Univalent Category Theory

Amélia Liao

2022-10-06

A good place to start: what is a category? A category ${\mathcal C}$ is..

A good place to start: what is a category? A category ${\mathcal C}$ is..

• A "collection" of objects $\mathbf{Ob}(\mathcal{C})$;

A good place to start: what is a category? A category ${\mathcal C}$ is..

- A "collection" of objects $\mathbf{Ob}(\mathcal{C})$;
- For each $x, y : \mathbf{Ob}(\mathcal{C})$, a "collection" of morphisms $\mathbf{Hom}_{\mathcal{C}}(x, y)$.

A good place to start: what is a category? A category ${\mathcal C}$ is..

- A "collection" of objects $\mathbf{Ob}(\mathcal{C})$;
- For each $x, y : \mathbf{Ob}(\mathcal{C})$, a "collection" of morphisms $\mathbf{Hom}_{\mathcal{C}}(x, y)$.
- Identities, composites, left/right unit, associativity.

A good place to start: what is a category? A category ${\mathcal C}$ is..

- A type of objects $Ob(\mathcal{C})$;
- For each $x, y : \mathbf{Ob}(\mathcal{C})$, a **type** of morphisms $\mathbf{Hom}_{\mathcal{C}}(x, y)$.
- Identities, composites, left/right unit, associativity.

But what's a "collection"? One attempt: a type.

Trouble in paradise

This doesn't really work. Fix a "category" C and an object $x : \mathbf{Ob}(C)$. The construction of the slice $C_{/x}$ eventually breaks down:

Trouble in paradise

This doesn't really work. Fix a "category" C and an object $x : \mathbf{Ob}(C)$. The construction of the slice $C_{/x}$ eventually breaks down: We can't show the triangle

commutes.

Trouble in paradise (2)

Slight adjustment: Require that, for each x, y, the space **Hom**_C(x, y) be a **set**. This solves the slicing problem!

Slight adjustment: Require that, for each x, y, the space $Hom_{\mathcal{C}}(x, y)$ be a **set**. This solves the slicing problem! But there's another one.

When we encoded the notion of "category" into a foundational system, we picked up *foundational baggage*: The identity types $x \equiv_{\mathbf{Ob}(\mathcal{C})} y$.

Slight adjustment: Require that, for each x, y, the space $Hom_{\mathcal{C}}(x, y)$ be a **set**. This solves the slicing problem! But there's another one.

When we encoded the notion of "category" into a foundational system, we picked up *foundational baggage*: The identity types $x \equiv_{\mathbf{Ob}(\mathcal{C})} y$.

Same thing happens in set theory: Now our "collection" of objects is a *set* (or *class*) of objects, and it has a notion of equality given by equality of \in -trees.

Slight adjustment: Require that, for each x, y, the space $Hom_{\mathcal{C}}(x, y)$ be a **set**. This solves the slicing problem! But there's another one.

When we encoded the notion of "category" into a foundational system, we picked up *foundational baggage*: The identity types $x \equiv_{\mathbf{Ob}(\mathcal{C})} y$.

Same thing happens in set theory: Now our "collection" of objects is a *set* (or *class*) of objects, and it has a notion of equality given by equality of \in -trees.

Solution(?): Simply pretend you don't see it?

We call the data Ob + Hom (set-valued) + identities + composites + laws a **precategory**. Precategories don't care about the identity on objects (see no evil, speak no evil).

A category ("univalent category", "AKS-category") is a precategory C for which, for each $x : \mathbf{Ob}(C)$, the space of "isomorphs of x"

$$\sum_{\gamma: \mathbf{Ob}(\mathcal{C})} x \cong y$$

is contractible.

Introduced in Ahrens *et al.*, 2013 as "saturated categories"; The HoTT book is behind just calling them "categories".

Requiring that the *space* of isomorphs of x be contractible makes sense categorically. Fix C, $x : \mathbf{Ob}(C)$, and consider the full subcategory of $C_{/x}$ on the objects $f : y \cong x$. Requiring that the *space* of isomorphs of x be contractible makes sense categorically. Fix C, $x : \mathbf{Ob}(C)$, and consider the full subcategory of $C_{/x}$ on the objects $f : y \cong x$.

This is a contractible groupoid! The terminal functor

$$!: \mathcal{C}_{/x}^{\cong} \to *$$

has a homotopy inverse

$$p:*\to \mathcal{C}_{/x}^{\cong}$$

which picks out the object (x, id). All other objects, by defn., are equipped with an iso to (x, id).

Slogan: In a univalent category, "is essentially" is essentially "is".

Slogan: In a univalent category, "is essentially" is essentially "is".

 "Limits are essentially unique" → limits are literally unique: given a diagram D : J → C, the space of limit cones Lim(D) is a proposition. Slogan: In a univalent category, "is essentially" is essentially "is".

- "Limits are essentially unique" → limits are literally unique: given a diagram D : J → C, the space of limit cones Lim(D) is a proposition.
- A fully faithful functor has subsingleton "essential fibres"; An essentially surjective functor has inhabited essential fibres. Between categories, essential fibres are just fibres, and eso+ff functors are just equivalences.

