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Initiality for dependent type theories
By initiality for a type theory, mean a statement like:

Template

The syntactic category of dependent type theory with Σ, Π, and
Id-types forms the initial contextual category with Σ, Π, and
Id-structure.

I Justi�es categorical-algebraic de�nition of “models of DTT with
XYZ-types” as “contextual cats with XYZ-structure”

I Packages the bureaucracy of interpreting syntax into such
structures

I Should hold “robustly” for “all reasonable” type theories: not
rely on “fragile” properties like normalisation

I Variations: could state with CwA’s, CwF’s, C-systems, etc.; with
various di�erent presentations of the type theory; with
2-categorical initiality; . . .
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Status
I Thesis: Initiality is established

I Proven by Streicher (1991 book) for Calculus of Constructions;
adapted+re�ned by Hofmann (1995 thesis) for DTT with Π, Id, N.

I Proof extends straightforwardly + robustly to other type theories.
I (NB: Other presentations in literature (that I’m aware of) use

techniques speci�c to certain type theories, don’t extend robustly;
or use substantially di�erent syntax; or handwave many details.)

I Antithesis: Initiality is an open problem
I Extension not really straightforward at all!
I What type theories is it even supposed to hold for? It fails for some!

I Synthesis: Initiality is heuristically well-understood
I “Experts” do understand what kinds of type theories it holds for,

and how to extend Streicher–Hofmann proof.
I But: this understanding not clearly articulated anywhere,

rigorously or even heuristically.
I Extension of proof mostly straightforward — minor tweaks needed,

no substantial new ideas — but carefully making sure of this
involves checking a lot of details. Not obviously straightforward!
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Solution proposals
Long-term solution

De�ne general class of dependent type theories; state and prove
initiality for these.

I De�ne rigorously a general class of dependent type theories. . .
I . . . yielding as many speci�c theories of interest as possible. . .
I . . . modulo di�erences in presentation, as minor as possible.
I De�ne corresponding categorical-algebraic structures. . .
I . . . yielding the established de�nitions, as closely as possible. . .
I . . . and prove initiality with respect to these.

Various proposals: Bauer–Lumsdaine–Haselwarter; Brunerie;
Uemura; Isaev, Capriotti.

See Peter’s HoTTEST, June 2020: h�ps://youtu.be/kQe0knDuZqg

Short-term solution
Just damn well prove it for more non-trivial theories of interest!
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Objection!
Frequently asked question

If it’s so dreadfully hard, why not use a di�erent syntax/semantics
that makes it easier?

I It’s not “dreadfully hard”; it’s just not too trivial to be worth
proving!

I O�-the-shelf essentially algebraic syntax for CwF’s:
forgets much of the structure of the type theory;
so, doesn’t support the other motivating metatheorems.

I Logical framework presentations:
pre-Uemura: couldn’t see how they su�ce for other
motivations;
linking the “naïve” and LF syntaxes: clearest proof I know
(Hofmann) uses initiality for naïve syntax.

I And various other options, e.g. QIITs. Generally: each has some
advantages; but traditional “naïve” syntax still one important
approach to understand.
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Stockholm initiality formalisations

Goal
Prove initiality formally, for some speci�c type theory, ideally
approaching “book HoTT”.

Two parallel developments, planned together: Brunerie–de Boer in
Agda, Lumsdaine–Mörtberg in Coq.

Small type theory at �rst: Π-types, a dependent family of base types.

Key design criterion: robust extensibility. Avoid doing anything that
wouldn’t extend to “arbitrary” constructors/rules.

“We can have this done within a week.” — PLL, 19 October 2018

Developments begun 22 October; Brunerie-de Boer initiality attained
19 November!
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Categories with families proof
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Type theory under consideration

Raw syntax with binding: de Bruijn indices, well-scoped, fully
annotated.

De�nition
Raw expressions: family of sets Exprty(n), Exprtm(n) inductively
generated by variables and constructors:
I for i ∈ {1, . . . , n}, have xi ∈ Exprtm(n);
I for A ∈ Exprty(n), B ∈ Exprty(n + 1), have Π(A, B) ∈ Exprty(n);
I for A ∈ Exprty(n), B ∈ Exprty(n + 1), f , a ∈ Exprtm(n), have

app(A, B, f , a) ∈ Exprty(n)
I similar clauses for each constructor of the type theory

Basic operations (e.g. substitution) and lemmas all de�ned+proven
recursively+inductively from these.
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Judgements, derivability
De�nition
Raw context Γ of length n: sequence of type expressions in scope n.

Judgements: tuples of expressions of the following forms

Γ ` A type Γ ` a : A
Γ ` A ≡ B type Γ ` a ≡ b : A

De�nition
Derivability: inductively de�ned relation on judgements, by usual
rules:
I structural rules;
I logical + congruence rules for the speci�c constructors.

