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Overview

Context
• In talks at HoTT/UF 2020 and at CT 2021 I presented a conjecture concerning categories of

models of a clan.
• In this talk I will give/outline a proof of this conjecture.

Three Parts
• Recall functorial semantics of (essentially) algebraic theories
• Clans as generalized algebraic theories
• If there’s time: Examples and models in higher (homotopy) types
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Part I
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Algebraic Theories

Definition
A single-sorted algebraic theory (SSAT) is a pair (Σ,E ) consisting of

• a family Σ = (Σn)n∈N, of sets of n-ary operations
• a set of equations E whose elements are pairs of open terms over Σ

Definition
The syntactic category C(Σ,E ) of a SSAT is given as follows:

1. For each natural number n ∈ N there is an object [n]
2. morphisms σ : [n]→ [m] are m-tuples of terms in n variables modulo E -provable equality
3. identities are lists of variables, composition is given by substitution

Proposition
Given a SSAT (Σ,E ):

1. C(Σ,E ) has finite products given by [n]× [m] = [n + m]

2. Set-Mod(Σ,E ) ' FP(C(Σ,E ),Set)

4 / 35



Finite-product theories
Definition

• A FP-theory is just a small FP-category C.
• Models of C are FP-functors A : C → Set (or into another FP-category).

Denote the category of models by

Mod(C) := FP(C,Set)
full
⊆ [C,Set].

For every object Γ ∈ C of an FP-theory, the co-representable functor

C(Γ,−) : C → Set

is a model. Thus, the dual Yoneda embedding co-restricts to Mod(C).

Cop

Mod(C) [C,Set]

Z

⊆
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Finite-limit theories

Definition
• A FL-theory is a small finite-limit category L.
• A model of L is a finite-limit preserving functor A : L → Set.

FL-theories are more expressive than FP-theories – structures definable by finite-limit theories include
• categories, posets, 2-categories, monoidal categories, categories with families . . .

Again L(Γ,−) is a model for every Γ ∈ L and we get an embedding

Z : Lop → Mod(L) := FL(L,Set)
full
⊆ [L,Set].

Moreover, we can characterize the essential image of Z in Mod(L).
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Locally finitely presentable categories

Definition
• An object C of a cocomplete locally small category X is called compacta, if

X(C ,−) : X→ Set

preserves filtered colimits.
• A category X is called locally finitely presentable, if

X is locally small and cocomplete
the full subcategory comp(X) ⊆ X on compact objects is essentially small and dense.

aMore traditionally: ‘finitely presentable’

Theorem
• Mod(L) is locally finitely presentable for all finite-limit theories L.
• The essential image of Z : Lop →Mod(L) comprises precisely the compact objects.
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Gabriel-Ulmer duality1

Theorem
There is a bi-equivalence of 2-categories

FL comp(X)op ←[ X←−−−−−−−−−−−−→
L 7→ Mod(L)

LFPop

where
• FL is the 2-category of small FL-categories and FL-functors
• LFP is the 2-category of locally finitely presentable categories and functors preserving small limits

and filtered colimits (‘forgetful functors’).

1P. Gabriel and F. Ulmer. Lokal präsentierbare Kategorien. Springer-Verlag, 1971.
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Duality for finite-product theories2

There’s a ‘restriction’ of G–U duality to finite-product theories:

FPcc ALGop

FL LFPop

C 7→ FP(C,Set)
{compact projectives}op ←[ X

F JUa
L 7→ FL(L,Set)

{compact objects}op ← [ X

• FPcc is the 2-category of Cauchy-complete finite-product categories
• ALG is the 2-category of algebraic categories and algebraic functors

An algebraic category is an l.f.p. category which is Barr-exact and where the compact (regular)
projective objects are dense
An algebraic functor is a functor that preserves small limits, filtered colimits, and regular
epimorphisms.

• There’s also a formulation in terms of sifted colimits, but we don’t need it.

