Defining and relating theories

Håkon Gylterud

Håkon Gylterud

Plan

- Look at some example theories.
- Discuss how to represent these.
- Look at Myott.
- Discuss future directions.

Håkon Gylterud

Myott	Motivation		Makkai's dependent sort vocabularies	Judgements in Myott	Operations Operations in Myot	
00	000000000	00000000	000000	0	00000000 0	C

Myott

Håkon Gylterud

What is Myott (going to be)?

- Stand-alone specification tool:
 - for theories.
 - for translations between theories.
 - Code generation from theories.
- Haskell API for working with theories.

https://git.app.uib.no/Hakon.Gylterud/myott

	Motivation			Operations	Operations in Myott	
00	•00000000	00000000	000000			

Motivation

Håkon Gylterud

A multitude of theories

Type theories:

- Different versions of MLTT
- Extensions and variations
 - Inductive families, induction-recursion, · · ·
 - HITs
 - Cubical
 - Modalities
 - • •

Håkon Gylterud

A multitude of theories

Other kinds of theories:

- Set theory
- First-order logic
- Higher-order logic
- Category theory
- Linear logic
- Software specification

Håkon Gylterud

In what sense are set theory and type theory both theories?

Håkon Gylterud

In what sense are set theory and type theory both **theories**? Classical answer:

• A theory is a set of theorems.

Håkon Gylterud

In what sense are set theory and type theory both theories?

Classical answer:

• A theory is a set of theorems.

This does not...

- ... explain how to define a theory.
- ... explain what kind of objects a theory is about.
- ... explain how to relate different theories.

In what sense are set theory and type theory both theories?

Classical answer:

• A theory is a set of theorems.

This does not...

- ... explain how to define a theory.
- ... explain what kind of objects a theory is about.
- ... explain how to relate different theories.

For the sake of implementing Myott, we need a *opinionated notion of theory*, which settle these questions.

There are several ways to translate set theory into type theory (Aczel's model, HoTT-book model, \cdots).

•
$$\sigma(\exists x \ \phi) = \sum_{x:M} \sigma(\phi)$$

• $\tau(\exists x \ \phi) = \|\sum_{x:M} \tau(\phi)\|_{-1}$

Håkon Gylterud

There are several ways to translate set theory into type theory (Aczel's model, HoTT-book model, \cdots).

•
$$\sigma(\exists x \ \phi) = \sum_{x:M} \sigma(\phi)$$

• $\tau(\exists x \ \phi) = \|\sum_{x:M} \tau(\phi)\|_{-1}$

In each case it is obvious how to define the translation, but when formalising this has to be done:

either by hand

or internally to type theory.

 Per Martin-Löf's: About Models for Intuitionistic Type Theories and the notion of Definitional Equality

- Per Martin-Löf's: About Models for Intuitionistic Type Theories and the notion of Definitional Equality
- Cartmell's generalised algebraic theories.

- Per Martin-Löf's: About Models for Intuitionistic Type Theories and the notion of Definitional Equality
- Cartmell's generalised algebraic theories.
- Makkai's FOLDS

Håkon Gylterud

- Per Martin-Löf's: About Models for Intuitionistic Type Theories and the notion of Definitional Equality
- Cartmell's generalised algebraic theories.
- Makkai's FOLDS
- Bauer, Haselwarter & Lumsdaine: What are we thinking when we present a type theory?

- Per Martin-Löf's: About Models for Intuitionistic Type Theories and the notion of Definitional Equality
- Cartmell's generalised algebraic theories.
- Makkai's FOLDS
- Bauer, Haselwarter & Lumsdaine: What are we thinking when we present a type theory?
- Uemura's abstract type theories.

- Per Martin-Löf's: About Models for Intuitionistic Type Theories and the notion of Definitional Equality
- Cartmell's generalised algebraic theories.
- Makkai's FOLDS
- Bauer, Haselwarter & Lumsdaine: What are we thinking when we present a type theory?
- Uemura's abstract type theories.
- Lumsdaine & Subramaniam's dependent operads.

