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Overview

1. Motivation:
I Quick recap: cubical type theory
I Canonicity
I Choices in algorithms?

2. Cubical categories with families
I Term model
I Standard model

3. Sconing for cubical cwfs
4. Homotopy canonicity
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Cubical type theory

1. Type theory based on a constructive model of HoTT using
Kan cubical sets (with diagonals and connections).2

2. Currently very active area of research, several variants
proposed3

3. Proof assistants:4
cubicaltt, Agda --cubical, redtt, RedPRL, yacctt

2Cohen, Coquand, H., Mörtberg at TYPES2015 – [CCHM]
3[AHW],[AH1+2],[ABCFHL],[CHM],[CM],. . . ; see also Carlo Angiuli’s

HoTTEST talk.
4See also Favonia’s HoTTEST talk.
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Cubical type theory

1. Formal interval I

Γ `
Γ, i : I ` 0 : I 1 : I

. . .

2. i1 : I, . . . , in : I ` u : A =̂ “u is an n-cube in A”
3. partial elements described by F (face lattice)

Γ ` ϕ : F
Γ, ϕ `

Γ ` r : I
Γ ` (r = 0) : F

. . .

4. Γ, ϕ ` u : A =̂ “u is a partial n-cube in A”
(with shape described by ϕ)
E.g.: i : I, (i = 0) ∨ (i = 1) ` u : A given by two points.
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Path types

The role of the identity type is played by path types:

Γ, i : I ` t(i) : A
Γ ` 〈i〉 t(i) : Pathi.A t(0) t(1)

. . .

Paths in A are like functions “I→ A” with specified endpoints.

Directly justifies reflexivity and function extensionality.
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Composition

The composition operation gives lids to “open boxes”. E.g.: The
dashed line in

c d

a b

q i r i

p j

i

j

is the composition compi A [(j = 0) 7→ q i, (j = 1) 7→ r i] (p j).
Here [(j = 0) 7→ q i, (j = 1) 7→ r i] describes a partial square with
ϕ = (j = 0) ∨ (j = 1).

Special case of composition: for i : I ` A(i) we get A(0)→ A(1).

Composition is explained by induction on the types!
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Glue types

Glue types justify composition for universes as well as univalence.

They are allow to extend a partial equivalence

ϕ ` w : Equiv(T,A) (where ϕ ` T )

over a total type A to a total equivalence Equiv(G,A).
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Canonicity
Theorem (SH 2016)
Given a derivation of i1 : I, . . . , in : I ` u : N there exists m ∈ N
such that i1 : I, . . . , in : I ` u = Sm0 : N.

Ingredients of the proof:
I Deterministic and typed reduction relation:

i1 : I, . . . , in : I ` t −→ u : A i1 : I, . . . , in : I ` A −→ B

I Computability predicates by induction-recursion:

i1 : I, . . . , in : I 
 A
i1 : I, . . . , in : I 
 u : A for i1 : I, . . . , in : I 
 A
. . .

I Definition very involved since reduction not stable under
intervall substitutions, e.g.:

I, i : I ` t −→ u : A 6⇒ I ` t[0/i] −→ u[0/i] : A[0/i]
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I The “computational content” of univalence really lies in the
algorithm for compositions and glueing.

I During developing cubical type theory we were faced to have
various choices to take, especially when it comes to the
explanation of composition for glue

I A priori these choices could lead to different results!
Could we have u : N which with one choice computes to 0 : N
and in another choice to 17 : N ?!
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Voevodsky’s conjecture (2011)

Voevodsky conjectured homotopy canonicity for univalent type
theory:

There is a terminating algorithm that for any u : N which is
closed except that it may use the univalence axiom returns
a closed numeral n : N not using the univalence axiom
and a proof that IdN(u, n) (which may use the univalence
axiom).

Shulman [MSCS 2015] proves a truncated version; proof involves
(Artin) glueing along the global section functor with the groupoid
model (aka sconing).

Stumbling block for Voevodsky’s conjecture: not clear how to glue
with Kan simplicial set model as syntax doesn’t directly give rise to
a simplicial set
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Cubical variation of Voevodsky’s conjecture

Theorem
In the system without computation rules for composition any u : N
(closed) is path equal to a numeral Sk0.

We prove this by a sconing construction.