2J. Adámek, J. Rosický, and E.M. Vitale. Algebraic theories: a categorical introduction to general algebra.
Cambridge University Press, 2010.
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Part II
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Toward clans

• Finite-limit theories have a nice duality theory but seem far from syntax
• Syntactic counterparts are given by

Freyd’s essentially algebraic theories3

Cartmell’s generalized algebraic theories4 (or ‘dependent algebraic theories’)
Johnstone’s cartesian theories5

Palmgren and Vickers’ quasi-equational theories6

and probably others
• Clans can be viewed as a categorical representation of generalized algebraic theories
• They’re as expressive as FL-theories, but ‘finer’, i.e. closer to syntax

3P. Freyd. “Aspects of topoi”. In: Bulletin of the Australian Mathematical Society (1972).
4J. Cartmell. “Generalised algebraic theories and contextual categories”. In: Annals of Pure and Applied Logic

(1986).
5P.T. Johnstone. Sketches of an elephant: a topos theory compendium. Vol. 2. Oxford: Oxford University Press,

2002.
6E. Palmgren and S. J. Vickers. “Partial horn logic and Cartesian categories”. In: Annals of Pure and Applied Logic

(2007).
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Definition
A clan is a small category T with terminal object 1, equipped with a class T† ⊆ mor(T ) of
morphisms – called display maps and written _ – such that

1. pullbacks of display maps along all maps exist and are display maps
∆+ Γ+

∆ Γ

s+

q y p
s

,

2. display maps are closed under composition, and
3. isomorphisms and terminal projections Γ _ 1 are display maps.

• Definition due to Taylor7, name due to Joyal8 (‘a clan is a collection of families’)
• Relation to semantics of dependent type theory: display maps represent type families.
• Observation: clans have finite products (as pullbacks over 1).

7P. Taylor. “Recursive domains, indexed category theory and polymorphism”. PhD thesis. University of Cambridge,
1987, ğ 4.3.2.

8A. Joyal. “Notes on clans and tribes”. In: arXiv preprint arXiv:1710.10238 (2017).
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Examples

• Finite-product categories C can be viewed as clans with C† = {product projections}
• Finite-limit categories L can be viewed as clans with L† = mor(L)

We call such clans FP-clans, and FL-clans, respectively.

• The syntactic category of every Cartmell-style generalized algebraic theory is a clan.
• Clan for categories:

K = {categories free on finite graphs}op ⊆ Catop

K† = {functors induced by graph inclusions}op

K can be viewed as syntactic category of a generalized algebraic theory of categories with a sort
O of objects, and a dependent sort x , y :O ` M(x , y) of morphisms – vertices of a finite graph are
object variables and edges are morphism variables in a context. Graph inclusions are dual to
context extensions.
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Models

Definition
A model of a clan T is a functor A : T → Set which preserves 1 and pullbacks of display-maps.

• The category Mod(T ) ⊆ [T ,Set] of models is l.f.p. and contains T op.
• For FP-clans (C, C†) we have Mod(C, C†) = FP(C,Set).
• For FL-clans (L,L†) we have Mod(L,L†) = FL(L,Set).
• Mod(K,K†) = Cat.

T op

Mod(T ) [T ,Set]

Z

⊆

Observation
The same category of models may be represented by different clans.
For example, SSATs can be represented by FP-clans as well as FL-clans.
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The weak factorization system
• Would like duality between clans and their categories of models.
• Since the same l.f.p. category can be represented by different clans, we cannot hope to

reconstruct the clan from the models alone.
• Solution: equip the models with additional structure in form of a weak factorization system.

Definition
Let T be a clan. Define w.f.s. (E ,F) on Mod(T ) by

• F := RLP({Z (p) | p ∈ T†}) class of full maps
• E := LLP(F) class of extensions

I.e. (E ,F) is cofibrantly generated by the image of T† under Z : T op →Mod(T ).
• Call A ∈Mod(T ) a 0-extension, if (0→ A) ∈ E

• E.g. corepresentables Z (Γ) are 0-extensions since terminal projections Γ _ 1 are display maps.
• The same weak factorization system was also introduced by S. Henry in a HoTTEST talk9, see

also10.
9S. Henry, The language of a model category, HoTTEST seminar, Jan. 2020, https://youtu.be/7_X0qbSXlfk

10S. Henry. “Algebraic models of homotopy types and the homotopy hypothesis”. In: arXiv preprint arXiv:1609.04622
(2016).
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Full maps
• f : A→ B in Mod(T ) is full iff it has the RLP with respect to all Z (p) for display maps

p : ∆ _ Γ.
T (Γ,−) A

T (∆,−) B
Z(p)=T (p,−) f

A(∆) B(∆)

A(Γ) B(Γ)

f∆

A(p) B(p)
fΓ

• This is equivalent to display-naturality-squares being weak pullbacks.
• Considering p : ∆ _ 1 we see that full maps are surjective and hence regular epis.