 Myott
 Motivation
 Examples
 Makkai's dependent sort vocabularies
 Judgements in Myott
 Operations
 Operations
 Operations
 Nyott
 R

 00
 00000000
 0000000
 0000000
 0000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Overview

Håkon Gylterud

Extensions

Figure 2: Both assumptions and constructions can be viewed as pushouts.

Håkon Gylterud

Extensions

Figure 3: Both assumptions and constructions can be viewed as pushouts.

Håkon Gylterud

	Examples		Operations	Operations in Myott	
00	••••••				

Håkon Gylterud

Martin-Löf type theory has four kinds of judgement:

A : type

Håkon Gylterud

Martin-Löf type theory has four kinds of judgement:

- A : type
- a : element A

Håkon Gylterud

Martin-Löf type theory has four kinds of judgement:

- A : type
- a : element A
- A ≡ B

Håkon Gylterud

Martin-Löf type theory has four kinds of judgement:

- A : type
- a : element A
- A ≡ B
- ∎ a ≡ a' : A

Håkon Gylterud

Martin-Löf type theory has four kinds of judgement:

- A : type
- a : element A
- A ≡ B
- ∎ a ≡ a' : A

Håkon Gylterud

Martin-Löf type theory has four kinds of judgement:

• A : type • a : element A • A \equiv B • a \equiv a' : A

Notice: The equality judgement are **propositional** – no variables introduced.

Each kind of judgement come with **presuppositions**:

A type

Håkon Gylterud

Each kind of judgement come with **presuppositions**:

- A type
- a : A, presupposing A type.

Each kind of judgement come with **presuppositions**:

- A type
- a : A, presupposing A type.
- A \equiv B, presupposing A type and B type.

Each kind of judgement come with **presuppositions**:

- A type
- a : A, presupposing A type.
- A \equiv B, presupposing A type and B type.
- \blacksquare a \equiv a' : A, presupposing A type, a : A and a' : A.

Categories: Judgement forms

When working inside a particular category, we would have the following judgement forms:

A : object

Håkon Gylterud

Categories: Judgement forms

When working inside a particular category, we would have the following judgement forms:

- A : object
- f : hom A B

Håkon Gylterud

Categories: Judgement forms

When working inside a particular category, we would have the following judgement forms:

- A : object ■ f : hom A B
- f \equiv g : hom A B

Håkon Gylterud
Categories: Presuppositions

Again, we have presuppositions:

A : object

Håkon Gylterud

Categories: Presuppositions

Again, we have presuppositions:

- A : object
- f : hom A B, presupposing A,B object.

Håkon Gylterud

Categories: Presuppositions

Again, we have presuppositions:

- A : object
- f : hom A B, presupposing A,B object.
- $f \equiv g : hom A B$, presupposing A,B : object and f,g
 - : hom A B

Set theory

One might expect set theory to have judgement forms:

■ A set ■ A ∈ B ■ A = B

Håkon Gylterud

Set theory

One might expect set theory to have judgement forms:

■ A set ■ A ∈ B ■ A = B

But, actually formulas are an integral part of set theory

Håkon Gylterud

Set theory: Judgement forms

This means we get the following:

- A : set
- $\bullet \phi$: formula
- ϕ true (propsition)

Håkon Gylterud

Set theory: Judgement forms

This means we get the following:

- A : set
- lacksquare ϕ : formula
- ϕ true (propsition)

Elementhood and equality would then be a term-forming operation for formula:

A B set \vdash A \in B : formula

Judgement forms

In each example theory, we have:

- a set of judgement forms.
- some judgements are propositional.
- judgements have presuppositions.

		Makkai's dependent sort vocabularies	Operations Operations in Myott	
00		000000		

Makkai's dependent sort vocabularies

Håkon Gylterud

Definition

A dependent sort vocabulary is a pair $\langle C, P \rangle$ where

• C is a (finite/with finite out-degree) category.

Håkon Gylterud

Definition

A dependent sort vocabulary is a pair $\langle C, P \rangle$ where

- C is a (finite/with finite out-degree) category.
 The relation a ≺ b on objects of C, defined by
 - $a \prec b \Leftrightarrow \exists f : b \rightarrow a. f \neq id_a$, is wellfounded.