Univalence for categories is an instance of a more general framework of *identity systems*¹.

Slogan: An identity system is an implementation of J. Therefore, categories support *isomorphism induction*.

¹See HoTT book §5.8; 1Lab.Path.IdentitySystem

Univalence for categories is an instance of a more general framework of *identity systems*¹.

Slogan: An identity system is an implementation of J. Therefore, categories support *isomorphism induction*.

Theorem (IsoJ)

Fix a category C, an object x : C. For a type family $P : (y : C) \to x \cong y \to$ **Type** to admit a section, it suffices to provide p : P(x, id).

Proof.

The space $\sum_{y:\mathcal{C}} x \cong y$ is contractible at (x, id), so you can transport p to P(y, e) for any $e : x \cong y$.

¹See HoTT book §5.8; 1Lab.Path.IdentitySystem

Let $\mathcal B$ be a category. The data of a displayed precategory $\mathcal E \rightarrowtail \mathcal B$ is:

Let $\mathcal B$ be a category. The data of a *displayed precategory* $\mathcal E \mapsto \mathcal B$ is:

- A space of *displayed objects* **Ob**[x] for every x : B;
- A set of displayed morphisms Hom[f](x', y') for every morphism f : x → y;

Let $\mathcal B$ be a category. The data of a *displayed precategory* $\mathcal E \mapsto \mathcal B$ is:

- A space of *displayed objects* **Ob**[x] for every x : B;
- A set of displayed morphisms Hom[f](x', y') for every morphism f : x → y;
- Identities over identities: id': Hom[id](x, x);
- Composites over composites:

 $\circ': \operatorname{Hom}[f](y',z') \to \operatorname{Hom}[g](x',y') \to \operatorname{Hom}[f \circ g](x',z').$

Let $\mathcal B$ be a category. The data of a *displayed precategory* $\mathcal E \mapsto \mathcal B$ is:

- A space of *displayed objects* **Ob**[x] for every x : B;
- A set of displayed morphisms Hom[f](x', y') for every morphism f : x → y;
- Identities over identities: id': Hom[id](x, x);
- Composites over composites:
 - $\circ': \operatorname{Hom}[f](y',z') \to \operatorname{Hom}[g](x',y') \to \operatorname{Hom}[f \circ g](x',z').$

Convention: x' lies over x.

Abbreviation: **Hom**[f](x', y') is clunky, we write $f' : x' \rightarrow_f y'$.

Displayed precategories $\mathcal{E} \mapsto \mathcal{B}$ give a "type-theory flavoured" encoding of the bicategorical slice $\mathbf{Precat}_{/B}$.

Displayed categories (2)

Displayed precategories $\mathcal{E} \mapsto \mathcal{B}$ give a "type-theory flavoured" encoding of the bicategorical slice $\mathbf{Precat}_{/B}$.

Univalence for displayed categories; Over a univalent \mathcal{B} , t.f.a.e:

- Each fibre $\mathcal{E}^*(x)$ is a univalent category;
- For each f : x ≅ y and x', there is a contractible space of objects ∑_{y':Ob[y]}(x' ≅[f] y');
- For each x', there is a contractible space of objects $\sum_{y': \mathbf{Ob}[x]} (x' \cong_{\downarrow} y').$

Displayed precategories $\mathcal{E} \mapsto \mathcal{B}$ give a "type-theory flavoured" encoding of the bicategorical slice $\mathbf{Precat}_{/B}$.

Univalence for displayed categories; Over a univalent \mathcal{B} , t.f.a.e:

- Each fibre $\mathcal{E}^*(x)$ is a univalent category;
- For each f : x ≅ y and x', there is a contractible space of objects ∑_{y':Ob[y]}(x' ≅[f] y');
- For each x', there is a contractible space of objects $\sum_{y': \mathbf{Ob}[x]} (x' \cong_{\downarrow} y').$

If any of the above hold, we call $\mathcal{E} \mapsto \mathcal{B}$ a **displayed category**: it's an object in the slice $\mathbf{Cat}_{/B}$.

Theorem (Ahrens & Lumsdaine; 5.11)

If $\mathcal{E} \mapsto \mathcal{B}$ is a displayed category, then it is an isofibration.

Note: Isofibrations can (and should) be thought of as "families of structures that respect isomorphism in the base".

Proof.

By IsoJ, to give Cartesian lifts for all $f : x \cong y$, it suffices to lift $id : x \cong x$. But the identity map is Cartesian.

Recent work & the future

- Ahrens *et. al*, 2019: Univalent and locally univalent bicategories; Displayed univalent bicategories(!)
- Ongoing work (in the 1Lab): (Displayed) univalent allegories
- Future work: Follow up on HoTT Book §9.7's univalent dagger categories!

Recent work & the future

- Ahrens *et. al*, 2019: Univalent and locally univalent bicategories; Displayed univalent bicategories(!)
- Ongoing work (in the 1Lab): (Displayed) univalent allegories
- Future work: Follow up on HoTT Book §9.7's univalent dagger categories!

Conjecture: Every "naturally-occurring variety of precategory" can be profitably split into "pre-" and "univalent" variations.

Thank you!