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Epimorphisms

▶ In 1-category theory, a map f : A → B is an epi(morphism) if
for every g , h : B → C we have

g ◦ f = h ◦ f =⇒ g = h.

In other words, (−) ◦ f is an injection.

▶ Note:
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⇐⇒ f is an epi

▶ Def. A map f : A → B is an epi if (−) ◦ f is an embedding.
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Epis w.r.t. k-types
▶ Def. (repeated) A map f : A → B is an epi if for every

type X , the map

(B → X )
(−)◦f

↪−−−→ (A → X )

is an embedding.

▶ Def. A map f : A → B is an epi w.r.t. k-types if for every
k-type X , the map

(B → X )
(−)◦f

↪−−−→ (A → X )

is an embedding.

▶ Lemma A map f : A → B is an epi w.r.t. k-types if and only
if its k-truncation ∥f ∥k : ∥A∥k → ∥B∥k is.
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Basic properties of epis
▶ If f : A → B is an epi/k-epi, then the composite A f−→ B g−→ C

is an epi/k-epi if and only if g is.

▶ Every equivalence is an epi and every k-equivalence is a k-epi.
Hence, every k-connected map is a k-epi.

▶ A map f : A → B is an epi if and only if the square

A B

B B

f

f id

id

is a pushout.

▶ A map f : A → B is a 0-epi if and only if it is a surjection.

▶ To see what happens for k > 0, we turn to acyclic types.
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Acyclic types
▶ Def. The suspension ΣA of a type A is the pushout

A 1

1 ΣA
N

S

⌜
a b

N

S

▶ Def. A type A is acyclic if ΣA is contractible, and k-acyclic if
ΣA is k-connected (i.e. ∥ΣA∥k is contractible).

▶ Ex. A type is 0-acyclic if and only if it is inhabited.

▶ Ex. Every k-connected type is (k + 1)-acyclic, so the circle S1

is 1-acyclic.
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Acyclic maps

▶ Def. A map f : A → B is (k-)acylic if all of its fibres are.
(Recall: fibf (b) ≡

∑
a:A f (a) = b.)

▶ Lemma A map f : A → B is acylic/k-acylic if and only if its
codiagonal ∇f is an equivalence/k-connected.

A B

B B ⊔A B

B

f

f inr id
inl

id

⌜

∇f

Proof. For every b : B, we have Σ fibf (b) ≃ fib∇f (b).
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The epimorphisms are the acyclic maps

▶ Thm. A map is an (k-)epi if and only if it is (k-)acylic.

Proof. f : A → B is an epi ⇐⇒
A B

B B

f

f id

id

is a pushout

⇐⇒ ∇f : B ⊔A B → B is an equivalence
⇐⇒ f is acyclic.
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Perfect groups and k-acyclic sets
▶ Def. A (set-based) group G is perfect if its abelianisation is

trivial. E.g., the group A5 of even permutations on a
5-element set is perfect.

▶ Thm. For a group G , its classifying type BG is 2-acyclic if
and only if G is perfect.

▶ Prop. A set is 1-acyclic if and only if it is contractible.

Proof. Let G be the free group on a 1-acyclic set A with
inclusion of generators η : A ↪→ G . If A is 1-acyclic, then
A → 1 is a 1-epi, so the constant map

BG → (A → BG)

is an embedding. Hence, the constant map G → (A → G) is
an equivalence. Thus, η is constant. But it is also an
embedding, so A must be a subsingleton. Finally, A is also
inhabited, because it is 0-acyclic.
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Characterising 1-acylic and 2-acyclic types
▶ Thm. A type is 1-acyclic if and only if it is connected.

Proof. We already know that k-connected types are
(k + 1)-acyclic, so every connected type is 1-acyclic.
Conversely, if A is 1-acyclic, then the composite

A |−|0−−→ ∥A∥0 → 1

is a 1-epi. Further, |−|0 is connected and hence a 1-epi.
Thus, ∥A∥0 → 1 is a 1-epi and ∥A∥0 is 1-acyclic. But this
means that the set ∥A∥0 is contractible by the previous
proposition. Hence, A is connected.

