A cubical model for weak ω-categories (joint work with Tim Campion and Chris Kapulkin)

Yuki Maehara
Macquarie University

HoTTEST October 2020

Globular ω-categories

Globular ω-categories

Globular ω-categories

	Shape	Compositions
0-cells	\cdot	none
1-cells	$\cdot \longrightarrow \cdot$	$\bullet \longrightarrow$

Globular ω-categories

	Shape	Compositions
0-cells	-	none
1-cells	\longrightarrow •	$\bullet \longrightarrow$ •
2-cells	-	hor. vert.
n-cells	n-dimensional globe	n ways

Cubical ω-categories (with connections)

Cubical ω-categories (with connections)

Cubical ω-categories (with connections)

Cubical ω-categories (with connections)

	Shape	Compositions
0 -cells	-	none
1-cells	\longrightarrow •	$\bullet \longrightarrow$
2-cells		hor. vert.
n-cells	n-dimensional cube	n ways

Equivalence

Theorem (Al-Agl, Brown, Steiner)
 $\{$ globular ω-categories $\} \simeq\{$ cubical ω-categories $\}$

Equivalence

Theorem (Al-Agl, Brown, Steiner)
$\{$ globular ω-categories $\} \simeq\{$ cubical ω-categories $\}$
globular \rightsquigarrow cubical:

Equivalence

> Theorem (Al-Agl, Brown, Steiner)
> $\{$ globular ω-categories $\} \simeq\{$ cubical ω-categories $\}$
> globular \rightsquigarrow cubical:
> probe with cube-shaped globular ω-categories

Equivalence

> Theorem (Al-Agl, Brown, Steiner)
> $\{$ globular ω-categories $\} \simeq\{$ cubical ω-categories $\}$
> globular \rightsquigarrow cubical:
> probe with cube-shaped globular ω-categories
> cubical \rightsquigarrow globular:

Equivalence

Theorem (Al-Agl, Brown, Steiner)
 $\{$ globular ω-categories $\} \simeq\{$ cubical ω-categories $\}$

globular \rightsquigarrow cubical:
probe with cube-shaped globular ω-categories
cubical \rightsquigarrow globular:
probe with globe-shaped cubical ω-categories

Equivalence

Theorem (Al-Agl, Brown, Steiner)
 $\{$ globular ω-categories $\} \simeq\{$ cubical ω-categories $\}$

globular \rightsquigarrow cubical:
probe with cube-shaped globular ω-categories (pictures coming)
cubical \rightsquigarrow globular:
probe with globe-shaped cubical ω-categories (pictures coming)

Cube-shaped globular ω-categories

Cube-shaped globular ω-categories

$\mathbb{I}^{0}=$ •

Cube-shaped globular ω-categories

$$
\mathbb{I}^{0}=\quad \bullet \quad \mathbb{I}^{1}=\quad \bullet \longrightarrow
$$

Cube-shaped globular ω-categories

$$
\mathbb{I}^{0}=\mathbb{I}^{1}=\quad \pi^{2}=\downarrow \cdot \downarrow
$$

Cube-shaped globular ω-categories

Globe-shaped cubical ω-categories

Globe-shaped cubical ω-categories

Globe-shaped cubical ω-categories

Gray tensor products on ω-Cat

Lax Gray tensor product:

Gray tensor products on ω-Cat

Lax Gray tensor product:

Gray tensor products on ω-Cat

Lax Gray tensor product:

Theorem (Crans)

$$
\mathbb{I}^{m} \otimes \mathbb{I}^{n} \cong \mathbb{I}^{m+n}
$$

Gray tensor products on ω-Cat

Lax Gray tensor product:

Theorem (Crans)

The lax Gray tensor product is part of a unique biclosed monoidal structure on ω-Cat such that $\mathbb{I}^{m} \otimes \mathbb{I}^{n} \cong \mathbb{I}^{m+n}$.

Gray tensor products on ω-Cat

Lax Gray tensor product:

Theorem (Crans)

The lax Gray tensor product is part of a unique biclosed monoidal structure on ω-Cat such that $\mathbb{I}^{m} \otimes \mathbb{I}^{n} \cong \mathbb{I}^{m+n}$.

