A comparison between

the Minimalist Foundation

and

Homotopy Type Theory

Maria Emilia Maietti

University of Padova

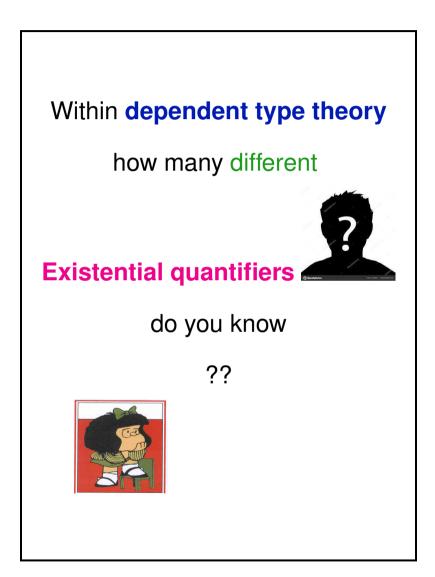
Homotopy Type Theory Electronic Seminar Talks

April 20th. 2023

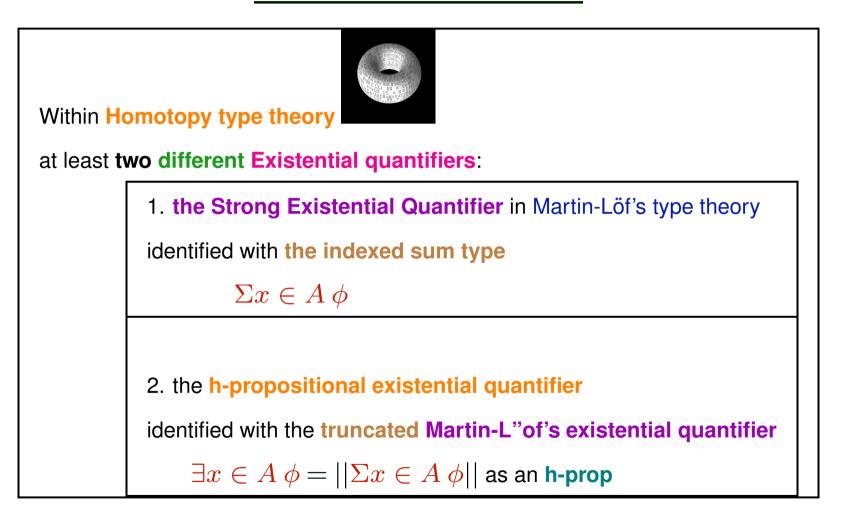
Abstract of our talk

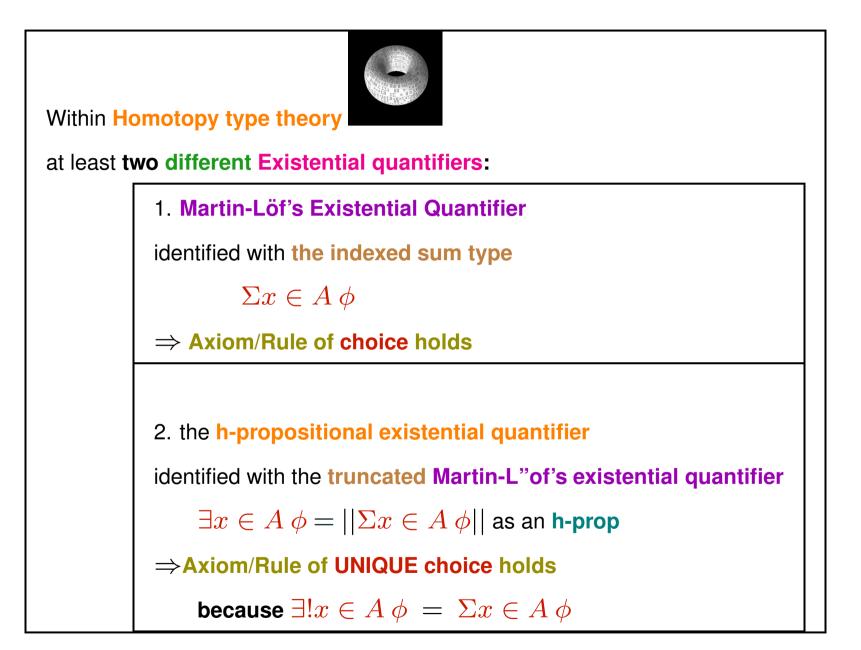
- on Existential quantifiers in dependent type theory
- peculiarities of the Minimalist Foundation MF in comparison with HoTT
- compatibility of **BOTH levels** of **MF** with **HoTT**
- compatibility of the classical **MF** with **Weyl's classical predicativism**
- open problems.

Answer this question...



Existential quantifiers in HoTT

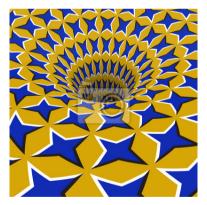




Axiom of choice

$\forall x \in A \; \exists y \in B \; R(x, y) \; \longrightarrow \; \exists f \in A \to B \; \forall x \in A \; R(x, f(x))$

a total relation contains the graph of a type-theoretic function.