A(∆) B(∆)

1 1

f∆ A(∆) B(∆)

A(∆)× A(∆) B(∆)× B(∆)

f∆

f∆×f∆

• For FL-clans, only isos are full (consider naturality square for diagonal ∆→ ∆×∆)
• For FP-clans we have

full map = regular epimorphism
extension = coproduct inclusion A ↪→ P + A with P projective

0-extension = projective object
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The fat small object argument
Motivation: subcategories of models for FP-theory C and clan T .

Cop {compact}

{flat}
{projective} Mod(C) [C,Set]

reflexive coeqalizer
completion

sifted colimit completion

filtered
colim

it

com
pletion

filtered
colim

it
com

pletion

ex/wlex completion
⊆

T op {compact}

{flat}
{0-extension} Mod(T ) [T ,Set]

filtered
colimit

completion

filtered
colim

it
com

pletion

⊆

• Flat algebras are filtered colimits of corepresentables, computed freely in the functor categories.
• For SSATs we have {projective} ⊆ {flat} since

arbitrary free objects are filtered colimits of free objects over finite sets
projective objects are retracts of free objects

• In the general clan case, {0-extension} ⊆ {flat} by the fat small object argument11.

11M. Makkai, J. Rosicky, and L. Vokrinek. “On a fat small object argument”. In: Advances in Mathematics (2014).
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Reconstructing the clan

Definition
Given a clan T , let C ⊆Mod(T ) be the full subcategory on compact 0-extensions.

• Z : T op →Mod(T ) factors through C since corepresentables Z (Γ) are compact and 0-extensions.

C

T op Mod(T )Z

E

• 0 ∈ C and if
C D

E F
e

p
is a pushout with F ∈ C and e ∈ E then F ∈ C.

• Therefore C is a coclan with extensions as ”co-display maps”.
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Reconstructing the clan

Theorem
The full inclusion E : T op ↪→ C exhibits C as Cauchy-completion of T op, i.e. every compact
0-extension is a retract of a corepresentable.

Proof.
• Let C ∈ C.
• Since 0-extensions are flat,

∫
C is filtered, thus C is a filtered colimit of corepresentables.

• Since C is compact, idC factors through a colimit inclusion map.

C

Z (Γ) C

id

σ(Γ,x)
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Clan-algebraic categories

Definition
A clan-algebraic category is a category X with a w.f.s. (E ,F) that arises as category of models of a
clan.

With this definition we get a contravariant bi-equivalence

Clancc
comp(X)op ←[ X←−−−−−−−−−−−−→
T 7→ Mod(T )

cAlgop

between
• the 2-category Clancc of Cauchy-complete clans and functors preserving 1, display maps, and

pullbacks of display maps, and
• the 2-category cAlg of clan-algebraic categories and functors preserving small limits, filtered

colimits, and full maps.

Can we characterize clan-algebraic categories more abstractly?
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Characterizing clan-algebraic categories

Assume X is clan-algebraic with w.f.s. (E ,F). Then
1. X is cocomplete,
2. X has a small dense family of compact 0-extensions, and
3. (E ,F) is cofibrantly generated by maps between compact 0-extensions.

Now assume we have a category X with w.f.s. (E ,F) satisfying 1–3.

Then the subcategory C ⊆ X of compact 0-extensions is a coclan.

We get a nerve/realization adjunction

C X

Mod(Cop)

J

Z
N

a
L L(A) = colim(

∫
A→ C J−→ X)

N(X ) = X(J(−),X )

However, this adjunction is not an equivalence in general:
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Characterizing clan-algebraic categories

Counterexample
Consider

• X ⊆ [2op,Set] full subcategory on injections
• (E ,F) w.f.s. on X cofib. generated by {(0→ Y 0), (0→ Y 1)}

Then Mod({compact 0-extensions}op) ' [2op,Set] and N is the subcategory inclusion.