▶ Cor. Every k-acylic type is connected for k ≥ 1.

▶ Thm. A type A is 2-acyclic if and only if connected and
π1(A, a) is perfect for every a : A.
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Acyclic types and the Freudenthal suspension theorem

▶ Thm. Every 1-connected acyclic type is ∞-connected.

Proof. By the Freudenthal suspension theorem, the unit
σ : A → ΩΣA of the loop-suspension adjunction is
2n-connected whenever A is n-connected (for n ≥ 0).

If A is acyclic, then ΣA ≃ 1, so ΩΣA ≃ 1, so the
connectedness of σ is that of A.

Now if A is also 1-connected, then σ, and hence A, is in turn
2-connected, then 4-connected, etc., hence 2n-connected for
all n.

▶ Thm. A 1-connected type is (k + 1)-acyclic if and only if it is
k-connected.
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The Higman group: a nontrivial acyclic type
▶ The Higman group is defined as the group with 4 generators

a, b, c, d and 4 relations

ra : a = [d , a] rb : b = [a, b] rc : c = [b, c] rd : d = [c, d ],

where [x , y ] ≡ xyx−1y−1 denotes the commutator.
▶ In HoTT we can describe its classifying type BH as a HIT:

pt : BH
a, b, c, d : pt = pt

ra : a = [d , a]
rb : a = [a, b]
rc : a = [b, c]
rd : a = [c, d ]
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Contractibility of Σ BH (1)

▶ We describe Σ BH as a HIT and simplify its description
step-by-step.

N, S : Σ BH
mpt : N = S

...

Contr. at (N, mpt)

N : Σ BH
ma, mb, mc , md : reflN = reflN

mra : ma = [md , ma]
mrb : mb = [ma, mb]
mrc : mc = [mb, mc ]
mrd : md = [mc , md ]
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Contractibility of Σ BH (2)

N : Σ BH
ma : reflN = reflN

mb : reflN = reflN
...

mra : ma = [md , ma]
mrb : mb = [mc , mb]

...

Eckmann–Hilton

N : Σ BH
ma : reflN = reflN

mb : reflN = reflN
...

mra : ma = reflreflN

mrb : mb = reflreflN

...
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Contractibility of Σ BH (2)

▶ The crux is that commutators are trivial in higher homotopy
groups by the Eckmann-Hilton argument.
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Contractibility of Σ BH (3)

N : Σ BH
ma : reflN = reflN

mb : reflN = reflN
...

mra : ma = reflreflN

mrb : mb = reflreflN

...

Contr. at (ma, mra ), (mb , mrb ), etc.
N : Σ BH

▶ So Σ BH is equivalent to a single point and hence
contractible, i.e. BH is acyclic.
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Nontriviality of the Higman group

▶ We can repeat the above argument for n generators and
n relations, yielding an acyclic type for all n.

▶ For n ≤ 3, the resulting groups turn out to be trivial.

▶ The Higman group (n = 4) is in fact infinite but proving this
seems to require a bit of group theory.
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Summary

At higher types the notion of epimorphism
▶ becomes quite strong,
▶ coincides with the notion of an acyclic map, and
▶ is interesting from the p.o.v. of synthetic homotopy theory.
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Future work

▶ Do the acyclic maps form an accessible modality?
(Classically, they do.)

▶ Plus construction in HoTT
▶ Kan-Thurston theorem in HoTT: every ∞-group can be

presented by a pair (G , P) of a group G and perfect normal
subgroup P ◁ G

▶ In further developments, can we work around needing
Whitehead’s principle (every ∞-connected type is
contractible) or the weaker principle that every 1-connected
acyclic type is contractible?

▶ Use the theory of binate groups to prove acyclicity of some
infinitely presented groups

▶ Applications (where surjectivity is not sufficient)
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