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Introduction

• In his PhD thesis, Brunerie contructed a number n s.t.
π4(S3) ∼= Z/nZ

• He then proved that n = ±2, thereby also showing that
π4(S3) ∼= Z/2Z

• Proving that n = ±2 should not be necessary – everything is
constructive, so we should be able to simply compute n by
plugging it into our favourite proof assistant

• Not that easy...
• But n is still constructively defined. Maybe if we unfold its

definition enough, we should be able to deduce n = ±2 by
simply staring at it.

• In this talk, I will present such a proof
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Suspensions

Definition 1 (Suspensions)
The suspension of a type A, denoted ΣA, is given by the following
HIT

• north, south : ΣA

• merid : A → north = south

A 1

1 ΣA
north

south
merid

⌟



Spheres

Definition 2 (The circle)
We define the circle S1 by the HIT

• base : S1

• loop : base = base

Definition 3 (Spheres)
For n ≥ 1, we define the n-sphere by (n − 1)-fold suspension of S1,
i.e.

Sn := Σn−1S1



Suspension maps

For a pointed type A, there is a canonical map

σ : A → Ω(ΣA)︸ ︷︷ ︸
:=(north= north)

given by

σ(a) = merid(a) · merid (∗A)−1

In particular, when A = Sn, we get

σ : Sn → ΩSn+1



Joins

Definition 4 (Joins)
The join of two types A and B , denoted A ∗ B , is given by

• inl : A → A ∗ B
• inr : B → A ∗ B
• push : ((a, b) : A× B) → inl(a) = inr(b)

A× B B

A A ∗ B
inl

inr
push

⌟



Joins

• There is a very useful way to construct maps A ∗ B → C out
of maps A× B → ΩC .

Definition 5
Let f : A× B → ΩC . Define ιf : A ∗ B → C by

ιf (inl(a)) = ⋆C

ιf (inr(b)) = ⋆C

apιf (push(a, b)) = f (a, b)

• We note that functions f , g : A×B → ΩC can be ‘composed’:

(f · g)(a, b) = f (a, b) · g(a, b)

• Q: is there a way of saying that ι is a ‘homomorphism’ i.e.
ιf ·g = ιf + ιg?



An ad hoc construction

• A: yes, if A and B are reasonable.
• Recall, πn(A) := ∥Sn →∗ A∥0

Definition 6
For a pointed type A, define π∗

n+m+1(A) = ∥Sn ∗ Sm →∗ A∥0

Theorem 7
There is a group structure on π∗

n+m+1(A) such that
• π∗

n+m+1(A)
∼= πn+m+1(A)

• For f , g : Sn × Sm → ΩA, we have ιf ·g = ιf + ιg

• Disclaimer: Formalisation only for n = m = 1 and A
1-connected. (only case we’ll use)
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S1 ∗ S1 ≃ S3

• Here is a particularly important example of the ι-construction.
• There is a canonical map ⌣: S1 × S1 → S2.
• Composing it with σ gives us (σ ◦ ⌣) : S1 × S1 → ΩS3

• Define F = ι(σ◦⌣) : S1 ∗ S1 → S3

Proposition 8
F is an equivalence, and (_ ◦ F−1) : π∗

3(A)
∼= π3(A)



The Hopf Map and the Brunerie Map

• Define h, β : S1 × S1 → ΩS2 by

h(x , y) = σ(y − x)

β(x , y) = σ(y) · σ(x)

• Above, the subtraction comes from the group structure on S1

• The induced maps ιh, ιβ : S1 ∗ S1 → S2 are called the Hopf
map and the Brunerie Map respectively.
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Brunerie’s First Theorem

• By precomposition with F−1 : S3 → S2, we get two
corresponding elements ι̂h, ι̂β : π3(S2).

• Fact: π3(S2) ∼= Z and is generated by ι̂h.

Theorem 9 (Brunerie 16)
π4(S3) ∼= Z/nZ where n is the integer s.t.

n · ι̂h = ι̂β

• We will attempt to solve this equation directly. I claim that
n = −2 is the solution.
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Proof sketch

• In order to show that n = −2, we would like to show that

ι̂h + ι̂h = −ι̂β

i.e.

(ιh ◦ F−1) + (ιh ◦ F−1) = −(ιβ ◦ F−1)

• With our π∗
3 construction, the above can be rewritten to

something much nicer:

(ιh + ιh) ◦ F−1 = (−ιβ) ◦ F−1



Proof sketch

• Idea for the rest of the proof: keep rewriting the above
equation by passing it through the sequence of isomorphisms

π3(S2)
_◦F
−−−→ π∗

3(S2)
(ιh◦_)−1

−−−−−−→ π∗
3(S1 ∗ S1)

F◦_
−−−→ π∗

3(S3)

• When we reach π∗
3(S2), the equation will have turned into

something cute!