Definition

A dependent sort vocabulary is a pair $\langle C, P \rangle$ where

- C is a (finite/with finite out-degree) category.
- The relation $a \prec b$ on objects of *C*, defined by $a \prec b \Leftrightarrow \exists f : b \rightarrow a$. $f \neq id_a$, is wellfounded.
- P is a set of $(\prec$ -maximal) elements of Ob_C .

Example: Category judgement form signature

- ⊢ object sort
- x,y : object ⊢ hom(x,y) sort
- x,y : object, f,g : hom(x,y) \vdash f \equiv g proposition

Håkon Gylterud

Example: Category judgement form signature

- ⊢ object sort
- x,y : object ⊢ hom(x,y) sort
- x,y : object, f,g : hom(x,y) \vdash f \equiv g proposition

Figure 4: The above signature as a DSV.

Håkon Gylterud Defining and relating theories

Example: Category judgement form signature (alt)

- ⊢ object sort
- dom, codom : object ⊢ hom(dom,codom) sort
- \blacksquare dom, codom : object, lhs,rhs : hom(dom,codom) \vdash

lhs \equiv rhs proposition

Figure 5: The above signature as a DSV.

Håkon Gylterud

Example: The judgements of type theory

- $\blacksquare \vdash type sort$
- A : type ⊢ element A sort
- **A**,B : type \vdash A \equiv B sort
- A : type, a,a' : element A \vdash a \equiv a' proposition

Håkon Gylterud

Example: The judgements of type theory

- ⊢ type sort
- A : type ⊢ element A sort
- A,B : type \vdash A \equiv B sort
- A : type, a,a' : element A \vdash a \equiv a' proposition

Figure 6: The above signature as a DSV.

Håkon Gylterud

Example: The judgements of type theory (alt)

- ⊢ type sort
- type-of : type ⊢ element type-of sort
- lhs,rhs : type \vdash lhs \equiv rhs sort
- A : type, lhs,rhs : element A ⊢ lhs ≡ rhs proposition

Figure 7. The shows signature as a DSV

Håkon Gylterud

				Judgements in Myott	Operations	Operations in Myott	
00	000000000	00000000	000000	•	00000000	0	С

Judgements in Myott

Håkon Gylterud

 Myott
 Motivation
 Examples
 Makkai's dependent sort vocabularies
 Judgements in Myott
 Operations
 Operations
 Operations
 Operations
 F

 00
 00000000
 00000000
 0000000
 0000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Operations

Håkon Gylterud

Categories: Operations

Categories can be formulated as a generalised algebraic theory, where the operations are:

```
x : object ⊢ id x : hom x x
x, y, z : object,
f : hom x y, g : hom y z
⊢ g ∘ f : hom x z
```

Categories: Equations

Equations can be seen as operations as well:

Håkon Gylterud

Judgements in context as pure operations

Remember, compositions in categories:

x, y, z : object, f : hom x y, g : hom y z \vdash g \circ f : hom x z

The signature of this operation is a purely judgemental context.

Håkon Gylterud

Operations depending on operations

Consider the two operations:

■ ⊢ 1 : object
■ x : object ⊢ ! : hom(x,1)

Notice:

- The second rule depends on the first.
- The first rule must be used in a well-formed way.

Håkon Gylterud

Operations

The operations of a theory are organised in a well-founded category.

• Arrows in the operation category represent applications of the rule in the signature of another rule.

Operations

The operations of a theory are organised in a well-founded category.

• Arrows in the operation category represent applications of the rule in the signature of another rule.

For categories it looks like:

Figure 8: The category of operations for categories

Håkon Gylterud

Term expansion

A rule application is a map between finite structures, hence all subterms must be present in context:

```
■ ⊢ 1 : object
■ x : object ⊢ ! : hom(x,1)
```

Term expansion

A rule application is a map between finite structures, hence all subterms must be present in context:

 Myott
 Motivation
 Examples
 Makkai's dependent sort vocabularies
 Judgements in Myott
 Operations
 Operations in Myott
 R

 00
 00000000
 00000000
 00000000
 00000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Operations in Myott

Håkon Gylterud

			Operations Operations in Myor	t F
00				•

Rules

Håkon Gylterud

Type theory: Rules

Rules can express variable binding:

 $\vdash A : type$ x : element $A \vdash B x : type$ $\prod -formation$

 $\vdash \prod$ (x:A) (B x) : type

Håkon Gylterud

Type theory: Rules

Rules can express variable binding:

Notice that the assumptions on the rules form a signature of operations.

