Univalent Category Theory

Amélia Liao

2022-10-06

The very beginning

A good place to start: what is a category? A category \mathcal{C} is..

The very beginning

A good place to start: what is a category? A category \mathcal{C} is..

- A "collection" of objects $\mathbf{O b}(\mathcal{C})$;

The very beginning

A good place to start: what is a category? A category \mathcal{C} is..

- A "collection" of objects $\mathbf{O b}(\mathcal{C})$;
- For each $x, y: \mathbf{O b}(\mathcal{C})$, a "collection" of morphisms $\operatorname{Hom}_{\mathcal{C}}(x, y)$.

The very beginning

A good place to start: what is a category? A category \mathcal{C} is..

- A "collection" of objects $\mathbf{O b}(\mathcal{C})$;
- For each $x, y: \mathbf{O b}(\mathcal{C})$, a "collection" of morphisms $\operatorname{Hom}_{\mathcal{C}}(x, y)$.
- Identities, composites, left/right unit, associativity.

The very beginning

A good place to start: what is a category? A category \mathcal{C} is..

- A type of objects $\mathbf{O b}(\mathcal{C})$;
- For each $x, y: \mathbf{O b}(\mathcal{C})$, a type of morphisms $\operatorname{Hom}_{\mathcal{C}}(x, y)$.
- Identities, composites, left/right unit, associativity.

But what's a "collection"? One attempt: a type.

Trouble in paradise

This doesn't really work. Fix a "category" \mathcal{C} and an object $x: \mathbf{O b}(\mathcal{C})$. The construction of the slice $\mathcal{C}_{/ x}$ eventually breaks down:

Trouble in paradise

This doesn't really work. Fix a "category" \mathcal{C} and an object $x: \mathbf{O b}(\mathcal{C})$. The construction of the slice $\mathcal{C}_{/ x}$ eventually breaks down: We can't show the triangle

commutes.

Trouble in paradise (2)

Slight adjustment: Require that, for each x, y, the space $\operatorname{Hom}_{\mathcal{C}}(x, y)$ be a set. This solves the slicing problem!

Trouble in paradise (2)

Slight adjustment: Require that, for each x, y, the space $\operatorname{Hom}_{\mathcal{C}}(x, y)$ be a set. This solves the slicing problem! But there's another one.

When we encoded the notion of "category" into a foundational system, we picked up foundational baggage: The identity types $x \equiv \mathbf{O b}(\mathcal{C}) y$.

Trouble in paradise (2)

Slight adjustment: Require that, for each x, y, the space $\operatorname{Hom}_{\mathcal{C}}(x, y)$ be a set. This solves the slicing problem! But there's another one.

When we encoded the notion of "category" into a foundational system, we picked up foundational baggage: The identity types $x \equiv \mathbf{O b}(\mathcal{C}) y$.

Same thing happens in set theory: Now our "collection" of objects is a set (or class) of objects, and it has a notion of equality given by equality of \in-trees.

Trouble in paradise (2)

Slight adjustment: Require that, for each x, y, the space $\operatorname{Hom}_{\mathcal{C}}(x, y)$ be a set. This solves the slicing problem! But there's another one.

When we encoded the notion of "category" into a foundational system, we picked up foundational baggage: The identity types $x \equiv \mathbf{O b}(\mathcal{C}) y$.

Same thing happens in set theory: Now our "collection" of objects is a set (or class) of objects, and it has a notion of equality given by equality of \in-trees.

Solution(?): Simply pretend you don't see it?

Doing better

We call the data $\mathbf{O b}+$ Hom (set-valued) + identities + composites + laws a precategory. Precategories don't care about the identity on objects (see no evil, speak no evil).

A category ("univalent category", "AKS-category") is a precategory \mathcal{C} for which, for each $x: \mathbf{O b}(\mathcal{C})$, the space of "isomorphs of x "

$$
\sum_{y: \mathbf{O b}(\mathcal{C})} x \cong y
$$

is contractible.
Introduced in Ahrens et al., 2013 as "saturated categories"; The HoTT book is behind just calling them "categories".

Why this makes sense

Requiring that the space of isomorphs of x be contractible makes sense categorically. Fix $\mathcal{C}, x: \mathbf{O b}(\mathcal{C})$, and consider the full subcategory of \mathcal{C} / x on the objects $f: y \cong x$.