C X

[2op,Set]

J

Z
N

a
L

Conclusion: We’re missing an ‘exactness condition’ analogous to ‘Barr-exactness’ in the
characterization of algebraic categories!
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Quotients of componentwise-full equivalence relations

• Recall that a FL-category L is called Barr-exact, if all equivalence relations in L have stable
effective quotients.

• This can’t be the case for clan algebraic categories in general. However, we have:

Lemma
For any clan T , Mod(T ) has full and effective quotients of componentwise-full equivalence
relations.

Proof.
Given equivalence relation r : R � A×A with r0, r1 : R � A full, show that component-wise quotient
is a model again.
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Characterizing clan-algebraic categories
Definition
An adequate category is a category X with a with a w.f.s. (E ,F) (whose maps we call extensions
and full, respectively), s.th.

1. X is cocomplete,
2. X has a small dense family of compact 0-extensions (in particular X is l.f.p.),
3. (E ,F) is cofibrantly generated by maps between compact 0-extensions, and
4. X has full and effective quotients of componentwise-full equivalence relations.

Lemma
Assume X is adequate and F : X→ Set preserves finite limits and sends full maps to surjections.
Then F preserves quotients of componentwise-full equivalence relations.

Proof.

Let R A B
r0

r1

f be a full exact sequence in X, i.e. all arrows are full, f is the coequalizer
of r0, r1, and r0, r1 is the kernel pair of f . Then Ff is a surjection with kernel pair Fr0, Fr1. But
surjections are always coequalizers of their kernel pair.

24 / 35



Idea of proof
• Assume that X is adequate.
• To show that it is clan-algebraic, we want to show that its nerve/realization adjunction

C X

Mod(Cop)

J

Z
N

a
L L(A) = colim(

∫
A→ C J−→ X)

N(X ) = X(J(−),X )

is an equivalence.
• By density the right adjoint N is fully faithful, i.e. the counit is an isomorphism.
• It remains to show that the unit of the adjunction is an isomorphism, i.e.

A(C)
∼=−→ X(C , colim(

∫
A→ C J−→ X)).

for all A ∈Mod(Cop) and C ∈ C.
• We know that X (C ,−) preserves filtered colimits and quotients of componentwise-full

equivalence relations, so we’d like to decompose colim(
∫

A→ C J−→ X) in terms of these
constructions.

• This is essentially what we’re doing in the following.
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Jointly full cones

• Let D : I → X be a diagram in an adequate category.
• A cone (A, φ) over D is called jointly full, if for every cone (C , γ), extension e : B → C and map

g : B → A constituting a cone morphism g : (B, γ ◦ e)→ (A, φ), there exists a map h : C → A
such that

B A

C Di

g

e φi

γi

h

commutes for all i ∈ I.
• Observation: The cone (A, φ) is jointly full iff the canonical map to the limit is full.
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Definition
A nice diagram in an adequate category X is a truncated simplicial diagram

A2 A1 A0
d0

d1

d2

d0

d1s1

s0 s0

where
1. A0, A1, and A2 are 0-extensions,
2. the maps d0, d1 : A1 → A0 are full,

3. in the square
A2 A1

A1 A0

d0
d2 d1

d0

the span constitutes a jointly full diagram over the cospan,

4. there exists a symmetry map
A1 A0

A0 A1

d1

d0
σ

d1
d0 making the triangles commute, and

5. there exists a 0-extension Ã and full maps f , g : Ã � A1 constituting a jointly full cone over the
diagram

A1 A1

A0 A0

d1

d0

d0

d1 .
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Nice diagrams
Lemma

For any nice diagram, the pairing A1
〈d0,d1〉−−−−→ A0 × A0 admits a decomposition A1 � R 〈r0,r1〉−−−→ A0 × A0

into a full map and a monomorphism, and 〈r0, r1〉 is a componentwise-full equivalence relation.

