Characterizing clan-algebraic categories

Jonas Frey

HoTT Electronic Seminar Talks

February 3, 2022

Overview

Context

- In talks at HoTT/UF 2020 and at CT 2021 I presented a conjecture concerning categories of models of a *clan*.
- In this talk I will give/outline a proof of this conjecture.

Three Parts

- Recall functorial semantics of (essentially) algebraic theories
- Clans as generalized algebraic theories
- If there's time: Examples and models in higher (homotopy) types

Part I

Algebraic Theories

Definition

A single-sorted algebraic theory (SSAT) is a pair (Σ, E) consisting of

- a family $\Sigma = (\Sigma_n)_{n \in \mathbb{N}}$, of sets of *n*-ary **operations**
- a set of equations E whose elements are pairs of open terms over Σ

Definition

The syntactic category $\mathcal{C}(\Sigma, E)$ of a SSAT is given as follows:

- 1. For each natural number $n \in \mathbb{N}$ there is an **object** [n]
- 2. morphisms $\sigma : [n] \to [m]$ are *m*-tuples of terms in *n* variables modulo *E*-provable equality
- 3. identities are lists of variables, composition is given by substitution

Proposition

Given a SSAT (Σ, E) :

- 1. $C(\Sigma, E)$ has finite products given by $[n] \times [m] = [n + m]$
- 2. Set-Mod $(\Sigma, E) \simeq \mathsf{FP}(\mathcal{C}(\Sigma, E), \mathsf{Set})$

Finite-product theories

Definition

- A **FP-theory** is just a small FP-category *C*.
- **Models** of C are FP-functors $A : C \to Set$ (or into another FP-category).

Denote the category of models by

$$\mathsf{Mod}(\mathcal{C}) := \mathsf{FP}(\mathcal{C}, \mathsf{Set}) \stackrel{\mathrm{full}}{\subseteq} [\mathcal{C}, \mathsf{Set}].$$

For every object $\Gamma \in \mathcal{C}$ of an FP-theory, the co-representable functor

 $\mathcal{C}(\Gamma, -)$: $\mathcal{C} \to \mathbf{Set}$

is a model. Thus, the dual Yoneda embedding co-restricts to $Mod(\mathcal{C})$.

Finite-limit theories

Definition

- A FL-theory is a small finite-limit category *L*.
- A model of \mathcal{L} is a finite-limit preserving functor $A : \mathcal{L} \to \mathbf{Set}$.

FL-theories are more expressive than FP-theories – structures definable by finite-limit theories include

• categories, posets, 2-categories, monoidal categories, categories with families

Again $\mathcal{L}(\Gamma, -)$ is a model for every $\Gamma \in \mathcal{L}$ and we get an embedding

 $Z \ : \ \mathcal{L}^{\mathsf{op}} \ \to \ \mathsf{Mod}(\mathcal{L}) := \mathsf{FL}(\mathcal{L}, \mathbf{Set}) \overset{\mathrm{full}}{\subseteq} [\mathcal{L}, \mathbf{Set}].$

Moreover, we can characterize the essential image of Z in $Mod(\mathcal{L})$.

$\ Locally\ finitely\ presentable\ categories$

Definition

• An object C of a cocomplete locally small category \mathfrak{X} is called **compact**^a, if

 $\mathfrak{X}(\mathcal{C},-):\mathfrak{X}\to \mathbf{Set}$

preserves filtered colimits.

- A category $\boldsymbol{\mathfrak{X}}$ is called **locally finitely presentable**, if
 - ${}_{\circ}$. ${\mathfrak X}$ is locally small and cocomplete
 - the full subcategory $\operatorname{comp}(\mathfrak{X}) \subseteq \mathfrak{X}$ on compact objects is essentially small and dense.

^aMore traditionally: 'finitely presentable'

Theorem

- $\mathsf{Mod}(\mathcal{L})$ is locally finitely presentable for all finite-limit theories \mathcal{L} .
- The essential image of $Z : \mathcal{L}^{op} \to \mathsf{Mod}(\mathcal{L})$ comprises precisely the compact objects.

Gabriel-Ulmer $duality^1$

Theorem

There is a bi-equivalence of 2-categories

$$\mathsf{FL} \quad \xleftarrow{\operatorname{comp}(\mathfrak{X})^{\operatorname{op}} \leftrightarrow \mathfrak{X}}_{\mathcal{L} \mapsto \operatorname{\mathsf{Mod}}(\mathcal{L})} \quad \mathsf{LFP}^{\operatorname{op}}$$

where

- FL is the 2-category of small FL-categories and FL-functors
- LFP is the 2-category of locally finitely presentable categories and functors preserving small limits and filtered colimits ('forgetful functors').

¹P. Gabriel and F. Ulmer. *Lokal präsentierbare Kategorien*. Springer-Verlag, 1971.

