Characterizing clan-algebraic categories

Jonas Frey

HoTT Electronic Seminar Talks

February 3, 2022

1/385



Overview

Context

e In talks at HoTT/UF 2020 and at CT 2021 | presented a conjecture concerning categories of
models of a clan.

e In this talk | will give/outline a proof of this conjecture.

Three Parts
o Recall functorial semantics of (essentially) algebraic theories
o Clans as generalized algebraic theories

o If there's time: Examples and models in higher (homotopy) types
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Part |
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Algebraic Theories

Definition
A single-sorted algebraic theory (SSAT) is a pair (X, E) consisting of
e afamily X = (X,),cn, of sets of n-ary operations

e a set of equations £ whose elements are pairs of open terms over X

Definition
The syntactic category C(X, E) of a SSAT is given as follows:
1. For each natural number n € N there is an object [r]
2. morphisms o : [n] — [m] are m-tuples of terms in n variables modulo E-provable equality

3. identities are lists of variables, composition is given by substitution

Proposition

Given a SSAT (%, E):
1. C(X, E) has finite products given by [n] x [m] = [n+ m]
2. Set-Mod(X, E) ~ FP(C(X, E), Set)
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Finite-product theories

Definition
e A FP-theory is just a small FP-category C.
o Models of C are FP-functors A : C — Set (or into another FP-category).

Denote the category of models by

full
Mod(C) := FP(C,Set) C [C,Set].
For every object [ € C of an FP-theory, the co-representable functor
c(r,—) : C— Set

is a model. Thus, the dual Yoneda embedding co-restricts to Mod(C).
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Finite-limit theories

Definition
o A FL-theory is a small finite-limit category L.
e A model of L is a finite-limit preserving functor A : £ — Set.

FL-theories are more expressive than FP-theories — structures definable by finite-limit theories include

e categories, posets, 2-categories, monoidal categories, categories with families . ..

Again L(I', —) is a model for every [ € £ and we get an embedding

full
Z : L — Mod(L) :=FL(L,Set) C [L, Set].

Moreover, we can characterize the essential image of Z in Mod(L).
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Locally finitely presentable categories

Definition

e An object C of a cocomplete locally small category X is called compact?, if
X(C,—): X — Set

preserves filtered colimits.
o A category X is called locally finitely presentable, if

o X is locally small and cocomplete
o the full subcategory comp(X) C X on compact objects is essentially small and dense.

?More traditionally: ‘finitely presentable’

Theorem
e Mod(L) is locally finitely presentable for all finite-limit theories L.
o The essential image of Z : L°P — Mod(L) comprises precisely the compact objects.
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Gabriel-Ulmer duality*

Theorem

There is a bi-equivalence of 2-categories

comp(X)® <+ X

FL LFPP

£ +— Mod(L)

where
e FL is the 2-category of small FL-categories and FL-functors

e LFP is the 2-category of locally finitely presentable categories and functors preserving small limits
and filtered colimits (‘forgetful functors').

1P, Gabriel and F. Ulmer. Lokal prisentierbare Kategorien. Springer-Verlag, 1971.
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Duality for finite-product theories®

There's a ‘restriction’ of G-U duality to finite-product theories:
C + FP(C,Set)

FP — — ALG®P
{compact projectives}°” <+ X
" JJ
FL £ — FL(L,Set) LEP°?

{compact objects}°? <= X

o FP. is the 2-category of Cauchy-complete finite-product categories
e ALG is the 2-category of algebraic categories and algebraic functors

o An algebraic category is an |.f.p. category which is Barr-exact and where the compact (regular)
projective objects are dense

o An algebraic functor is a functor that preserves small limits, filtered colimits, and regular
epimorphisms.

e There's also a formulation in terms of sifted colimits, but we don't need it.