Lemma
Assume X is adequate and F : X→ Set preserves finite limits and sends full maps to surjections.
Then for every nice diagram, F preserves coequalizers of the arrows d0, d1 : A1 → A0.

Lemma
The restriction L′ of L in the nerve/realization adjunction

C X

{0-ext}

Mod(Cop)

J

N

L′

a

to 0-extensions is fully faithful and preserves full maps and nice diagrams.
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Nice diagrams
Lemma
For every object A of an adequate category X there exists a nice diagram

A2 A1 A0
d0

d1

d2

d0

d1s1

s0 s0

such that A is the coequalizer of d0, d1 : A1 → A0.

Proof.

• A0 is given by covering A by a 0-extension, i.e. factoring 0→ A as 0 ↪→ A0
e
� A.

• A1 is given by covering the kernel of A0 � A by a 0-extension
0 A1 R A0

A0 A

y
r0

r1 e
e

• A2 is given by covering the following pullback:
0 A2 • A1

A1 A0

y
d0

d1
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The theorem
Theorem
Adequate categories are clan-algebraic.

Proof.
Let X be adequate and let C ⊆ X be the co-clan of compact 0-extensions. It remains to show that

AC ∼= X(C , LA).

for all A ∈Mod(Cop) and C ∈ C. Let A• be a nice diagram with coequalizer A. We have

X(C , LA) = X(C , L(coeq(A1 ⇒ A0))) since A = coeq(A1 ⇒ A0)
∼= X(C , coeq(LA1 ⇒ LA0)) since L preserves colimits
∼= coeq(X(C , LA1) ⇒ X(C , LA0)) since X(C ,−) preserves coeqs of nice diags
∼= coeq(A1C ⇒ A0C) since LAi = colim(

∫
Ai → C→ X) filtered

∼= coeq(Mod(ZC ,A1) ⇒ Mod(ZC ,A0))
∼= Mod(ZC , coeq(A1 ⇒ A0))
∼= Mod(ZC ,A))
∼= AC
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Part III
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Models in higher types

Let S be the ∞-topos of spaces/types.

Let CMon be the finite-product theory of monoids, and let LMon be the finite-limit theory of monoids.
Then

FP(CMon,Set) ' FL(LMon,Set)

but FP(CMon,S) and FL(LMon,S) are different:
• FL(LMon,S) is just the category of monoids
• FP(CMon,S) is the ∞-category ‘A∞-algebras’, i.e. homotopy-coherent monoids.

Moral
By being ‘slimmer’, finite-product theories leave room for higher coherences when interpreted in
higher types.

This phenomenon has been discussed under the name ‘animation’ in:
• K. Cesnavicius and P. Scholze. “Purity for flat cohomology”. In: arXiv preprint arXiv:1912.10932

(2019)
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Four clans for categories

Cat admits several clan-algebraic weak factorization systems:
• (E1,F1) is cofib. generated by {(0→ 1), (2→ 2) }
• (E2,F2) is cofib. generated by {(0→ 1), (2→ 2), (2→ 1)}
• (E3,F3) is cofib. generated by {(0→ 1), (2→ 2), (P→ 2) }
• (E4,F4) is cofib. generated by {(0→ 1), (2→ 2), (P→ 2), (2→ 1)}

where P = (•⇒ •).

The right classes are:

F1 = {full and surjective-on-objects functors}
F2 = {full and bijective-on-objects functors}
F3 = {fully faithful and surjective-on-objects functors}
F4 = {isos}

Note that F3 is the class of trivial fibrations for the canonical model structure on Cat.
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Four clans for categories

These correspond to the following clans:

T1 = {free cats on fin. graphs}op T †1 = {graph inclusions}
T2 = {free cats on fin. graphs}op T †2 = {injective-on-edges maps}
T3 = {f.p. cats}op T †3 = {injective-on-objects functors}
T4 = {f.p. cats}op T †4 = {all functors}

Models in higher types:

∞-Mod(T1) = {Segal spaces}
∞-Mod(T2) = {Segal categories}
∞-Mod(T3) = {pre-categories}
∞-Mod(T4) = {discrete 1-categories}
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Thanks for your attention!
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