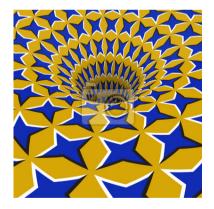


Axiom of unique choice

$\forall x \in A \exists ! y \in B \ R(x, y) \quad \longrightarrow \quad \exists f \in A \to B \ \forall x \in A \ R(x, f(x))$

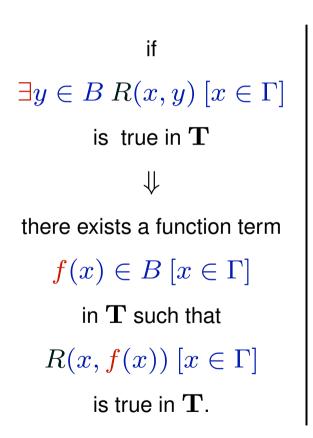
turns a functional relation into a type-theoretic function.

 \Rightarrow identifies the two distinct notions...



Rule of choice

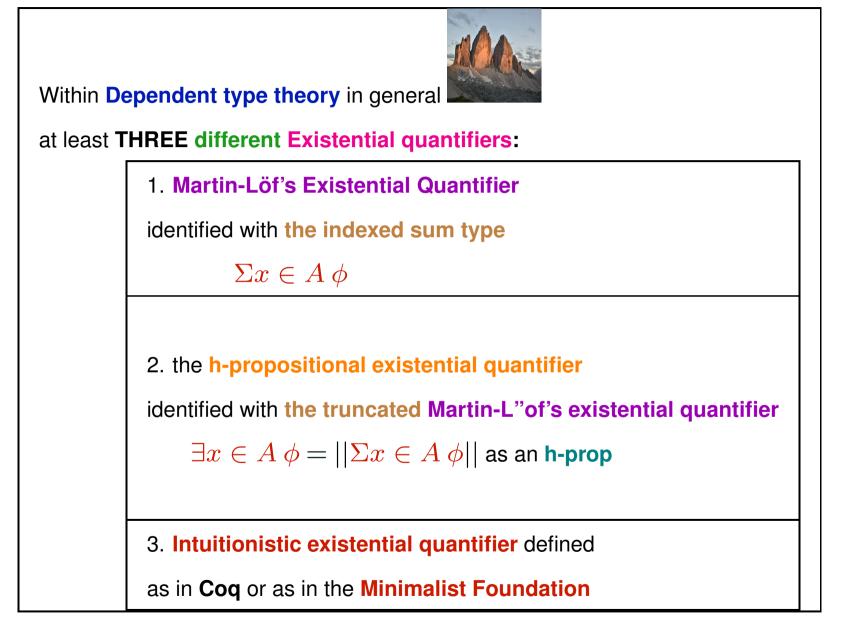
in a theory ${f T}$



Rule of unique choice

in a theory ${f T}$

if $\exists ! y \in B \ R(x,y) \ [x \in \Gamma]$ is true in ${f T}$ \Downarrow there exists a function term $f(x) \in B \ [x \in \Gamma]$ in ${f T}$ such that $R(x, f(x)) \ [x \in \Gamma]$ is true in ${f T}.$



Elimination of Martin-Löf's Existential Quantifier 1.

 $M(z) type [z \in \Sigma_{x \in B} C(x)]$ $d \in \Sigma_{x \in B} C(x) \quad m(x, y) \in M(\langle x, y \rangle) [x \in B, y \in C(x)]$ $El_{\Sigma}(d, m) \in M(d)$

existential quantifier elimination

towards all types!

Elimination of the Intuitionistic existential quantifier 3.

 $egin{aligned} \phi \ prop \ d \in \exists_{x \in B} lpha(x) & m(x,y) \in \phi \ [x \in B, y \in lpha(x)] \ & El_{\exists}(d,m) \in \phi \end{aligned}$

proof-relevant version of usual intuitionistic existential quantifier elimination RESTRICTED to propositions only (NOT dependent on ∃) and NOT towards all types!

two notions of function in Coq

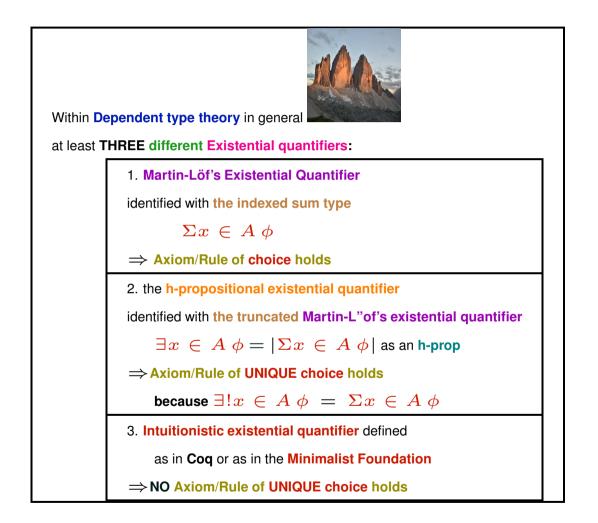
a primitive notion of type-theoretic function