Note: no context or context-equality judgement, either primitive or
used in rules. Can show: this doesn’t a�ect derivability.
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Categorical models

De�nition (Category with families)

I category C of contexts;
I presheaf of types: Ty(Γ), for Γ ∈ C;
I presheaf of terms: Tm(Γ,A), for A ∈ Ty(Γ);
I various operations, properties

(Closely equivalent: categories with attributes, split type-categories,
. . . )

De�nition
Logical structure on a CwA: operations for all constructors + rules of
the type theory.
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Environments; partial interpretation

De�nition
Environment for scope n in C:

object Γ ∈ C and partial map E : {1, . . . , n}
∑

A∈Ty(Γ) Tm(Γ,A).

Idea: Γ the interpretation of a context; E gives its types and variables.

De�nition
Given C, environment (Γ, E) for scope n, and expression e in scope n,
get partial interpretation [[e]]Γ,E, suitable type or term,
de�ned by recursion on e.
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Interpretation lemmas

Lemma
Partial interpretation is stable under reindexing of environments.

Proof.
Structural induction on the expression. �

Lemma
Partial interpretation interprets syntactic substitution as semantic
substitution.

Proof.
Structural induction on the expression. �
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Totality

Lemma
Interpretation is total on derivable judgements.

Proof.
Structural induction on the derivation. �

Lemma
Partial interpretation is functorial in (weak) maps of CwF’s.

Proof.
Structural induction on the expression. �
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Syntactic category

De�nition
Syntactic CwF: constructed from syntax, modulo judgemental
equality.

Theorem (Initiality)

The syntactic CwF is initial among CwF’s with logical structure.

Proof.
Existence: by totality of the interpretation.
Uniqueness: by functoriality of the interpretation. �

I All inductions structural.
I No mention of equality on objects.
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Coq formalisation
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Background

Approach based in part on previous attempt by PLL from 2014–15
(in joint development Gylterud–Lumsdaine–Palmgren).

Attempt foundered due to combination of several design choices
making life hard:
I use of named variables
I use of setoids for the target models
I started with slightly overambitious type theory
I . . .

Very useful experience to build on — both the good and the bad
aspects. . .
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Design choices
This time round:
I Proof assistant: Coq; speci�cally, over UniMath. (Mainly: for a

well-developed category theory library that both authors were
familiar with.)

I Models: Categories with attributes, not assuming objects form a set
(so, CwA a 2-category); for 1-categorical initiality, contextual
categories as CwA’s plus contextuality axiom (implying objects a
set).

I Variables in raw syntax: using de Bruijn indices. Raw syntax:
well-scoped. These enable:

I All inductions purely structural, over either raw syntax or
derivations. No size measures, auxiliary well-founded relations, etc.

I Context and context-equality judgements subsidiary, not primitive,
don’t appear in derivations. Substitution admissible, not a primitive
rule. These enable:

I Interpretation fuction (partial + totality): into arbitrary CwA’s. No
use of equality on objects/contexts needed.
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Experience

Good news

1. Interpretation function (partial + total): went very smoothly.

2. Admissibility of substitution, etc: went surprisingly smoothly.
3. Categorical operations on syntax: clean to de�ne, derive

properties as judgemental equalities, etc.

Bad news

1. Quotients

2. Quotients

3. Quotients
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Good news

1. Interpretation function (partial + total): went very smoothly.
2. Admissibility of substitution, etc: went surprisingly smoothly.
3. Categorical operations on syntax: clean to de�ne, derive

properties as judgemental equalities, etc.

Bad news
Speci�cally, interaction of 2 issues:

1. Syntactic CwA: dependently-typed (maps depend on objects),
with objects quotiented (contexts, up to judgemental equality)

2. In UniMath’s quotients, the dependent eliminator doesn’t
compute judgementally.

Together: ends up at least as painful as using setoids.
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Status
1. Complete: “Pre-quotient” parts. Contains most mathematically

interesting parts, and most useful for applications.
I de�nition of type theory, main syntactic lemmas;
I de�nition of suitably structured CwA’s, basic lemmas;
I interpretation function into suitable CwA’s (pre-quotient part of

existence for initiality)
I functoriality of interpretation under CwA (pseudo-)maps

(pre-quotient ingredient of uniqueness for initiality)
Around 4,000 lines of code (not including libraries).

2. Incomplete: “post-quotient” parts, i.e. assembling into the syntactic
CwA and functors thereon. Mathematically mostly less interesting,
but hard to formalise.
I Done: syntactic category; most of CwA structure thereon; some

logical structure; most of underlying functor of interpretation map.
I Remaining: rest of CwA structure, and logical structure;

interpretation as a structure-preserving map of CwA’s; uniqueness of
the interpretation map.

Arround 3,000 lines of code, so far!
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Over to Guillaume!
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