Warning: this doesn’t give a new proof of the corresponding
statement for the system with computation rules.
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Categories with families (cwf)

A cwf

5

is given by:
I a category of contexts Con and substitutions Hom(∆,Γ);
I presheaves over the category of contexts:

I Ty of types

I Tyn ⊆ Ty (sub-presheaves), types of level n ∈ N,
which is cumulative Tyn ⊆ Tyn+1

I a presheaf Tm of elements over
∫

Con Ty;
I a terminal object 1 in Con with () ∈ Hom(Γ,1);
I context extension Γ.A for Γ ∈ Con and A ∈ Ty(Γ) with

p ∈ Hom(Γ.A,Γ) and q ∈ Tm(Γ.A,Ap).
Given σ ∈ Hom(∆,Γ) and u ∈ Tm(∆, Aσ) we have
(σ, u) ∈ Hom(∆,Γ.A).
Moreover: p(σ, u) = p, q(σ, u) = u, and σ = (pσ, qσ)

5

Slightly modified for universes. . .
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Categories with families: universes

For such a cwf to have universes means to have
I Un ∈ Tyn+1(Γ) (stable under substitution) with
I Tyn(Γ) = Tm(Γ, Un) (such that the action of substitions is

compatible)

(The structure of other type formers as usual, but is required to
preserve universe levels.)
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Internal language

Assume ω + 1 Grothendieck universes and fix small category C.

We will make use of the internal language of the presheaf topos
like Orton-Pitts. This is a form of extensional type theory.6

Grothendieck universes lift to universes U0,U1, . . . ,Uω
(cumulative) in presheaves over C.

A propostion ψ : Ω gives rise to a subsingleton {∗ | ψ} (also
written as just ψ).

For an object X a partial element is given by ψ : Ω (its extent)
and u : ψ → X. Such a partial element extends v : X if
ψ ⇒ u ∗ = v

6See also Andy Pitts’ HoTTEST talk.
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Internal language

Assumptions:
I an interval I : U0 with endpoints 0, 1 : I
I an object F : U0 of cofibrant propositions with a mono

[−] : F→ Ω

For A : I→ Uω define hasFill(A) as the type of operations:

ϕ : F
b ∈ {0, 1}
u : Π(i : I).[ϕ] ∨ (i = b)→ A i

s(ϕ, b, u) : Π(i : I).A i extending u on ϕ

The type of filling structures Fill(X,Y ) for X and Y : X → Uω is

Π(γ : I→ X).hasFill(Y ◦ γ)
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Cubical categories with families

A cubical cwf (w.r.t. C, I,F) is given by:
I A cwf (Con,Hom,Ty,Tm, . . . ) internally to the presheaf

topos on C equipped with Pi,Sigma, natural numbers, and
universes, written Π, Σ, N, Un

I a filling operation

fill : Fill
(
Ty(Γ), λA.Tm(Γ, A)

)
for Γ in Con (stable under substitutions σ : Hom(∆,Γ))

I dependent path types and glue types (next slides)
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Cubical cwfs: (dependent) path types

We require operations:

A : I→ Ty(Γ) u0 : Tm(Γ, A 0) u1 : Tm(Γ, A 1)
Path(A, u0, u1) : Ty(Γ)

u : Π(i : I).Tm(Γ, A i)
plam(u) : Tm(Γ, Path(A, u 0, u 1))

p : Tm(Γ, Path(A, u0, u1)) r : I
ap(p, r) : Tm(Γ, A r)

ap(p, 0) = u0
ap(p, 1) = u1

ap(plam(u), r) = u r plam(λi.ap(p, i)) = p

(Plus: Path preserves levels, everything stable under substitution.)
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Cubical cwfs: glue types

Using Path we can define equivalences via contractible fibers.

A : Ty(Γ) ϕ : F T : [ϕ]→ Ty(Γ) e : [ϕ]→ Tm(Γ,Equiv(T∗, A))
Glue(A,ϕ, T, e) : Ty(Γ) with [ϕ]→ Glue(A,ϕ, T, e) = T∗

unglue : Tm(Γ,Glue(A,ϕ, T, e)→ A) with [ϕ]→ unglue = fst(e) ∗

a : Tm(Γ, A)
t : [ϕ]→ Tm(Γ, T )
[ϕ]→ app(fst(e) ∗, t ∗) = a

glue(a, t) : Tm(Γ, Glue(A,ϕ, T, e))
with [ϕ]→ glue(a, t) = t ∗

Satisfying some equations (β and η).
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If we assume that I has connections and F forms sublattice of Ω0
containing (i = b) for b ∈ {0, 1}. Then, following [CCHM]:
I (non-dependent) Path-types gives rise to Martin-Löf identity

types with propositional “computation rule” for J;
I a type is contractible whenever any partial element can be

extended to a total one;
I one can show isEquiv(unglue) and with this univalence.