Pseudo Gray tensor product:

Cubical sets

Definition

Cubical sets (with connections) $=$ presheaves on \square

Cubical sets

Definition

Cubical sets (with connections) $=$ presheaves on \square
\square is (non-full) subcategory of Cat whose...

Cubical sets

Definition

Cubical sets (with connections) $=$ presheaves on \square
\square is (non-full) subcategory of Cat whose... obj: $\mathbf{2}^{n}=\{0 \rightarrow 1\}^{n}$ for $n \geq 0$.

Cubical sets

Definition

Cubical sets (with connections) $=$ presheaves on
\square is (non-full) subcategory of Cat whose... obj: $2^{n}=\{0 \rightarrow 1\}^{n}$ for $n \geq 0$.
mor: generated by

Cubical sets

Definition

Cubical sets (with connections) $=$ presheaves on
\square is (non-full) subcategory of Cat whose... obj: $2^{n}=\{0 \rightarrow 1\}^{n}$ for $n \geq 0$.
mor: generated by

under composition and products in Cat

Cubical sets

Definition

Cubical sets (with connections) $=$ presheaves on
\square is (non-full) subcategory of Cat whose...
obj: $\mathbf{2}^{n}=\{0 \rightarrow 1\}^{n}$ for $n \geq 0$.
mor: generated by

under composition and products in Cat

Definition

$$
\mathbf{2}^{m} \otimes \mathbf{2}^{n}=\mathbf{2}^{m+n}
$$

Cubical sets

Definition

Cubical sets (with connections) $=$ presheaves on
\square is (non-full) subcategory of Cat whose...
obj: $\mathbf{2}^{n}=\{0 \rightarrow 1\}^{n}$ for $n \geq 0$.
mor: generated by

under composition and products in Cat

Definition

Geometric product is Day convolution of $\mathbf{2}^{m} \otimes \mathbf{2}^{n}=\mathbf{2}^{m+n}$.

Cubical ω-categories via box filling

Certain cubes correspond to identities:

Cubical ω-categories via box filling

Certain cubes correspond to identities:

Cubical ω-categories via box filling

Certain cubes correspond to identities:

Cubical ω-categories via box filling

Certain cubes correspond to identities:

Idea

- Mark such identity cubes.

Cubical ω-categories via box filling

Certain cubes correspond to identities:

Idea

- Mark such identity cubes.
- Encode compositions using unique marked fillers.

Cubical ω-categories via box filling

Certain cubes correspond to identities:

Idea

- Mark such identity cubes.
- Encode compositions using unique marked fillers.

Marked cubical sets

Definition

marked cubical set $(X, e X)$

Marked cubical sets

Definition

A marked cubical set $(X, e X)$ is a cubical set $X \mathrm{t} / \mathrm{w}$ marked cubes $e X_{n} \subset X_{n}$

Marked cubical sets

Definition

A marked cubical set $(X, e X)$ is a cubical set $X \mathrm{t} / \mathrm{w}$ marked cubes $e X_{n} \subset X_{n}$ (containing degeneracies and connections) for $n \geq 1$.

Marked cubical sets

Definition

A marked cubical set $(X, e X)$ is a cubical set $X \mathrm{t} / \mathrm{w}$ marked cubes $e X_{n} \subset X_{n}$ (containing degeneracies and connections) for $n \geq 1$.

Theorem (Steiner)

A marked cubical set underlies a cubical ω-category iff:

Marked cubical sets

Definition

A marked cubical set $(X, e X)$ is a cubical set $X \mathrm{t} / \mathrm{w}$ marked cubes $e X_{n} \subset X_{n}$ (containing degeneracies and connections) for $n \geq 1$.

Theorem (Steiner)

A marked cubical set underlies a cubical ω-category iff:

- certain open boxes admit unique marked fillers; and

Marked cubical sets

Definition

A marked cubical set $(X, e X)$ is a cubical set $X \mathrm{t} / \mathrm{w}$ marked cubes $e X_{n} \subset X_{n}$ (containing degeneracies and connections) for $n \geq 1$.

Theorem (Steiner)

A marked cubical set underlies a cubical ω-category iff:

- certain open boxes admit unique marked fillers; and
- marked cubes "compose".

Marked cubical sets

Definition

A marked cubical set $(X, e X)$ is a cubical set $X \mathrm{t} / \mathrm{w}$ marked cubes $e X_{n} \subset X_{n}$ (containing degeneracies and connections) for $n \geq 1$.