Duality for finite-product theories²

There's a 'restriction' of G–U duality to finite-product theories:

- $\ensuremath{\mathsf{FP}_{\mathsf{cc}}}$ is the 2-category of Cauchy-complete finite-product categories
- ALG is the 2-category of algebraic categories and algebraic functors
 - An **algebraic category** is an l.f.p. category which is Barr-exact and where the compact (regular) projective objects are dense
 - An **algebraic functor** is a functor that preserves small limits, filtered colimits, and regular epimorphisms.
- There's also a formulation in terms of sifted colimits, but we don't need it.

²J. Adámek, J. Rosický, and E.M. Vitale. *Algebraic theories: a categorical introduction to general algebra*. Cambridge University Press, 2010.

Part II

Toward clans

- Finite-limit theories have a nice duality theory but seem far from syntax
- Syntactic counterparts are given by
 - Freyd's essentially algebraic theories³
 - Cartmell's generalized algebraic theories⁴ (or 'dependent algebraic theories')
 - Johnstone's cartesian theories⁵
 - Palmgren and Vickers' quasi-equational theories⁶
 - and probably others
- Clans can be viewed as a categorical representation of generalized algebraic theories
- They're as expressive as FL-theories, but 'finer', i.e. closer to syntax

³P. Freyd. "Aspects of topoi". In: Bulletin of the Australian Mathematical Society (1972).

⁴J. Cartmell. "Generalised algebraic theories and contextual categories". In: *Annals of Pure and Applied Logic* (1986).

⁵P.T. Johnstone. *Sketches of an elephant: a topos theory compendium. Vol. 2.* Oxford: Oxford University Press, 2002.

⁶E. Palmgren and S. J. Vickers. "Partial horn logic and Cartesian categories". In: *Annals of Pure and Applied Logic* (2007).

Definition

A clan is a small category \mathcal{T} with terminal object 1, equipped with a class $\mathcal{T}_{\dagger} \subseteq \operatorname{mor}(\mathcal{T})$ of morphisms – called **display maps** and written \rightarrow – such that

1. pullbacks of display maps along all maps exist and are display maps $\begin{array}{c} \Delta^+ \xrightarrow{s^+} \Gamma^+ \\ q_{\downarrow} & \neg & \downarrow_{\rho} \end{array}$,

- 2. display maps are closed under composition, and
- 3. isomorphisms and terminal projections $\Gamma \rightarrow 1$ are display maps.
- Definition due to Taylor⁷, name due to Joyal⁸ ('a clan is a collection of families')
- Relation to semantics of dependent type theory: display maps represent type families.
- Observation: clans have finite products (as pullbacks over 1).

⁷P. Tavlor. "Recursive domains, indexed category theory and polymorphism". PhD thesis. University of Cambridge, 1987, ğ 4.3.2.

⁸A. Joyal. "Notes on clans and tribes". In: arXiv preprint arXiv:1710.10238 (2017).

Examples

- Finite-product categories C can be viewed as clans with $C_{\dagger} = \{ \text{product projections} \}$
- Finite-limit categories \mathcal{L} can be viewed as clans with $\mathcal{L}_{\dagger} = \operatorname{mor}(\mathcal{L})$

We call such clans **FP-clans**, and **FL-clans**, respectively.

- The syntactic category of every Cartmell-style generalized algebraic theory is a clan.
- Clan for categories:

 $\mathcal{K} = \{ \text{categories free on finite graphs} \}^{\text{op}} \subseteq \mathbf{Cat}^{\text{op}}$ $\mathcal{K}_{\dagger} = \{ \text{functors induced by graph inclusions} \}^{\text{op}}$

 \mathcal{K} can be viewed as syntactic category of a generalized algebraic theory of categories with a sort O of objects, and a dependent sort $x, y: O \vdash M(x, y)$ of morphisms – vertices of a finite graph are object variables and edges are morphism variables in a context. Graph inclusions are dual to context extensions.

Models

Definition

A model of a clan \mathcal{T} is a functor $A: \mathcal{T} \to \mathbf{Set}$ which preserves 1 and pullbacks of display-maps.

- The category $Mod(\mathcal{T}) \subseteq [\mathcal{T}, Set]$ of models is l.f.p. and contains \mathcal{T}^{op} .
- For FP-clans $(\mathcal{C}, \mathcal{C}_{\dagger})$ we have $Mod(\mathcal{C}, \mathcal{C}_{\dagger}) = FP(\mathcal{C}, Set)$.
- For FL-clans $(\mathcal{L}, \mathcal{L}_{\dagger})$ we have $Mod(\mathcal{L}, \mathcal{L}_{\dagger}) = FL(\mathcal{L}, Set)$.
- $Mod(\mathcal{K}, \mathcal{K}_{\dagger}) = Cat.$

Observation

The same category of models may be represented by different clans. For example, SSATs can be represented by FP-clans as well as FL-clans.

$The \ weak \ factorization \ system$

- Would like duality between clans and their categories of models.
- Since the same l.f.p. category can be represented by different clans, we cannot hope to reconstruct the clan from the models alone.
- Solution: equip the models with additional structure in form of a weak factorization system.