Thus: the underlying cwf models univalent type theory with
propositional computation for J.
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The term model
I Note: cubical cwf is almost a GAT (but subpresheaves)
I But we can concretely give an initial cubical cwf T

(w.r.t. fixed C, I,F and strict morphisms)

I T induced by judgments Γ `X J indexed by objects X in C.

Γ `X J f : Y → X

Γf `Y J f

I In general, T will have infinitary rules like:

Γf `Y Af,r for all f : Y → X, r ∈ I(Y )
Γfg `Z (Af,r)g = Afg,r for all f, g
Γ `X u0 : Aid,0 Γ `X u1 : Aid,1

Γ `X Path((Af,r), u0, u1)

I In setting of [CCHM]: possible to present rules in finitary way.
(Γ `{i,j,k} J corresponds to i : I, j : I, k : I,Γ ` J etc.)
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The standard model

Assumptions:
1. Internal: I and F satisfy the axioms ax1, . . . , ax9 of [OP].

2. External: “tiny interval”, i.e. exponentiation with I has a
right adjoint R (preserving levels)

Remark
I Item 2 is satisfied if I is representable and C closed under

products (as in [CCHM]).
I (−)I a R cannot be made internal (cf. [LOPS]).
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The standard model

1. Adjunction descends to an adjunction between categories of
type over Uω and UI

ω.7

2. Recall: global type hasFill : UI
ω → Uω

3. Applying right adjoint to hasFill gives global C : Uω → Uω s.t.
for X : Uω and Y : X → Uω global

global sections of
Fill(X,Y ) ↔ global sections of

Π(x : X).C(Y x)
natural in X

7Details: see [LOPS] and Andy Pitts’s HoTTEST talk
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The standard model

I Using the internal language we can construct suitable
operations for Path and Glue.

I Filling structures are closed under Π,Σ,Path,Glue.
I One can deduce that also C is closed under those type formers.
I Define Ufib

n as Σ(X : Un).C(X).
I Using gluing we can show C(Ufib

n ).

We obtain a cubical cwf S (called the standard model) where:
I The category of contexts is Uω with Hom(∆,Γ) the functions

∆ to Γ
I The types over Γ are maps 〈A, fibA〉 : Γ→ Ufib

ω .
I The elements of 〈A, fibA〉 are Π(ρ : Γ).Aρ.
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Identity types in the standard model

Technique by Andrew Swan’s gives fibrant identity types

IdA u0 u1 with C(IdA u0 u1)

This is crucial for the treatment of natural numbers in the sconed
model, as we can encode fibrant indexed inductive types!
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Sconing
1. Same assumptions as for the standard model.
2. LetM = (Con,Hom, . . . ) be a cubical cwf.
3. Goal: define new cubical cwfM∗ = (Con∗,Hom∗, . . . ) (the

sconing ofM)

4. NB: fill ofM gives us operation
k : Π(A : Ty(1)).C(Tm(1, A)).

5. Global sections operation |−|:
I for Γ : Con define |Γ| = Hom(1,Γ)
I for σ : Hom(∆,Γ) define |σ| : |∆| → |Γ| by |σ|ρ = σ ◦ ρ
I for A : Ty(Γ) define |A| : |Γ| → Ufib

ω as

|A| =
(
Tm(1, A()), k (Aρ)

)
Write also |A| for Tm(1, A()).

I for u : Tm(Γ, A) define |u| : Π(ρ : Γ).|A|ρ as |u|ρ = uρ

6. Could call |−| weak cubical cwf morphismM→ S.

25 / 37



Sconing
1. Same assumptions as for the standard model.
2. LetM = (Con,Hom, . . . ) be a cubical cwf.
3. Goal: define new cubical cwfM∗ = (Con∗,Hom∗, . . . ) (the

sconing ofM)
4. NB: fill ofM gives us operation
k : Π(A : Ty(1)).C(Tm(1, A)).

5. Global sections operation |−|:
I for Γ : Con define |Γ| = Hom(1,Γ)
I for σ : Hom(∆,Γ) define |σ| : |∆| → |Γ| by |σ|ρ = σ ◦ ρ
I for A : Ty(Γ) define |A| : |Γ| → Ufib

ω as

|A| =
(
Tm(1, A()), k (Aρ)

)
Write also |A| for Tm(1, A()).