2]J. Adamek, J. Rosicky, and E.M. Vitale. Algebraic theories: a categorical introduction to general algebra.
Cambridge University Press, 2010.
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Part |l
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Toward clans

Finite-limit theories have a nice duality theory but seem far from syntax

Syntactic counterparts are given by

Freyd's essentially algebraic theories®

Cartmell's generalized algebraic theories* (or ‘dependent algebraic theories')
Johnstone's cartesian theories®

Palmgren and Vickers' quasi-equational theories®

and probably others

© © © 0 ©

Clans can be viewed as a categorical representation of generalized algebraic theories

e They're as expressive as FL-theories, but ‘finer’, i.e. closer to syntax

3P. Freyd. "Aspects of topoi". In: Bulletin of the Australian Mathematical Society (1972).

4J. Cartmell. “Generalised algebraic theories and contextual categories”. In: Annals of Pure and Applied Logic
(1986).

5P.T. Johnstone. Sketches of an elephant: a topos theory compendium. Vol. 2. Oxford: Oxford University Press,
2002.

SE. Palmgren and S. J. Vickers. “Partial horn logic and Cartesian categories”. In: Annals of Pure and Applied Logic
(2007).

11/35



Definition

A clan is a small category 7 with terminal object 1, equipped with a class 7+ C mor(7) of
morphisms — called display maps and written — — such that

At = T+
1. pullbacks of display maps along all maps exist and are display maps al - le

A—25T

NS}

. display maps are closed under composition, and

o

isomorphisms and terminal projections ' — 1 are display maps.

Definition due to Taylor’, name due to Joyal® (‘a clan is a collection of families’)

Relation to semantics of dependent type theory: display maps represent type families.
Observation: clans have finite products (as pullbacks over 1).

"P. Taylor. “Recursive domains, indexed category theory and polymorphism”. PhD thesis. University of Cambridge,
1987, g 4.3.2.

8A. Joyal. “Notes on clans and tribes”. In: arXiv preprint arXiv:1710.10238 (2017).
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Examples

e Finite-product categories C can be viewed as clans with C; = {product projections}

e Finite-limit categories £ can be viewed as clans with £; = mor(L)
We call such clans FP-clans, and FL-clans, respectively.

e The syntactic category of every Cartmell-style generalized algebraic theory is a clan.

e Clan for categories:

K = {categories free on finite graphs}°®® C Cat®’

KC+ = {functors induced by graph inclusions}°?
IC can be viewed as syntactic category of a generalized algebraic theory of categories with a sort
O of objects, and a dependent sort x, y:O = M(x, y) of morphisms — vertices of a finite graph are

object variables and edges are morphism variables in a context. Graph inclusions are dual to
context extensions.
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Models

Definition

A model of a clan 7 is a functor A : 7 — Set which preserves 1 and pullbacks of display-maps.

The category Mod(7) C [T, Set] of models is |.f.p. and contains 7°P. Top
For FP-clans (C,C;) we have Mod(C,Cy) = FP(C, Set). z l

For FL-clans (£, L+) we have Mod(L, L) = FL(L, Set). K7
Mod(K, K;) = Cat. Mod(T) C [T, Set]

Observation

The same category of models may be represented by different clans.
For example, SSATs can be represented by FP-clans as well as FL-clans.
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The weak factorization system

o Would like duality between clans and their categories of models.

o Since the same |.f.p. category can be represented by different clans, we cannot hope to
reconstruct the clan from the models alone.

e Solution: equip the models with additional structure in form of a weak factorization system.

Definition

Let 7 be a clan. Define w.f.s. (£, F) on Mod(7) by
e F:=RLP({Z(p) | p € T+}) class of full maps
e & := LLP(F) class of extensions

l.e. (€, F) is cofibrantly generated by the image of 7; under Z : 7°° — Mod(T).
e Call A€ Mod(7) a 0-extension, if (0 — A) € £

o E.g. corepresentables Z(I') are O-extensions since terminal projections [ — 1 are display maps.

o The same weak factorization system was also introduced by S. Henry in a HoTTEST talk®, see
also1?.