 $f(x) \in B \ [x \in A]$

 \neq (syntactically)

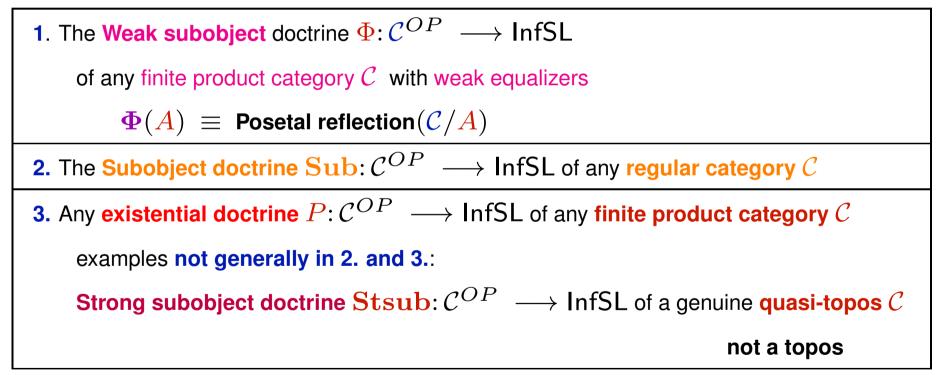
notion of functional relation $\forall x \in A \exists ! y \in B R(x, y)$

 \Rightarrow NO axiom of unique choice in Coq



3 different notions of existential quantifiers in categorical logic

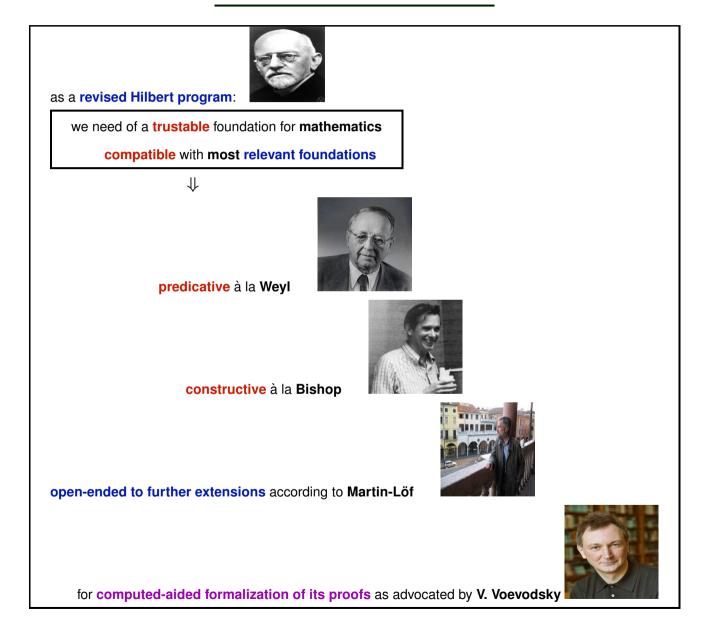
from the more specifc to the more general



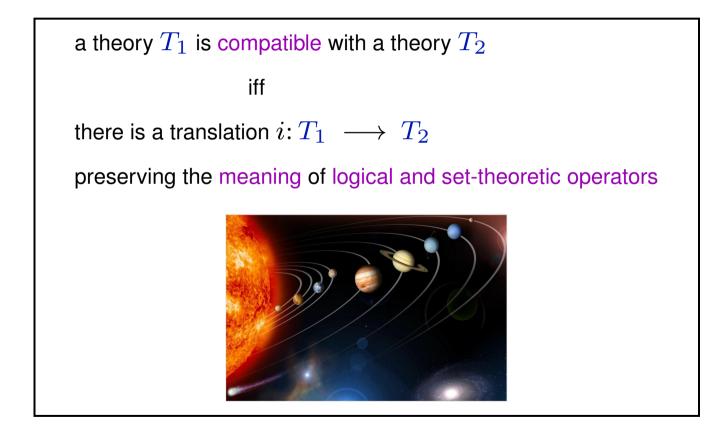
Plurality of foundations \Rightarrow need of a minimalist foundation

	classical	constructive	
	ONE standard	NO standard	
impredicative	Zermelo-Fraenkel set theory	finternal theory of topoi Coquand's Calculus of Constructions	
predicative	Feferman's explicit maths	Aczel's CZF Martin-Löf's type theory HoTT and Voevodsky's Univalent Foundations Feferman's constructive expl. maths	
	K		
the Minimalist Foundation MF			