First-order logic

Similar rules handles quantifiers in FOL:

$$\mathtt{x} : \mathtt{set} \vdash \phi(\mathtt{x}) : \mathtt{formula}$$

 $\vdash \forall \mathtt{x}. \ \phi(\mathtt{x}) : \mathtt{formula}$

Håkon Gylterud

Rule elaboration

 $\begin{array}{l} \vdash A & : \text{Type} \\ \text{x} : \text{Element } A \vdash B \text{ x} : \text{Type} \\ \text{x} : \text{Element } A \vdash b \text{ x} : \text{Element } B \text{ x} \\ \hline \\ \hline \\ \hline \\ \leftarrow \lambda(\text{x} : A) (b \text{ x}) : \text{Element } (\Pi (\text{x} : A) (B \text{ x})) \end{array}$

Håkon Gylterud

Rule elaboration

 $\begin{array}{c} \vdash A : \texttt{Type} \\ A_0:=A(), \texttt{x}: \texttt{Element} \ A_0 \qquad \qquad \vdash B \texttt{x}: \texttt{Type} \\ \vdash C := (\Pi \ (\texttt{x}: \texttt{A}) \ (\texttt{B} \texttt{x})) : \texttt{Type} \\ \hline C := (C) : \texttt{x}: \texttt{Element} \ A_0, \ \texttt{B}_0=\texttt{B}(\texttt{x}) \ \vdash \texttt{b} \texttt{x}: \texttt{Element} \ \texttt{B}_0 \\ \hline c_0 := \texttt{C}() : \texttt{Type} \vdash \lambda(\texttt{x}:\texttt{A}) \ (\texttt{b} \texttt{x}) : \texttt{Element} \ \texttt{C} \end{array}$

Håkon Gylterud

			Operations Operations in Myott	
00				

Rules in Myott

Håkon Gylterud
Translations

A translation converts:

- judgement forms to derived judgement forms
- operations to derived operations
- rule to derived rules (derivations)

Example: Setoid model

Håkon Gylterud

All the theoretical parts need to be properly written down.

Håkon Gylterud

- All the theoretical parts need to be properly written down.
- Parsing / checking for rules.

Håkon Gylterud

- All the theoretical parts need to be properly written down.
- Parsing / checking for rules.
- Built-in notion of equation/reductions.

Håkon Gylterud

- All the theoretical parts need to be properly written down.
- Parsing / checking for rules.
- Built-in notion of equation/reductions.
- Translations between theories.

Håkon Gylterud

- All the theoretical parts need to be properly written down.
- Parsing / checking for rules.
- Built-in notion of equation/reductions.
- Translations between theories.
- Usability:

Håkon Gylterud

- All the theoretical parts need to be properly written down.
- Parsing / checking for rules.
- Built-in notion of equation/reductions.
- Translations between theories.
- Usability:
 - Module system

- All the theoretical parts need to be properly written down.
- Parsing / checking for rules.
- Built-in notion of equation/reductions.
- Translations between theories.
- Usability:
 - Module system
 - Inferrable arguments and premisses

Håkon Gylterud

- All the theoretical parts need to be properly written down.
- Parsing / checking for rules.
- Built-in notion of equation/reductions.
- Translations between theories.
- Usability:
 - Module system
 - Inferrable arguments and premisses
 - Custom grammars

Håkon Gylterud

- All the theoretical parts need to be properly written down.
- Parsing / checking for rules.
- Built-in notion of equation/reductions.
- Translations between theories.
- Usability:
 - Module system
 - Inferrable arguments and premisses
 - Custom grammars
- More liberal notions of rules (example: binding many variables)

Håkon Gylterud