9S. Henry, The language of a model category, HoTTEST seminar, Jan. 2020, https://youtu.be/7_X0gqbSX1fk
105, Henry. “Algebraic models of homotopy types and the homotopy hypothesis”. In: arXiv preprint arXiv:1609.04622
(2016).
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https://youtu.be/7_X0qbSXlfk

Full maps
e f:A— Bin Mod(T) is full iff it has the RLP with respect to all Z(p) for display maps

p:A—T.
T(r-) —— A A(D) —2 B(A)
Z(p)=T(p,—)] ,/’/ lf Alp)) 1B(p)
T(A,~) — B A(N) —— B(N

This is equivalent to display-naturality-squares being weak pullbacks.
Considering p : A — 1 we see that full maps are surjective and hence regular epis.

A(D) —2 B(A) A(D) ——>2—— B(A)
{ 1 1 1
1—— 1 A(D) x A(A) 22 B(A) x B(A)

For FL-clans, only isos are full (consider naturality square for diagonal A — A x A)
For FP-clans we have

full map regular epimorphism
extension coproduct inclusion A < P + A with P projective
O-extension =  projective object
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The fat small object argument

Motivation: subcategories of models for FP-theory C and clan 7.

reflexive coeqalizer

ce® completion {CompaCt} {CompaCt}
28 %5
13 S5
_ {flat} _ _, iflat} _
{projective} STwiex compietion Mod(C) C[C,Set]  {0-extension} «——— Mod(7)C [T, Set]

o Flat algebras are filtered colimits of corepresentables, computed freely in the functor categories.
e For SSATs we have {projective} C {flat} since

o arbitrary free objects are filtered colimits of free objects over finite sets
o projective objects are retracts of free objects

o In the general clan case, {0-extension} C {flat} by the fat small object argument!!.

IM. Makkai, J. Rosicky, and L. Vokrinek. “On a fat small object argument”. In: Advances in Mathematics (2014).
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Reconstructing the clan

Definition
Given a clan 7, let C C Mod(7) be the full subcategory on compact 0-extensions.

o Z:T° — Mod(T) factors through C since corepresentables Z(I") are compact and 0O-extensions.

A
e

7% ——— Mod(T)

Cc — D
e 0eCandif [ - ¢ is a pushout with F € C and e € £ then F € C.
E— F

e Therefore C is a coclan with extensions as "co-display maps”.

18/35



Reconstructing the clan

Theorem
The full inclusion E : 7°P < C exhibits C as Cauchy-completion of T°P, i.e. every compact
0-extension is a retract of a corepresentable.

Proof.

e Let C € C.
e Since 0O-extensions are flat, j'C is filtered, thus C is a filtered colimit of corepresentables.

e Since C is compact, id¢ factors through a colimit inclusion map.

19/35



Clan-algebraic categories

Definition
A clan-algebraic category is a category X with a w.f.s. (£, F) that arises as category of models of a
clan.

With this definition we get a contravariant bi-equivalence

comp(X)%P «= X
T +— Mod(T)

Clan.. cAlg°?
between

e the 2-category Clan.. of Cauchy-complete clans and functors preserving 1, display maps, and
pullbacks of display maps, and

o the 2-category cAlg of clan-algebraic categories and functors preserving small limits, filtered
colimits, and full maps.

Can we characterize clan-algebraic categories more abstractly?
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Characterizing clan-algebraic categories

Assume X is clan-algebraic with w.f.s. (£, F). Then

1. X is cocomplete,

2. X has a small dense family of compact 0-extensions, and

3. (€, F) is cofibrantly generated by maps between compact 0-extensions.
Now assume we have a category X with w.f.s. (£, F) satisfying 1-3.

Then the subcategory C C X of compact 0-extensions is a coclan.