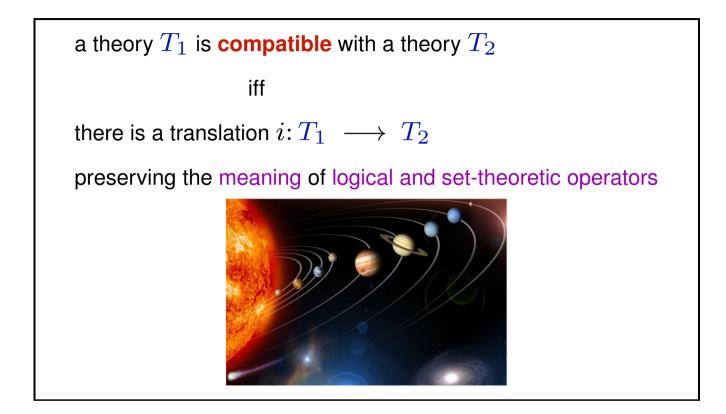
our foundational approach



Notion of compatibility between theories



Notion of compatibility between theories



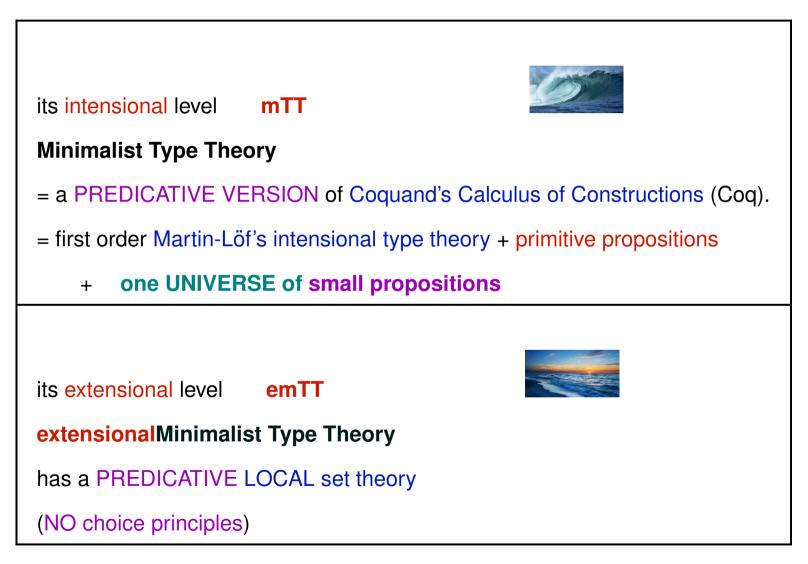
Examples:

Intuitionistic logic is compatible with Classical logic

Classical logic is NOT compatible with Intuitionistic logic

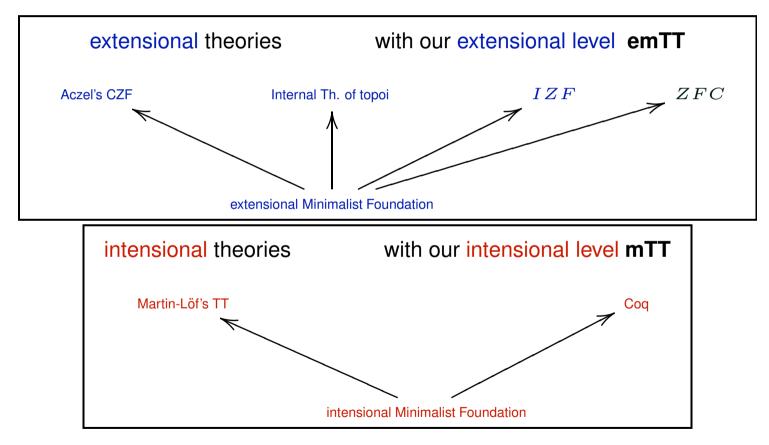
Our TWO-LEVEL Minimalist Foundation

from [Maietti'09] in agreement with [M. Sambin2005]



Why two-levels in MF? for compatibility!

COMPARE



crucial use of category theory

to interpret the extensional level in the intensional one

need of a quotient model over the intensional level

as a **elementary QUOTIENT COMPLETION** of a **Lawvere**'s elementary doctrine



expressed in the language of CATEGORY THEORY

[M.-Rosolini'12] "Quotient completion for the foundation of constructive mathematics", Logica Universalis

[M.-Rosolini'13] "Elementary quotient completion", TAC

- + cfr. other papers with F. Pasquali, D. Trotta
- + PhD thesis by C. Cioffo

our notion of Constructive Foundation combines different languages

language of LOCAL	for extensional level			
AXIOMATIC SET THEORY				
language of CATEGORY THEORY	algebraic structure			
	to link intensional/extensional levels			
	via a quotient completion			
language of TYPE THEORY	for intensional level			
a computational language	for a realizability model- extra auxiliary level			
	for programs-extractions from proofs			

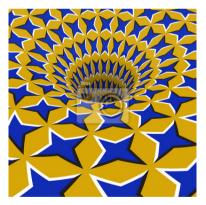
Why two-levels in MF? to distinguish various forms Axiom of Choice

EXTENSIONAL level emTT:	Zermelo axiom of choice
	formulated as AC
	\Downarrow
INTENSIONAL level mTT :	Martin-Löf's extensional axiom of choice

Axiom of choice

$\forall x \in A \; \exists y \in B \; R(x, y) \; \longrightarrow \; \exists f \in A \to B \; \forall x \in A \; R(x, f(x))$

a total relation contains the graph of a type-theoretic function.