Step 1

π3(S2)
_◦F
−−−→ π∗

3(S2)
(ιh◦_)−1

−−−−−→ π∗
3(S1 ∗ S1)

F◦_
−−−→ π∗

3(S3)

Applying the highlighted isomorphism above reduces our old
equation (in π3(S2))

(ιh + ιh) ◦ F−1 = (−ιβ) ◦ F−1

to the following equation in π∗
3(S2)

ιh + ιh = −ιβ



Step 2

π3(S2)
_◦F
−−−→ π∗

3(S2)
(ιh◦_)−1

−−−−−→ π∗
3(S1 ∗ S1)

F◦_
−−−→ π∗

3(S3)

• We would like to rewrite our equation to an equation in
π∗

3(S1 ∗ S1) via the highlighted isomorphism.
• To this end, we construct two maps in f , g : S1 ∗ S1 → S1 ∗ S1

s.t.

ιh ◦ f = ιh + ιh

ιh ◦ g = ιβ

• f is given by id + id
• g has a somewhat more complicated construction



Step 2

π3(S2)
_◦F
−−−→ π∗

3(S2)
(ιh◦_)−1

−−−−−→ π∗
3(S1 ∗ S1)

F◦_
−−−→ π∗

3(S3)

• Define g : S1 ∗ S1 → S1 ∗ S1 by

g(inl(x)) = inr(−x)

g(inr(y)) = inr(y)

apg (push(x , y)) = push(y − x ,−x)−1 · push(y − x , y)

• It is very direct to verify that ιh ◦ g = ιβ



Step 3

π3(S2)
_◦F
−−−→ π∗

3(S2)
(ιh◦_)−1

−−−−−→ π∗
3(S1 ∗ S1)

F◦_
−−−→ π∗

3(S3)

• So we have new equation in π∗
3(S1 ∗ S1):

id + id = −g

• Let’s apply the highlighted isomorphism to (id + id) and g.
• For the LHS: we have, trivially,

F ◦ (id + id) = F + F



Step 3

π3(S2)
_◦F
−−−→ π∗

3(S2)
(ιh◦_)−1

−−−−−→ π∗
3(S1 ∗ S1)

F◦_
−−−→ π∗

3(S3)

Proposition 10
F ◦ g = (−F) + (−F)

Proof.
Using the fact that F is just ι(σ◦⌣) and the homomorphism
property of ι, the proof boils down to proving

−((y − x) ⌣ (−x)) = −(x ⌣ y)

(y − x) ⌣ y = −(x ⌣ y)

which is easy.



Final step

π3(S2)
_◦F
−−−→ π∗

3(S2)
(ιh◦_)−1

−−−−−→ π∗
3(S1 ∗ S1)

F◦_
−−−→ π∗

3(S3)

• So we are reduced to verifying

F + F = −((−F) + (−F))

which, of course, is trivial.
• Combining all the steps, we have shown:

Theorem 11
The Brunerie number (with our definition) is −2.



Concluding remarks

• Paired together with chapters 1–3 in Brunerie’s thesis, the
above theorem allows us to conclude

Theorem 12
π4(S3) ∼= Z/2Z

• Cool things about this:
• Much shorter than Brunerie’s original proof (skips chapters

4–6)
• Does not use (co)homology



Concluding remarks

• Ignoring chapters 1–3, we also get a short, standalone proof of
the following fact

Theorem 13
If π4(S3) is non-trivial, then π4(S3) ∼= Z/2Z.

• The proof only uses |n| = 2, the Freudenthal suspension
theorem and Eckmann-Hilton.

• In particular, an easy corollary is the following:

Theorem 14
If ΣCP2 ̸≃ S3 ∨ S5, then π4(S3) ∼= Z/2Z.

• Proving ΣCP2 ̸≃ S3 ∨ S5 can be done using Steenrod squares
(WIP, joint with David Wärn)

• But a direct proof, not relying on cohomology would be
amazing (suggestions?)
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Future work

• Prove ΣCP2 ̸≃ S3 ∨ S5 to complete the new proof of
π4(S3) ∼= Z/2Z

• The Brunerie map is an example of a ‘Whitehead product’:

[_,_] : πn(X )× πm(X ) → πn+m−1(X )

These play an important role in the computation of the
homotopy groups of spheres. The methods used here could
possibly be mimicked for other Whitehead products too.