We get a nerve/realization adjunction

c—2L %
ZJ L L(A) = colim([A — C & %)
% N(X) = x(J(-), X)
Mod(CP)

However, this adjunction is not an equivalence in general:
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Characterizing clan-algebraic categories

Counterexample
Consider
e X C [2°P Set]| full subcategory on injections
o (£,F) w.fs. on X cofib. generated by {(0 — Y0),(0 — Y1)}
Then Mod({compact 0-extensions}°P) ~ [2°P, Set| and IV is the subcategory inclusion.

c—21 4 x
| 2n
Z =

N
[2°P, Set]

Conclusion: We're missing an ‘exactness condition’ analogous to ‘Barr-exactness’ in the
characterization of algebraic categories!
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Quotients of componentwise-full equivalence relations

o Recall that a FL-category L is called Barr-exact, if all equivalence relations in £ have stable
effective quotients.

e This can’t be the case for clan algebraic categories in general. However, we have:

Lemma

For any clan T, Mod(T) has full and effective quotients of componentwise-full equivalence
relations.

Proof.
Given equivalence relation r : R — A x A with rg, r; : R — A full, show that component-wise quotient
is a model again. O
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Characterizing clan-algebraic categories

Definition
An adequate category is a category X with a with a w.f.s. (£, F) (whose maps we call extensions
and full, respectively), s.th.

1. X is cocomplete,

2. X has a small dense family of compact 0-extensions (in particular X is |.f.p.),

3. (€, F) is cofibrantly generated by maps between compact 0-extensions, and

4. X has full and effective quotients of componentwise-full equivalence relations.

Lemma

Assume X is adequate and F : X — Set preserves finite limits and sends full maps to surjections.
Then F preserves quotients of componentwise-full equivalence relations.

Proof.

o
e — e a full exact sequence in X, i.e. all arrows are full, f is the coequalizer
Let R A-—fsBb full t seq X Il full, f is th qual
n

of ry, 1, and ry, ry is the kernel pair of . Then Ff is a surjection with kernel pair Fry, Fr;. But
surjections are always coequalizers of their kernel pair. O
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Idea of proof

e Assume that X is adequate.

To show that it is clan-algebraic, we want to show that its nerve/realization adjunction

C—2 %
Zl L . L(A) = colim(fA— C EN X)
% N(X) = X(J(-). X)
Mod(C°P)

is an equivalence.
o By density the right adjoint NV is fully faithful, i.e. the counit is an isomorphism.
o It remains to show that the unit of the adjunction is an isomorphism, i.e.

A(C) =5 2(C,colim([A — C 2 x)).

for all A € Mod(C°?) and C € C.

o We know that X'(C, —) preserves filtered colimits and quotients of componentwise-full
equivalence relations, so we'd like to decompose colim([A — C EN X) in terms of these
constructions.

e This is essentially what we're doing in the following.
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Jointly full cones

e Let D:7Z — X be a diagram in an adequate category.

o A cone (A, ¢) over D is called jointly full, if for every cone (C,~), extension e : B — C and map
g : B — A constituting a cone morphism g : (B,y0e) — (A, ¢), there exists amap h: C — A
such that

A

lo,
D;

!

O —— W

JJ

commutes for all i € 7.
o Observation: The cone (A, ¢) is jointly full iff the canonical map to the limit is full.
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Definition

A nice diagram in an adequate category X is a truncated simplicial diagram
-dy —>
—— 50 = —dy ——

Ay sdi —— Al <— < Ap

T s — -d ——

where

1. Ap, A1, and A, are 0-extensions,

2. the maps dy, d; : Ay — Ag are full,

A2 — A1
3. in the square ,,| o |4, the span constitutes a jointly full diagram over the cospan,
d
A1 HO AO
d
Ay — AO
4. there exists a symmetry map | N 14, making the triangles commute, and
d

AoéAl

5. there exists a O-extension A and full maps 7, g : A — A; constituting a jointly full cone over the

diagram
Al 0 Al
do >< L -
Ay @ Ao
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Nice diagrams

Lemma

. . .. (do,d1) . . (ro,n)
For any nice diagram, the pairing Ay ——— Ao X Ag admits a decomposition Ay — R —— Ag X A
into a full map and a monomorphism, and (ro, 1) is a componentwise-full equivalence relation.