What corresponds to Martin-Löf's Axiom of Choice

Extensional level of MF-theory	Axiom of unique choice
Intensional level of MF:	Martin-Löf's axiom of choice

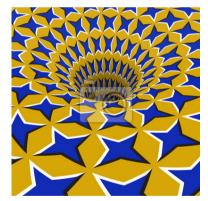
Motivation:

the validity of the rule of **unique choice** characterizes **exact completions**

among the **elementary quotient completions** of a *Lawvere's elementary doctrine* and this holds

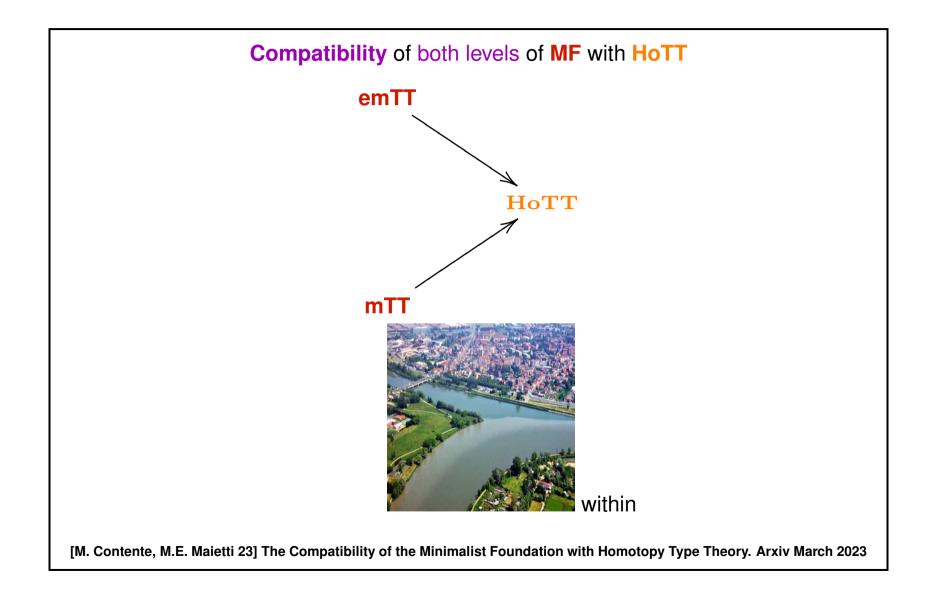
iff

the starting Lawvere doctrine satisfies a rule of choice

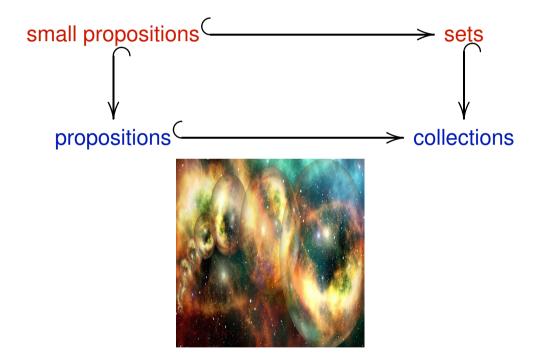


in [Maietti-Rosolini 2016] "Relating quotient completions...."