Why this makes sense

Requiring that the space of isomorphs of x be contractible makes sense categorically. Fix $\mathcal{C}, x: \mathbf{O b}(\mathcal{C})$, and consider the full subcategory of $\mathcal{C}_{/ x}$ on the objects $f: y \cong x$.

This is a contractible groupoid! The terminal functor

$$
!: \mathcal{C} \simeq \overline{\overline{/ x}} \rightarrow *
$$

has a homotopy inverse

$$
p: * \rightarrow \mathcal{C} \cong \overline{\overline{/ x}}
$$

which picks out the object (x, id). All other objects, by defn., are equipped with an iso to (x, id).

Why it's useful

Slogan: In a univalent category, "is essentially" is essentially "is".

Why it's useful

Slogan: In a univalent category, "is essentially" is essentially "is".

- "Limits are essentially unique" \rightarrow limits are literally unique: given a diagram $D: \mathcal{J} \rightarrow \mathcal{C}$, the space of limit cones $\operatorname{Lim}(D)$ is a proposition.

Why it's useful

Slogan: In a univalent category, "is essentially" is essentially "is".

- "Limits are essentially unique" \rightarrow limits are literally unique: given a diagram $D: \mathcal{J} \rightarrow \mathcal{C}$, the space of limit cones $\operatorname{Lim}(D)$ is a proposition.
- A fully faithful functor has subsingleton "essential fibres"; An essentially surjective functor has inhabited essential fibres. Between categories, essential fibres are just fibres, and eso+ff functors are just equivalences.

Why it's useful (2)

Univalence for categories is an instance of a more general framework of identity systems ${ }^{1}$.

Slogan: An identity system is an implementation of J. Therefore, categories support isomorphism induction.

Why it's useful (2)

Univalence for categories is an instance of a more general framework of identity systems ${ }^{1}$.

Slogan: An identity system is an implementation of J. Therefore, categories support isomorphism induction.

Theorem (IsoJ)
Fix a category \mathcal{C}, an object $x: \mathcal{C}$. For a type family
$P:(y: \mathcal{C}) \rightarrow x \cong y \rightarrow$ Type to admit a section, it suffices to provide $p: P(x, i d)$.

Proof.

The space $\sum_{y: C} x \cong y$ is contractible at $(x, i d)$, so you can transport p to $P(y, e)$ for any $e: x \cong y$.

[^0]
Displayed categories

More categorical structures can be made univalent!
Example: Displayed categories.
Let \mathcal{B} be a category. The data of a displayed precategory $\mathcal{E} \longmapsto \mathcal{B}$ is:

Displayed categories

More categorical structures can be made univalent!
Example: Displayed categories.
Let \mathcal{B} be a category. The data of a displayed precategory $\mathcal{E} \longmapsto \mathcal{B}$ is:

- A space of displayed objects $\mathbf{O b}[x]$ for every $x: \mathcal{B}$;
- A set of displayed morphisms $\operatorname{Hom}[f]\left(x^{\prime}, y^{\prime}\right)$ for every morphism $f: x \rightarrow y$;

Displayed categories

More categorical structures can be made univalent!
Example: Displayed categories.
Let \mathcal{B} be a category. The data of a displayed precategory $\mathcal{E} \longmapsto \mathcal{B}$ is:

- A space of displayed objects $\mathbf{O b}[x]$ for every $x: \mathcal{B}$;
- A set of displayed morphisms $\operatorname{Hom}[f]\left(x^{\prime}, y^{\prime}\right)$ for every morphism $f: x \rightarrow y$;
- Identities over identities: $\mathrm{id}^{\prime}: \operatorname{Hom}[\mathrm{id}](x, x)$;
- Composites over composites:
$\circ^{\prime}: \operatorname{Hom}[f]\left(y^{\prime}, z^{\prime}\right) \rightarrow \operatorname{Hom}[g]\left(x^{\prime}, y^{\prime}\right) \rightarrow \operatorname{Hom}[f \circ g]\left(x^{\prime}, z^{\prime}\right)$.