Theorem (Steiner)

A marked cubical set underlies a cubical ω-category iff:

- certain open boxes admit unique marked fillers; and
- marked cubes "compose".
...want invertible rather than identity

Marked cubical sets

Definition

A marked cubical set $(X, e X)$ is a cubical set $X \mathrm{t} / \mathrm{w}$ marked cubes $e X_{n} \subset X_{n}$ (containing degeneracies and connections) for $n \geq 1$.

Theorem (Steiner)

A marked cubical set underlies a cubical ω-category iff:

- certain open boxes admit unique marked fillers; and
- marked cubes "compose".
...want invertible rather than identity \rightsquigarrow drop uniqueness!

Marked cubical sets

Definition

A marked cubical set $(X, e X)$ is a cubical set $X \mathrm{t} / \mathrm{w}$ marked cubes $e X_{n} \subset X_{n}$ (containing degeneracies and connections) for $n \geq 1$.

Theorem (Steiner)

A marked cubical set underlies a cubical ω-category iff:

- certain open boxes admit unique marked fillers; and
- marked cubes "compose".
...want invertible rather than identity \rightsquigarrow drop uniqueness!

Definition

comical set (composition + cubical set)

Marked cubical sets

Definition

A marked cubical set $(X, e X)$ is a cubical set $X \mathrm{t} / \mathrm{w}$ marked cubes $e X_{n} \subset X_{n}$ (containing degeneracies and connections) for $n \geq 1$.

Theorem (Steiner)

Δ markod cubical cot undarline a cubical imatoonorv iff.

- certain open boxes admit marked fillers; and
- marked cubes "compose".
...want invertible rather than identity \rightsquigarrow drop uniqueness!

Definition

A comical set (composition + cubical set) is a marked cubical set in which:

Lax Gray tensor product

Geometric product should underlie lax Gray tensor product.

Lax Gray tensor product

Geometric product should underlie lax Gray tensor product. ...but what about marking?

Lax Gray tensor product

Geometric product should underlie lax Gray tensor product. ...but what about marking?

Lax Gray tensor product

Geometric product should underlie lax Gray tensor product. ...but what about marking?

Lax Gray tensor product

Geometric product should underlie lax Gray tensor product. ...but what about marking?

Lax Gray tensor product

Geometric product should underlie lax Gray tensor product. ...but what about marking?

Lax Gray tensor product

Geometric product should underlie lax Gray tensor product. ...but what about marking?

so we should have...

Lax Gray tensor product

Geometric product should underlie lax Gray tensor product. ...but what about marking?

so we should have...

Lax Gray tensor product

Geometric product should underlie lax Gray tensor product. ...but what about marking?

so we should have...

Lax Gray tensor product

Geometric product should underlie lax Gray tensor product. ...but what about marking?

so we should have...

Lax Gray tensor product

Geometric product should underlie lax Gray tensor product. ...but what about marking?

so we should have...

Lax Gray tensor product

Geometric product should underlie lax Gray tensor product. ...but what about marking?

so we should have an inverse to $\xrightarrow{\square \longrightarrow}$

Lax Gray tensor product

Geometric product should underlie lax Gray tensor product. ...but what about marking?

so we should have an inverse to $\xrightarrow{\rightarrow \longrightarrow}$

Gray tensor products

Definition

The lax Gray tensor product of marked cubical sets is

$$
(X, e X) \otimes(Y, e Y)=
$$

Gray tensor products

Definition

The lax Gray tensor product of marked cubical sets is

$$
(X, e X) \otimes(Y, e Y)=(X \otimes Y
$$

Gray tensor products

Definition

The lax Gray tensor product of marked cubical sets is

$$
\begin{aligned}
& (X, e X) \otimes(Y, e Y)=(X \otimes Y \\
& \quad x \otimes y
\end{aligned}
$$

Gray tensor products

Definition

The lax Gray tensor product of marked cubical sets is

$$
\begin{aligned}
& (X, e X) \otimes(Y, e Y)=(X \otimes Y \\
& \quad x \otimes y \text { is marked iff either } x \text { or } y \text { is marked }
\end{aligned}
$$

Gray tensor products

Definition

The lax Gray tensor product of marked cubical sets is

$$
(X, e X) \otimes(Y, e Y)=(X \otimes Y,(e X \otimes Y) \cup(X \otimes e Y))
$$

That is, $x \otimes y$ is marked iff either x or y is marked.