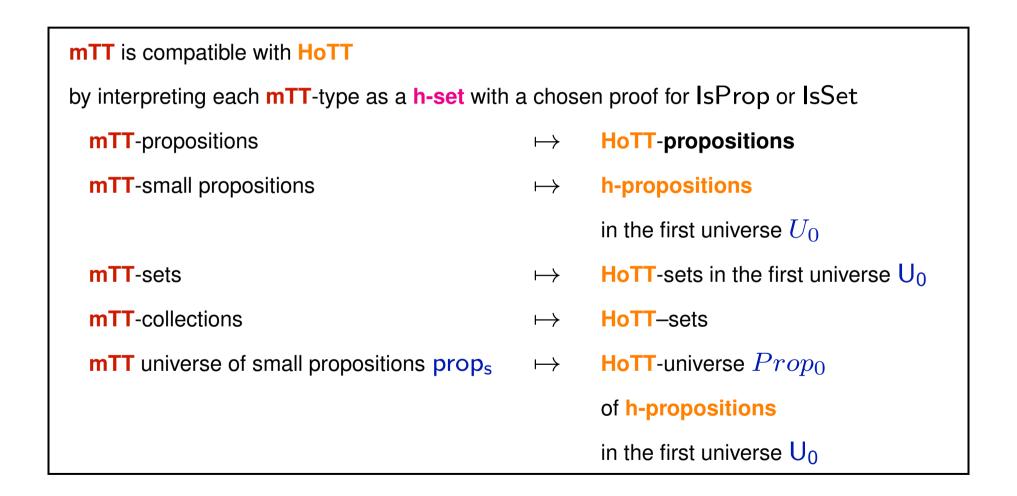
key application of HoTT



ENTITIES in the Minimalist Foundation



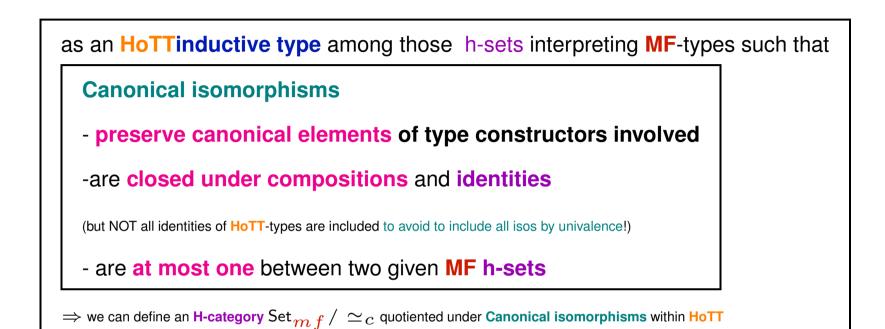
Compatibility of the intensional level mTT with HoTT



$(-)^J$: Raw-syntax $(mTT) \longrightarrow$ Raw-syntax $(HoTT)$			
$(A \ set \ [\Gamma])^J$	is defined as	$A^J : \mathcal{U}_0 \ [\Gamma^I]$ such that $\operatorname{pr}_{S}(A^J) : \operatorname{IsSet}(A^J)$ is derivable	
$(A \ col \ [\Gamma])^{J}$ prP	is defined as	$A^J \colon \mathcal{U}_1 \ [\Gamma^I]$ such that $\mathrm{pr}_{S}(A^J) \colon \mathrm{IsSet}(A^J)$ is derivable	
$(P \operatorname{\textit{prop}}_{\mathcal{S}} [\Gamma])^J$	is defined as	$P^J \colon \mathcal{U}_0 \ [\Gamma^I]$ such that $\operatorname{pr}_P(P^J) \colon \operatorname{IsProp}(P^J)$ is derivable	
$(P ext{ prop } [\Gamma])^J$	is defined as	$P^J \colon U_1[\Gamma^I]$ such that $pr_P(P^J) \colon IsProp(P^J)$ is derivable	
$(A = B set [\Gamma])^J$	is defined as	$(A^J, \operatorname{pr}_{S}(A^J)) \equiv (B^J, \operatorname{pr}_{S}(B^J)) \colon \operatorname{Set}_{\mathcal{U}_0}[\Gamma^I]$	
$(A = B \ col \ [\Gamma])^J$	is defined as	$(A^J, \operatorname{pr}_{S}(A^J)) \equiv (B^J, \operatorname{pr}_{S}(B^J)) \colon \operatorname{Set}_{\mathcal{U}_1}[\Gamma^I]$	
$(P = Q \operatorname{prop}_{S} [\Gamma])^{J}$	is defined as	$(P^J, \operatorname{pr}_{P}(P^J)) \equiv (Q^J, \operatorname{pr}_{P}(Q^J)) \colon \operatorname{Prop}_{\mathcal{U}_0}[\Gamma^I]$	
$(P = Q \operatorname{prop} [\Gamma])^J$	is defined as	$(P^J, \operatorname{pr}_{P}(P^J)) \equiv (Q^J, \operatorname{pr}_{P}(Q^J)) \colon \operatorname{Prop}_{\mathcal{U}_1}[\Gamma^I]$	
$(a \in A \ [\Gamma])^J$	is defined as	$a^J : A^J \ [\Gamma^I]$	
$(a = b \in A [\Gamma])^J$	is defined as	$a^J \equiv b^J \colon A^J \ [\Gamma^I]$	

emTT with equality reflection is compatible with HoTT				
by interpreting up to canonical isomorphisms				
emTT-propositions		HoTT-propositions		
emTT-small propositions		HoTT-propositions		
		in the first universe $U_{f 0}$		
emTT-sets	\mapsto	HoTT-sets in the first universe $U_{ m 0}$		
emTT-quotients		HoTT-quotient sets in the first universe $U_{ m 0}$		
emTT-collections		HoTT-sets		
emTT extensional universe $\mathcal{P}(1)$		HoTT-universe $Prop_0$		
of small propositions		of <i>propositions</i> in the first universe U_{o}		
definitional equality of emTT-types		propositional equality of HoTT-sets		
<i>definitional equality</i> of emTT -terms		propositional equality of HoTT-terms		