I for u : Tm(Γ, A) define |u| : Π(ρ : Γ).|A|ρ as |u|ρ = uρ

6. Could call |−| weak cubical cwf morphismM→ S.

25 / 37



Sconing
1. Same assumptions as for the standard model.
2. LetM = (Con,Hom, . . . ) be a cubical cwf.
3. Goal: define new cubical cwfM∗ = (Con∗,Hom∗, . . . ) (the

sconing ofM)
4. NB: fill ofM gives us operation
k : Π(A : Ty(1)).C(Tm(1, A)).

5. Global sections operation |−|:
I for Γ : Con define |Γ| = Hom(1,Γ)
I for σ : Hom(∆,Γ) define |σ| : |∆| → |Γ| by |σ|ρ = σ ◦ ρ
I for A : Ty(Γ) define |A| : |Γ| → Ufib

ω as

|A| =
(
Tm(1, A()), k (Aρ)

)
Write also |A| for Tm(1, A()).

I for u : Tm(Γ, A) define |u| : Π(ρ : Γ).|A|ρ as |u|ρ = uρ

6. Could call |−| weak cubical cwf morphismM→ S.

25 / 37



Sconing
1. Same assumptions as for the standard model.
2. LetM = (Con,Hom, . . . ) be a cubical cwf.
3. Goal: define new cubical cwfM∗ = (Con∗,Hom∗, . . . ) (the

sconing ofM)
4. NB: fill ofM gives us operation
k : Π(A : Ty(1)).C(Tm(1, A)).

5. Global sections operation |−|:
I for Γ : Con define |Γ| = Hom(1,Γ)
I for σ : Hom(∆,Γ) define |σ| : |∆| → |Γ| by |σ|ρ = σ ◦ ρ
I for A : Ty(Γ) define |A| : |Γ| → Ufib

ω as

|A| =
(
Tm(1, A()), k (Aρ)

)
Write also |A| for Tm(1, A()).

I for u : Tm(Γ, A) define |u| : Π(ρ : Γ).|A|ρ as |u|ρ = uρ

6. Could call |−| weak cubical cwf morphismM→ S.

25 / 37



Sconing of M

The cwf structure ofM∗:
I Contexts (Γ,Γ′) : Con∗ given by Γ : Con and Γ′ : |Γ| → Uω.

Think of Γ′ as proof-relevant computability predicate.
I Substitutions (σ, σ′) : Hom∗((∆,∆′), (Γ,Γ′)) given by
σ : Hom(∆,Γ) and σ′ : Π(ρ : ∆).∆′ ρ→ Γ′(σρ).

I A type (A,A′) : Ty∗(Γ,Γ′) consists of A : Ty(Γ) and

A′ : Π(ρ : |Γ|)(ρ′ : Γ′ρ).|A|ρ→ Ufib
ω .

Usually write A′ as 〈A′, fibA′〉.
I Elements (u, u′) : Tm((Γ,Γ′), (A, 〈A′, fibA〉)) are given by
u : Tm(Γ, A) and

u′ : Π(ρ : |Γ|)(ρ′ : Γ′ ρ).A′ ρ ρ′ (uρ).
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Context extensions in M∗

(Γ,Γ′).(A, 〈A′, fibA′〉) is defined as (Γ.A, (Γ.A)′) where

(Γ.A)′(ρ, a) = Σ(ρ′ : Γ′ ρ).A′ ρ ρ′ a

with
I first projection p∗ = (p, p′), p′(ρ, a)(ρ′, a′) = ρ′, and
I second projection q∗ = (q, q′), q(ρ, a)(ρ′, a′) = a′.

(The rest of the cwf can also be defined.)

27 / 37



Dependent products in M∗

Let
I (A, 〈A′, fibA′〉) : Ty∗(Γ,Γ′), and
I (B, 〈B′, fibB′〉) : Ty∗((Γ,Γ′).(A, 〈A′, fibA′〉)).

Define the dependent product Π∗((A, 〈A′, fibA′〉), (B, 〈B′, fibB′〉))
by

(Π(A,B), 〈Π(A,B)′, fibΠ(A,B)′〉)

where Π(A,B)′ ρ ρ′ f is

Π(a : |A| ρ)(a′ : A′ ρ ρ′ a).B′ (ρ, a) (ρ′, a′) (app(f, a)).

This type is fibrant since C is closed under dependent products!

