$$\frac{PO(3)NOPALIAL COMONADS + COMODULES}{Three ways to think obst interval cates in type theory.
Always short with a type of object C. Then for anous:
(1) "Interval": type of orrows C, and s,t: C, \Rightarrow C
(2) "Enrichad": dep. type of onows $(x,y;C_{0}) C_{1}(x,y)$
(3) ??: dep. type of onows $(x;C_{0}) C_{1}(x,y)$
(4) The MULTIC ATECOPY Poly (E)
Let E be a cate poly (E) with :
• objects are 0-maps p: E \rightarrow B $(b;C_{0}) E(b) type$
• maps $p \rightarrow p'$ are $E = \int_{0}^{\infty} E'$ $(b;C_{0}) f(b) \in B$
 $p \downarrow \qquad f'$
• Composite of above map with $(h, k): p' \rightarrow p''$ is $(fh, k:h^{2}g)$
 $E = \int_{0}^{\infty} E' = \int_{0}^{\infty} E' (b'_{0}E'') f(h(b'')) \in B$
 $p \downarrow \qquad f' = \int_{0}^{\infty} E' (b''_{0}E'') f(h(b'')) \in B$
 $p \downarrow \qquad f' = \int_{0}^{\infty} E' (b''_{0}E'') f(h(b'')) \in B$
 $p \downarrow \qquad f' = \int_{0}^{\infty} E' (b''_{0}E'') f(h(b'')) \in B$
 $p \downarrow \qquad f' = \int_{0}^{\infty} E' (b''_{0}E'') f(h(b'')) \in B$
 $p \downarrow \qquad f' = \int_{0}^{\infty} E' (b''_{0}E'') f(h(b'')) \in B$
 $p \downarrow \qquad f' = \int_{0}^{\infty} E' (b''_{0}E'') f(h(b'')) = B$
 $f = \int_{0}^{\infty} E' (b''_{0}E'') f(h(b'')) = E$
 $F = \int_{0}^{\infty} E' (b''_{0}E'')$$$

Tota: $p: E \longrightarrow B$ is a game: opponent chooses $b \in B$; player chooses of response in $e \in E(b)$. A <u>O-strategy</u> is a durice of $b \in B$; a <u>P-strategy</u> is a section of p. A map $p \longrightarrow p'$ in Poly(E) allows a O-strategy for p' to be played against a <u>P-strategy</u> for p.

In fact,
$$\operatorname{Poly}(\mathcal{E})$$
 can be made into a multicalequery.
• objects as before
• unay maps $(p) \longrightarrow p'$ as before
• nullay maps $() \longrightarrow p'$ are sections of p'
• n-any maps $(p_1, \dots, p_n) \longrightarrow p'$ $(n \ge 2)$ ore:
Pn $\int_{\mathbb{T}} \frac{1}{f_n} \int_{\mathbb{T}} \frac{1}{f_n} \int_{\mathbb{$

When O-maps are exponentiable, this multicate is achilly a monoidal categorithm tensor being polynomial composition.

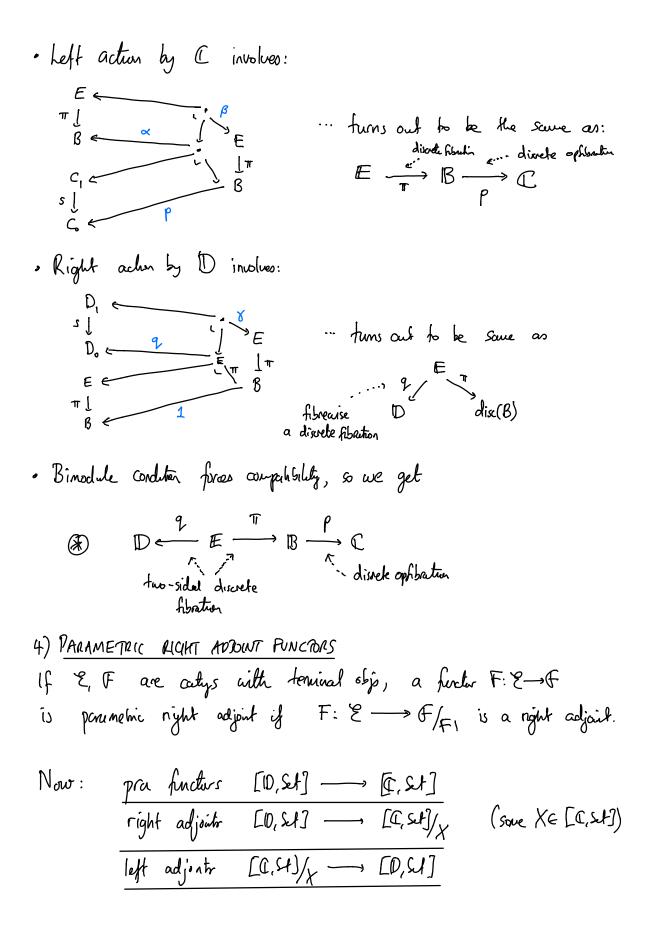
2) $\underline{M}_{0,N_0(NS | N})$ $\underline{N}_{0,N_0(X)}(\underline{\mathcal{E}})$ In any multicate \mathcal{U} , a <u>monorial</u> is an object X thus multimaps $() \xrightarrow{\gamma} X$, $(X, X) \xrightarrow{\mu} X$ + axioms.