Canonical isomorphisms

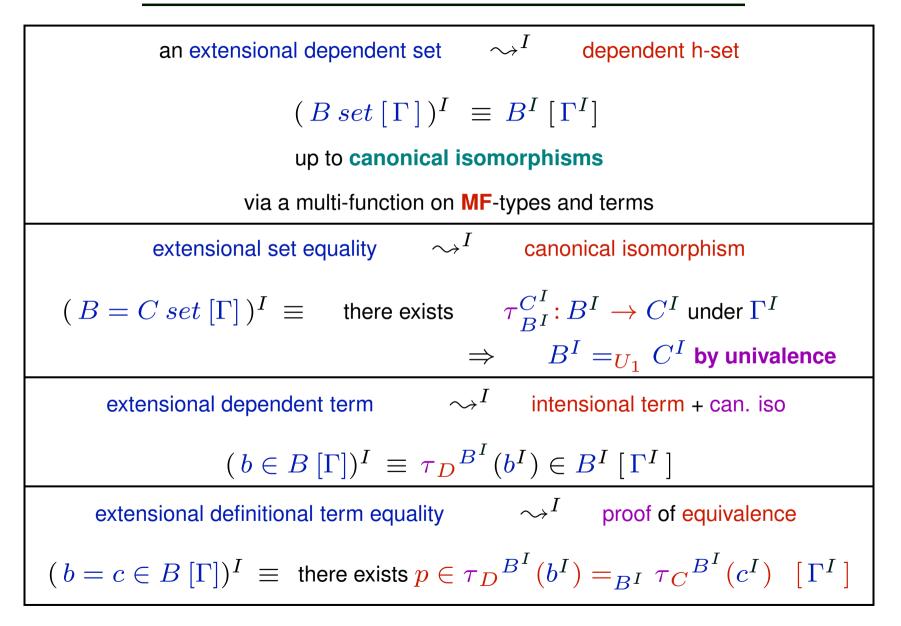


as in (but without setoids)

[Maietti2009] A minimalist two-level foundation for constructive mathematics. Annals of Pure and Applied Logic

[Hofmann95] M. Hofmann. Conservativity of equality reflection over intensional type theory.(canonical isos but with AC)

alternative approaches in: N. Oury 2005 and T. Winterhalter, M. Sozeau, and N. Tabareau 2019 (with an heterogenous equality)



Conservativity over first-order logic

MF inherits conservativity over first order intuitionistic logic

by its compatibility with the internal theory of a topos

Question:

Is **HoTT** conservative over first order intuitionistic logic??

MF is strictly predicative a' la Feferman

the intensional level mTT of MF has a realizability model for program-extraction:

as an extension of Kleene realizability validating

Formal Church Thesis + Axiom of choice

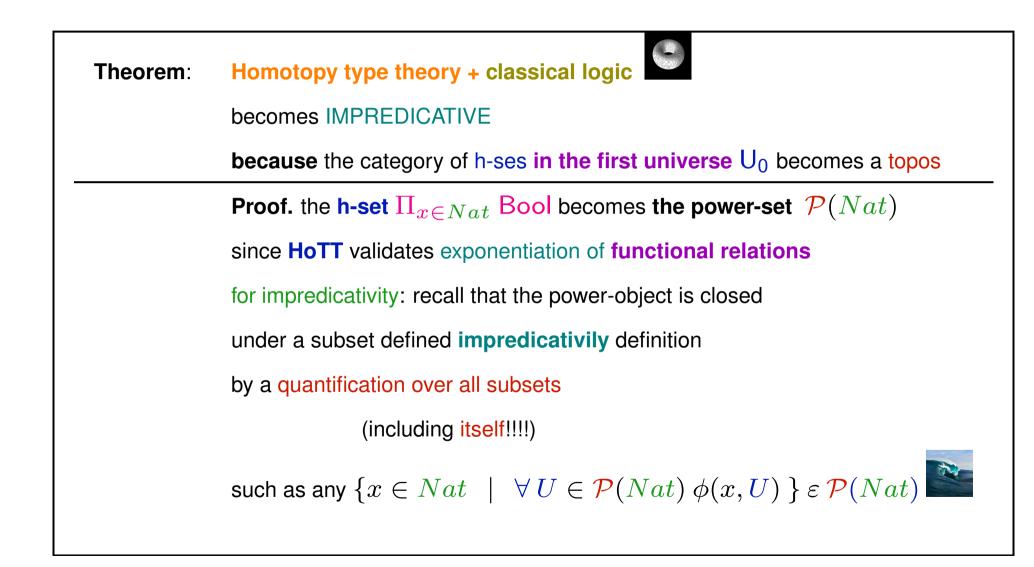
formalized in Feferman's theory $\widehat{ID_1}$

in

H. Ishihara, M.E.M., S. Maschio, T. Streicher

Consistency of the Minimalist Foundation with Church's thesis and Axiom of Choice , AML, 2018

HoTT + excluded middle becomes impredicative



Characteristics of predicative definitions

in the sense of Russell-Poincarè

"Whatever involves an apparent variable

must not be among the possible values of that variable."

classical predicative mathematics is viable

according to Hermann Weyl

... the continuum... cannot at all be battered into a single set of elements.