Displayed categories

More categorical structures can be made univalent!
Example: Displayed categories.
Let \mathcal{B} be a category. The data of a displayed precategory $\mathcal{E} \longmapsto \mathcal{B}$ is:

- A space of displayed objects $\mathbf{O b}[x]$ for every $x: \mathcal{B}$;
- A set of displayed morphisms $\operatorname{Hom}[f]\left(x^{\prime}, y^{\prime}\right)$ for every morphism $f: x \rightarrow y$;
- Identities over identities: $\mathrm{id}^{\prime}: \operatorname{Hom}[\mathrm{id}](x, x)$;
- Composites over composites:
$\circ^{\prime}: \operatorname{Hom}[f]\left(y^{\prime}, z^{\prime}\right) \rightarrow \operatorname{Hom}[g]\left(x^{\prime}, y^{\prime}\right) \rightarrow \operatorname{Hom}[f \circ g]\left(x^{\prime}, z^{\prime}\right)$.
Convention: x^{\prime} lies over x.
Abbreviation: $\operatorname{Hom}[f]\left(x^{\prime}, y^{\prime}\right)$ is clunky, we write $f^{\prime}: x^{\prime} \rightarrow_{f} y^{\prime}$.

Displayed categories (2)

Displayed precategories $\mathcal{E} \longmapsto \mathcal{B}$ give a "type-theory flavoured" encoding of the bicategorical slice Precat ${ }_{/ B}$.

Displayed categories (2)

Displayed precategories $\mathcal{E} \longmapsto \mathcal{B}$ give a "type-theory flavoured" encoding of the bicategorical slice Precat $/ B$.

Univalence for displayed categories; Over a univalent \mathcal{B}, t.f.a.e:

- Each fibre $\mathcal{E}^{*}(x)$ is a univalent category;
- For each $f: x \cong y$ and x^{\prime}, there is a contractible space of objects $\sum_{y^{\prime}: \mathbf{O b}[y]}\left(x^{\prime} \cong[f] y^{\prime}\right)$;
- For each x^{\prime}, there is a contractible space of objects

$$
\sum_{y^{\prime}: \mathbf{O b}[x]}\left(x^{\prime} \cong_{\downarrow} y^{\prime}\right)
$$

Displayed categories (2)

Displayed precategories $\mathcal{E} \longmapsto \mathcal{B}$ give a "type-theory flavoured" encoding of the bicategorical slice Precat $/ B$.

Univalence for displayed categories; Over a univalent \mathcal{B}, t.f.a.e:

- Each fibre $\mathcal{E}^{*}(x)$ is a univalent category;
- For each $f: x \cong y$ and x^{\prime}, there is a contractible space of objects $\sum_{y^{\prime}: \mathbf{O b}[y]}\left(x^{\prime} \cong[f] y^{\prime}\right)$;
- For each x^{\prime}, there is a contractible space of objects

$$
\sum_{y^{\prime}: \mathbf{O b}[x]}\left(x^{\prime} \cong_{\downarrow} y^{\prime}\right)
$$

If any of the above hold, we call $\mathcal{E} \mapsto \mathcal{B}$ a displayed category: it's an object in the slice Cat ${ }^{\boldsymbol{B}}$.

Displayed categories (3)

Theorem (Ahrens \& Lumsdaine; 5.11)

If $\mathcal{E} \longmapsto \mathcal{B}$ is a displayed category, then it is an isofibration.
Note: Isofibrations can (and should) be thought of as "families of structures that respect isomorphism in the base".

Proof.
By IsoJ, to give Cartesian lifts for all $f: x \cong y$, it suffices to lift id $: x \cong x$. But the identity map is Cartesian.

Recent work \& the future

- Ahrens et. al, 2019: Univalent and locally univalent bicategories; Displayed univalent bicategories(!)
- Ongoing work (in the 1Lab): (Displayed) univalent allegories
- Future work: Follow up on HoTT Book §9.7's univalent dagger categories!

Recent work \& the future

- Ahrens et. al, 2019: Univalent and locally univalent bicategories; Displayed univalent bicategories(!)
- Ongoing work (in the 1Lab): (Displayed) univalent allegories
- Future work: Follow up on HoTT Book §9.7's univalent dagger categories!

Conjecture: Every "naturally-occurring variety of precategory" can be profitably split into "pre-" and "univalent" variations.

Thank you!

[^0]: ${ }^{1}$ See HoTT book §5.8; 1Lab.Path. IdentitySystem

