1 `
←−
coeA : A0

Plus equations defining (∗) inductively, notably for Γ `P A we add:

(Γ,A)∗ = Γ∗

31
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Remark

We have:
Γ00, Γ10, Γ01, Γ11, Γ0∗, Γ1∗, Γ∗0 `

−→
coeΓ∗ : Γ∗1

In diagram:

γ00
γ0∗ //

γ∗0

��

γ01

−→
coeΓ∗
��

γ10 γ1∗
// γ11

So that Γ∗ is reflexive, symmetric and transitive.

Corollary

The canonical model is send to a model where:

I Γ ` means Γ setoid.

I Γ `S A means A setoid over Γ.

I Γ `P A means A part of Γ stable by the relation.
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Adding set transport

We can add operations:

Γ `S A gives Γ0, Γ1, Γ∗,A0 `
−→
coeA : A1

and Γ0, Γ1, Γ∗,A1 `
←−
coeA : A0

with the equations:

−→
coeA[rΓ, x ] = x
←−
coeA[rΓ, x ] = x

This implies:

−→
cohA : A∗[x0,

−→
coeA(x0)]

←−
cohA : A∗[

←−
coeA(x1), x1]
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Lemma

The canonical model is send to a model where:

I Γ `S A means A fibration of setoid over Γ.

These fibrations have non-reflexive transports as structure.
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Adding constructors to the base theory

We can add the following:

I Π for propositions, for example:

−→
coeA→B [f ] = A1

←−
coeA // A0

f // B0

−→
coeB // B1

I A universe of propositions, that is:

`S U
U `P El

with equations including:

U∗[A,B] = A↔ B

rU [A] = (idA, idA)
−→
coeEl [e] = e.1
←−
coeEl [e] = e.2

35
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This was lucky! We can’t add the following:

I Π types for sets.

I A universe of sets.
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Remark on modularity

Interpretation approach modular on constructors and equations:

I Want `S N. Define x , y : N `P EqN inductively.

I Don’t like (
−→
coeA)∗ derivable. Remove this redundancy.

I Want
−→
coeA[p◦q] =

−→
coeA[p] ◦ −→coeA[q]. Prove it inductively.

I Don’t like
−→
coeA[rΓ, x ] = x . Try

−→
cohA : A∗[x ,

−→
coeA(x)] instead.

I · · ·
It gives a straightforward first try to tackle any of these issues.
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Reminder on clan

Definition [Joyal 17]

A clan consists of:

C a category Contexts and substitutions
1 a terminal object Empty context

F a class of morphisms Types

such that:

F stable by isomorphism >
F stable by composition Σ
F stable by pullback A[σ]
F stable by X → 1 Democratic

39



Parametric clans

We use semi-cubes.

Definition

A clan is parametric if we have:

I An endofunctor ∗ with natural transformations:

0, 1 : X∗ → X

I Obeying the fibration rule:

X � Y

X∗ � (X0 × X1)
∏

Y0×Y1

Y∗

Note that:
: X � 1

(0, 1) : X∗ � X × X

40
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Claim (in progress)

Assume f : A→ B in C� for C a clan.
Starting from f0 : A0 � B0 and iterating the fibration rule:

X � Y

X∗ � (X × X )
∏

Y×Y
Y∗

we get that f is Reedy fibration.

Claim (in progress)

Parametricity is an interpretation of clans.

Corollary

The right adjoint to the forgetful functor:

{Parametric clans} → {Clans}

sends C to the clan of Reedy fibrant semi-cubical objects in C.
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Reminder on tribes

Definition

A map is called anodyne if it has the LLP against fibrations.

Definition [Joyal 17]

A tribe is a clan where:

I Every map factors as an anodyne map followed by a fibration.

I Anodyne maps are stable by pullback.

A tribe is a model of type theory with identity types:

X // // IdX // // X × X

Here reflexivity being anodyne is equivalent to path induction.
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Kan clan

We start from � the category of symmetric cubes.

Definition

A clan is called Kan if it is:

I �-parametric as a category.

I Obeying the fibration rule.

I Such that for A� Γ we have sections of:

A∗ � A[0]

A∗ � A[1]

A section of A∗ � A[0] corresponds to
−→
coeA and

−→
cohA for setoids.
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Theorem

A Kan clan is a tribe.

Proof:

I Factorisation for diagonals:

X
r // X∗

(0,1)
// // X × X

I Coherences + Symmetry ⇒ Contractibility of singletons.

I Contractibility of singletons + Coercions ⇒ r anodyne.

I Factorisation for a map f similar:

X // Σx :X ,y :Y Y∗[f (x), y ] // Y
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Claim (in progress)

Being Kan is an interpretation of clans.

Claim (in progress)

The associated right adjoint build tribes of Kan cubical objects.

Sketch:

I
−→
cohΓ∗n and

←−
cohΓ∗n gives two Kan fillings per dimension.

I Symmetry gives all other Kan fillings.
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Summary

Cubical models = Cofreely parametric models.

Examples:

I CwF of semi-cubical types, with Π and U .

I Categories of cubical objects, for any kind of cubes.

I CwF of setoids.

I Clan of Reedy fibrant cubical objects (in progress).

I Tribes of Kan cubical objects (in progress).

Relations Parametricity Semi-cubes

Reflexive relations Internal parametricty Cubes

· · · · · · · · ·
Equivalences Univalence Kan cubes
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Further Work

I Find general parametricity as interpretations for:

I Lex categories and clans.
I CwF and comprehension categories.

I Generalize setoids to truncated cubical objects.

I Some work on inductive types:

I Extend parametricity to inductive types.
I Show any cubical model has higher inductive types.

I Extend interpretations to deal with Π and U .

I Make the link with cubical type theories by:

I Studying syntactic cubical models as parametric.
I Designing cubical calculi for any cubical model.
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