Not the relationship of an element to a set,

but of a part to a whole ought to be taken as a basis for the analysis of a continuum.

modern confirmation: Friedman -Simpson's program

"most basic classical mathematics can be founded predicatively"

Addition of classical logic to MF keeps predicative features à la Weyl

in MF + classical logic: power-objects $\mathcal{P}(Nat)$ is NOT a set + Dedekind reals =Cauchy real numbers are NOT sets As a consequence of NO choice principles in MF

\Downarrow

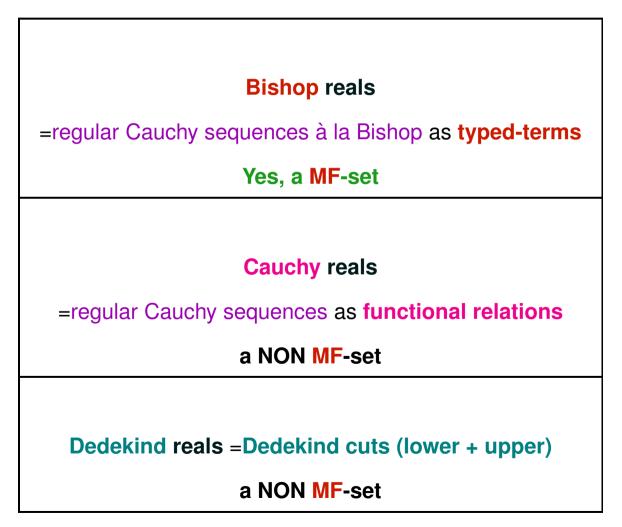
three distinct notions of real numbers:

Bishop reals		
=regular Cauchy sequences à la Bishop as typed-terms		
\neq (NO axiom of unique choice in MF)		
Cauchy reals		
=regular Cauchy sequences as functional relations		
\neq (NO countable choice in MF)		
Dedekind reals =Dedekind cuts (lower + upper)		

As a consequence of low proof-theoretic strength of MF

\Downarrow

three distinct notions of real numbers:



why **Dedekind reals** do NOT form a set in **emTT** + **classical logic**

we model emTT/mTT +excluded middle

in the quasi-topos of **assemblies**

within Hyland's Effective topos

the category of assemblies

assembly	(X, ϕ)		
	with X set and $\phi \subseteq X imes Nat$ a <i>total relation</i> from X to Nat		
assembly morphism	$(\mathbf{f}, \mathbf{m}): (\mathbf{X}, \phi) \rightarrow (\mathbf{Y}, \psi)$		
	with $\mathbf{f} \colon \mathbf{X} o \mathbf{Y}$ and $\mathbf{m} \in \mathbf{Nat}$ such that \mathbf{m} tracks f		
	i.e. for all $\mathbf{x} \in \mathbf{X}$ and $\mathbf{n} \in \mathbf{Nat}$		
	if $\mathbf{x} \phi \mathbf{n}$ then $\mathbf{f}(\mathbf{x}) \psi \{\mathbf{m}\}(\mathbf{n})$		
morphism equality			
$(\mathbf{f} \mathbf{m}) - (\mathbf{a} \mathbf{m'})$	iff $f - a$ as functions		

$$(f,\mathbf{m})=(g,\mathbf{m'})$$
 iff $f=g$ as functions

the interpretation of emTT in the quasi-topos of assemblies

emTT entities	their semantics
emTT sets	assemblies (X,ϕ) with X countable
operations between sets	assemblies morphisms
propositions	strong monomorphisms of assemblies
proper collections (= NO sets)	assemblies (X,ϕ) with X not countable

from the model of emTT in assemblies within Eff

corollary:

- axiom of unique choice between natural numbers is NOT valid in emTT/mTT

- Cauchy reals and Dedekind reals of emTT are NOT emTT-sets but only emTT-collections.

 $-\mathcal{P}(Nat)$ is not an emTT-set but only an emTT-collection.

Proof. The mentioned **reals** are interpreted as NOT countable assemblies!

Conclusion

HoTT has a remarkable expressive power as a dependent type theory able to interpret BOTH levels of the Minimalist Foundation because of set quotients + univalence but INCOMPATIBLE with classical predicativity for its existential quantifier of regular logic the Minimalist Foundation is strictly predicative a la Weyl Dedekind real numbers do not form a set even with the addition of **classical logic**! for its intuitionistic existential quantifier primitively defined over dependent type theory

Open issues

• Extend **compatibility** with **HoTT** + **Palmgren's superuniverse**

to MF +inductive-coinductive topological definitions

(cfr work with Maschio-Rathjen (2021-2022) and with P. Sabelli (2023))

- Equiconsistency of the Minimalist Foundation with its classical counterpart
- Extend compatibility with HoTT to MF +classical logic