What's a monoid in
$$\frac{Poly(E)}{E}$$
?
(1) An object: ie a D -map $C_1 \xrightarrow{S} C_0$ $(x \in C_0) C_1(x)$
(2) Nullary map $() \xrightarrow{I} S$, ie a schin i of S $(x \in C_0) i(x) \in C_1(x)$

(3) Binary map
$$(s,s) \xrightarrow{m} s$$
 looks like:
 $C_1 \xleftarrow{C_1 \times C_1} (x \in G, f \in C_1(x)) = \{(x,f) \in C_0 \\ C_0 \xleftarrow{t} C_1 \\ C_0 \xleftarrow{t} C_1 \\ C_1 \xleftarrow{C_1} (x \in G, f \in C_1(x), g \in C_1(t (x,f))) \\ C_1 \xleftarrow{t} C_1 \\ C_1 \xleftarrow{C_1} (x \in G, f \in C_1(x), g \in C_1(t (x,f))) \\ C_1 \xleftarrow{t} C_1 \\ C_1 \xleftarrow{C_1} (x \in G, f \in C_1(x), g \in C_1(t (x,f))) \\ C_1 \xleftarrow{t} C_1 \\ C_1 \xleftarrow{C_1} C_1 \\ C_1 \xleftarrow{C_1} (x \in G, f \in C_1(x), g \in C_1(t (x,f))) \\ m(x,f,g) \in C_1(x) \\ m(x,f,g) \in C_1(x) \\ C_1 \xleftarrow{C_1} (x \in G, f \in C_1(x), g \in C_1(t (x,f))) \\ m(x,f,g) \in C_1(x) \\ C_1 \xleftarrow{C_1} (x \in G, f \in C_1(x), g \in C_1(t (x,f))) \\ C_1 \xleftarrow{C_1} (x \in G, f \in C_1(x), g \in C_1(t (x,f))) \\ C_1 \xleftarrow{C_1} (x \in G, f \in C_1(x), g \in C_1(t (x,f))) \\ C_1 \xleftarrow{C_1} (x \in G, f \in C_1(x), g \in C_1(t (x,f))) \\ C_1 \xleftarrow{C_1} (x \in G, f \in C_1(x), g \in C_1(t (x,f))) \\ C_1 \xleftarrow{C_1} (x \in G, f \in C_1(x), g \in C_1(t (x,f))) \\ C_1 \xleftarrow{C_1} (x \in G, f \in C_1(x), g \in C_1(t (x,f))) \\ C_1 \xleftarrow{C_1} (x \in G, f \in C_1(x), g \in C_1(t (x,f))) \\ C_1 \xleftarrow{C_1} (x \in G, f \in C_1(x), g \in C_1(t (x,f))) \\ C_1 \xleftarrow{C_1} (x \in G, f \in C_1(x), g \in C_1(t (x,f))) \\ C_1 \xleftarrow{C_1} (x \in G, f \in C_1(x), g \in C_1(t (x,f))) \\ C_1 \xleftarrow{C_1} (x \in G, f \in C_1(t (x,f))) \\ C_1$

So we have the data of a category (expressed in style of (3)) and the monoid axions = category axions.

What is a bimodule in
$$Poly(\mathcal{E})$$
 between \mathbb{C} and \mathbb{D} ?
• First, $\pi: E \rightarrow B$ a \mathcal{D} -map $(x \in B) \in (x)$



$$\frac{\text{functions}}{\text{functions}} \xrightarrow{(el X)^{op}} \longrightarrow [D, Set]}{\frac{\text{functions}}{\text{functions}}} \xrightarrow{(el X)^{op}} \longrightarrow [D, Set]}{\frac{functions}} \xrightarrow{(el X)^{op}}$$

ie: bimadules $\mathbb{C} \longrightarrow \mathbb{D}$ in $Paly(Set) \equiv prover adjoints functions <math>[D, St] \longrightarrow [C, Set]$