Intro and elimination uses:
I lam(b)′ ρ ρ′ a a′ = b′ (ρ, a) (ρ′, a′)
I app(f, a)′ ρ, ρ′ = f ′ ρ ρ′ (a ρ) (a′ ρ ρ′)
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Other type formers

This also works similar for other type formers and operations.
Some important definitions:
1. universes U∗n : Ty∗(Γ,Γ′) given by (Un, 〈U′n, fib〉) where:

U′n ρ ρ
′A = |A|ρ→ Ufib

n

2. Σ(A,B)′(w) = Σ(u′ : A′(w.1)).B′(fst(w))u′(snd(w))
3. Path(A, a0, a1)′(w) = Pathλi.A′ i (ap(w,i)) a

′
0 a
′
1

4. fill(A,ϕ, b, u)′ = fill(λi.A′ i (fill(A,ϕ, b, u) i), ϕ, b, u′)
5. Glue(A,ϕ, T,w)′(glue(a, t)) =

Glue (A′ a) [ϕ 7→ (T ′t, (w′.1 t, . . .))]
Here w′.1 t partial equivalence T ′ t→ A′ a.

Crucial: we don’t have to check any equations for how fill is
defined for each type!
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2. Σ(A,B)′(w) = Σ(u′ : A′(w.1)).B′(fst(w))u′(snd(w))
3. Path(A, a0, a1)′(w) = Pathλi.A′ i (ap(w,i)) a

′
0 a
′
1

4. fill(A,ϕ, b, u)′ = fill(λi.A′ i (fill(A,ϕ, b, u) i), ϕ, b, u′)
5. Glue(A,ϕ, T,w)′(glue(a, t)) =

Glue (A′ a) [ϕ 7→ (T ′t, (w′.1 t, . . .))]
Here w′.1 t partial equivalence T ′ t→ A′ a.

Crucial: we don’t have to check any equations for how fill is
defined for each type!
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Natural numbers in M∗

Natural numbers N∗ = (N∗, N′) inM∗ are defined as an indexed
inductive family over |N| with constructors:
I 0′ : N′ 0
I S′ : Π(n : |N| ρ).N′ n→ N′ (Sn)

Can be encoded as a “parametrized” inductive type N′ n where,
e.g., the zero constructor has type:

0′′ : Id|N| n 0→ N′ n

The use of Id is crucial for N′ to be fibrant!

Simpler than treatment in Shulman’s construction (which involves
LEM for natrec).
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Theorem
M∗ is a cubical cwf and the first projection gives a morphism
M∗ →M of cubical cwfs.
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Homotopy canonicity

Theorem
With the same assumptions on C, I,F as for the standard model:
given a closed numeral n : Tm(1, N) in the term model T , we have
a numeral k : N and a path p : Tm(1, Path(N, n, Sk0)).

Proof.

I Build sconing T ∗ of the term model T .
I Since T is initial we get a section F of T ∗ → T .
I Applying F to n : Tm(1, N) gives n′ : N′ n.
I By induction n′ : N′ n gives k : N and a witness Id|N| n (Sk0),

and hence q : Path|N| n (Sk0).
I Set p = plam(λi.q i).
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Extensions

I Sconing can be extended for cubical cwfs with identity types
I . . . and for higher inductive types (of [CHM]).
I Also works if glue types are replaced by axioms

Tm(Γ, iUnivalencen) for univalence.
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Simplicial set model

Consider C = ∆ the simplex category, I = ∆1 and F sublattice of
Ω of decidable sieves.

The axioms needed for the standard model are not satisfied (I not
tiny).

Assuming the law of excluded middle, we can still define
C : Uω → Uω s.t. we have maps8

global sections of
Fill(X,Y ) ↔ global sections of

Π(x : X).C(Y x)
which allows us to adapt the argument for SsSet to simplicial sets.

8For details see Appendix D of our preprint.
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Simplicial set model

Kapulkin-Voevodsky: can see simplicial sets as full subtopos of
distributive lattice cubical sets.

This gives rise to functor from cubical cwfs over simplicial sets to
cubical cwfs over distributive lattice cubical sets.

Thus, SsSet induces a model of distributive lattice cubical type
theory (without computation rules for fill!), making it
homotopically sound in the sense that we can only derive
statements which also hold in SsSet.
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Conclusion

I We showed homotopy canonicity for cubical type theory
without computation rules for composition using a sconing
argument.

I Having no computation rules makes this argument easier.
I Crucial: identity types à la Swan
I Assuming classical logic, also applies to a simplicial setting.

Thank you!
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