Gray tensor products

Definition

The lax Gray tensor product of marked cubical sets is

$$
(X, e X) \otimes(Y, e Y)=(X \otimes Y,(e X \otimes Y) \cup(X \otimes e Y))
$$

That is, $x \otimes y$ is marked iff either x or y is marked.

Definition

In the pseudo Gray tensor product,

Gray tensor products

Definition

The lax Gray tensor product of marked cubical sets is

$$
(X, e X) \otimes(Y, e Y)=(X \otimes Y,(e X \otimes Y) \cup(X \otimes e Y))
$$

That is, $x \otimes y$ is marked iff either x or y is marked.

Definition

In the pseudo Gray tensor product, the only unmarked cubes are:

- unmarked $\otimes 0$-cube; and
- 0-cube \otimes unmarked.

Model structure

Theorem

There is a model structure such that:

- $\{$ cofibrations $\}=\{$ monos $\}$
- $\{$ fibrant objects $\}=\{$ comical sets $\}$.

Model structure

Theorem

There is a model structure such that:

- $\{$ cofibrations $\}=\{$ monos $\}$
- $\{$ fibrant objects $\}=\{$ comical sets $\}$.

Moreover it is monoidal wrt both Gray tensor products.

Model structure

Theorem

There is a model structure such that:

- $\{$ cofibrations $\}=\{$ monos $\}$
- $\{$ fibrant objects $\}=\{$ comical sets $\}$.

Moreover it is monoidal wrt both Gray tensor products.
The combinatorics is relatively easy!

Complicial sets

We have a simplicial precursor.

Complicial sets

We have a simplicial precursor.

Definition (Roberts, Verity)

complicial set (composition + simplical set)

Complicial sets

We have a simplicial precursor.

Definition (Roberts, Verity)

A complicial set (composition + simplical set) is a marked simplicial set in which:

Complicial sets

We have a simplicial precursor.

Definition (Roberts, Verity)

A complicial set (composition + simplical set) is a marked simplicial set in which:

- suitable horns admit marked fillers; and
- marked simplices "compose".

Complicial sets

We have a simplicial precursor.

Definition (Roberts, Verity)

A complicial set (composition + simplical set) is a marked simplicial set in which:

- suitable horns admit marked fillers; and
- marked simplices "compose".

Theorem (Verity)
 $\{$ strict complicial sets $\} \simeq \omega$ - Cat

Triangulation

Triangulation sends...

Triangulation

Triangulation sends...

- n-cube $\mapsto \Delta[1]^{\otimes n}$

Triangulation

Triangulation sends...

- n-cube $\mapsto \Delta[1]^{\otimes n}$

Triangulation

Triangulation sends...

- n-cube $\mapsto \Delta[1]^{\otimes n}$

Note: $\Delta[1]^{\otimes n}$ has a unique unmarked n-simplex ι_{n}.

Triangulation

Triangulation sends...

- n-cube $\mapsto \Delta[1]^{\otimes n}$

Note: $\Delta[1]^{\otimes n}$ has a unique unmarked n-simplex ι_{n}.

- marked n-cube \mapsto ?

Triangulation

Triangulation sends...

- n-cube $\mapsto \Delta[1]^{\otimes n}$

Note: $\Delta[1]^{\otimes n}$ has a unique unmarked n-simplex ι_{n}.

- marked n-cube $\mapsto \Delta[1]^{\otimes n}$ with ι_{n} marked

Triangulation

Triangulation sends...

- n-cube $\mapsto \Delta[1]^{\otimes n}$

Note: $\Delta[1]^{\otimes n}$ has a unique unmarked n-simplex ι_{n}.

- marked n-cube $\mapsto \Delta[1]^{\otimes n}$ with ι_{n} marked

Triangulation
Triangulation sends...

- n-cube $\mapsto \Delta[1]^{\otimes n}$

Note: $\Delta[1]^{\otimes n}$ has a unique unmarked n-simplex ι_{n}.

- marked n-cube $\mapsto \Delta[1]^{\otimes n}$ with ι_{n} marked

Theorem

It is left Quillen and preserves both Gray tensor products up to homotopy.

That's it!

Thank you!