Lemma

Assume X is adequate and F : X — Set preserves finite limits and sends full maps to surjections.
Then for every nice diagram, F preserves coequalizers of the arrows dy, d; : A1 — Ap.

Lemma

The restriction L' of L in the nerve/realization adjunction

Mod(C°?)

to 0-extensions is fully faithful and preserves full maps and nice diagrams.
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Nice diagrams

Lemma

For every object A of an adequate category X there exists a nice diagram

- do

S0 - - dg ——>
A2 -dp ——> A1 %SO*AO
——Ss1 = -d —

- —— !

such that A is the coequalizer of dy, d; : A1 — Ag.

Proof.

e Ay is given by covering A by a 0O-extension, i.e. factoring 0 — A as 0 — Ay S A

0— A — R A

e A; is given by covering the kernel of Ay — A by a 0-extension nl 4 e
Ay = A
00— Ay —» ¢ — A
e A; is given by covering the following pullback: l - Lo
Al — A
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The theorem

Theorem

Adequate categories are clan-algebraic.

Proof.

Let X be adequate and let C C X be the co-clan of compact 0O-extensions. It remains to show that

AC = X(C, LA).

for all A € Mod(C°?) and C € C. Let A, be a nice diagram with coequalizer A. We have

X(C,LA) = X(C, L(coeq(A1 = Ap)))

= X(C,coeq(LA; = LAy))
coeq(X(C, LA1) = X(C, LAy))
coeq(A1C = AgC)
coeq(Mod(ZC, A1) = Mod(ZC, A))
Mod(ZC, coeq(A1 = Ap))
>~ Mod(ZC, A))
= AC

1R IR

Il

since A = coeq(A; = Ap)

since L preserves colimits

since X(C, —) preserves coegs of nice diags
since LA; = colim([A; — C — X) filtered
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Part Il
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Models in higher types

Let S be the co-topos of spaces/types.

Let Cyion be the finite-product theory of monoids, and let Ly, be the finite-limit theory of monoids.
Then
FP(CMon, Set) ~ FL(ﬁMon, Set)
but FP(Cyon, S) and FL(Lwon, S) are different:
o FL(Lmon,S) is just the category of monoids

o FP(Cumon, S) is the co-category ‘A -algebras’, i.e. homotopy-coherent monoids.

Moral

By being ‘slimmer’, finite-product theories leave room for higher coherences when interpreted in
higher types.

This phenomenon has been discussed under the name ‘animation’ in:

o K. Cesnavicius and P. Scholze. “Purity for flat cohomology”. In: arXiv preprint arXiv:1912.10932
(2019)
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Four clans for categories

Cat admits several clan-algebraic weak factorization systems:

e (&1, F1) is cofib. generated by {(0 — 1),(2 — 2) }
o (&, F2) is cofib. generated by {(0 — 1), (2 — 2), 2—=1)}
o (&3, F3) is cofib. generated by {(0 — 1), (2 — 2), (P — 2) }
o (&4, Fy) is cofib. generated by {(0 — 1),(2 — 2), (P — 2),(2 — 1)}

where P = (o =2 o).

The right classes are:

F1 = {full and surjective-on-objects functors}

F> = {full and bijective-on-objects functors}

F3 = {fully faithful and surjective-on-objects functors}
Fy = {isos}

Note that F3 is the class of trivial fibrations for the canonical model structure on Cat.
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Four clans for categories

These correspond to the following clans:

T1 = {free cats on fin. graphs}°? Tf = {graph inclusions}

T> = {free cats on fin. graphs}°? 7'; = {injective-on-edges maps}

Tz = {f.p. cats}°” 7, = {injective-on-objects functors}
Ta = {f.p. cats}°? 7.7 = {all functors}

Models in higher types:

oo-Mod(71) = {Segal spaces}

oo-Mod(72) = {Segal categories}

oo-Mod(73) = {pre-categories}
(Ta) =

oo-Mod(7;) = {discrete 1-categories}

34/35



Thanks for your attention!
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