Definition

- Let $\mathcal T$ be a clan. Define w.f.s. $(\mathcal E,\mathcal F)$ on $\mathsf{Mod}(\mathcal T)$ by
 - $\mathcal{F} := \mathsf{RLP}(\{Z(p) \mid p \in \mathcal{T}_{\dagger}\})$ class of full maps
 - $\mathcal{E} := \mathsf{LLP}(\mathcal{F})$ class of **extensions**
- I.e. $(\mathcal{E}, \mathcal{F})$ is cofibrantly generated by the image of \mathcal{T}_{\dagger} under $Z : \mathcal{T}^{op} \to \mathsf{Mod}(\mathcal{T})$.
 - Call $A \in \mathsf{Mod}(\mathcal{T})$ a 0-extension, if $(0 \to A) \in \mathcal{E}$
 - E.g. corepresentables $Z(\Gamma)$ are 0-extensions since terminal projections $\Gamma \rightarrow 1$ are display maps.
 - The same weak factorization system was also introduced by S. Henry in a HoTTEST talk⁹, see $also^{10}$.

⁹S. Henry, *The language of a model category*, HoTTEST seminar, Jan. 2020, https://youtu.be/7_X0qbSX1fk¹⁰S. Henry. "Algebraic models of homotopy types and the homotopy hypothesis". In: *arXiv preprint arXiv:1609.04622* (2016).

Full maps

• $f : A \to B$ in $Mod(\mathcal{T})$ is full iff it has the RLP with respect to all Z(p) for display maps $p : \Delta \to \Gamma$.

$$\begin{array}{cccc} \mathcal{T}(\Gamma,-) & \longrightarrow & A & & A(\Delta) & \xrightarrow{t_{\Delta}} & B(\Delta) \\ Z(p) = \mathcal{T}(p,-) \downarrow & & \downarrow^{f} & & A(p) \downarrow & & \downarrow^{B(p)} \\ \mathcal{T}(\Delta,-) & \longrightarrow & B & & A(\Gamma) & \xrightarrow{f_{\Gamma}} & B(\Gamma) \end{array}$$

- This is equivalent to display-naturality-squares being weak pullbacks.
- Considering $p: \Delta \rightarrow 1$ we see that full maps are surjective and hence regular epis.

$$\begin{array}{cccc} A(\Delta) & \xrightarrow{f_{\Delta}} & B(\Delta) & & & A(\Delta) & \xrightarrow{f_{\Delta}} & B(\Delta) \\ \downarrow & \downarrow & & \downarrow & & \downarrow \\ 1 & \longrightarrow & 1 & & A(\Delta) \times A(\Delta) & \xrightarrow{f_{\Delta} \times f_{\Delta}} & B(\Delta) \times B(\Delta) \end{array}$$

- For FL-clans, only isos are full (consider naturality square for diagonal $\Delta \rightarrow \Delta \times \Delta$)
- For FP-clans we have

full map	=	regular epimorphism
extension	=	coproduct inclusion $A \hookrightarrow P + A$ with P projective
0-extension	=	projective object

The fat small object argument

Motivation: subcategories of models for FP-theory \mathcal{C} and clan \mathcal{T} .

- Flat algebras are filtered colimits of corepresentables, computed *freely* in the functor categories.
- For SSATs we have $\{projective\} \subseteq \{flat\}$ since
 - arbitrary free objects are filtered colimits of free objects over finite sets
 - projective objects are retracts of free objects
- In the general clan case, $\{0\text{-extension}\} \subseteq \{\text{flat}\}\$ by the **fat small object argument**¹¹.

¹¹M. Makkai, J. Rosicky, and L. Vokrinek. "On a fat small object argument". In: Advances in Mathematics (2014).

Reconstructing the clan

Definition

Given a clan \mathcal{T} , let $\mathbb{C} \subseteq Mod(\mathcal{T})$ be the full subcategory on compact 0-extensions.

• $Z: \mathcal{T}^{op} \to \mathsf{Mod}(\mathcal{T})$ factors through \mathbb{C} since corepresentables $Z(\Gamma)$ are compact and 0-extensions.

• Therefore ℂ is a **coclan** with extensions as "co-display maps".

Reconstructing the clan

Theorem

The full inclusion $E : \mathcal{T}^{op} \hookrightarrow \mathbb{C}$ exhibits \mathbb{C} as *Cauchy-completion* of \mathcal{T}^{op} , i.e. every compact 0-extension is a retract of a corepresentable.

Proof.

- Let $C \in \mathbb{C}$.
- Since 0-extensions are flat, $\int C$ is filtered, thus C is a filtered colimit of corepresentables.
- Since C is compact, id_C factors through a colimit inclusion map.

$$Z(\Gamma) \xrightarrow[\sigma(\Gamma,x)]{C} C$$

$Clan-algebraic\ categories$

Definition

A **clan-algebraic category** is a category \mathfrak{X} with a w.f.s. $(\mathcal{E}, \mathcal{F})$ that arises as category of models of a clan.

With this definition we get a contravariant bi-equivalence

$$\mathsf{Clan}_{\mathsf{cc}} \quad \xleftarrow{}^{\operatorname{comp}(\mathfrak{X})^{\mathsf{op}} \leftarrow \mathfrak{X}}_{\mathcal{T} \mapsto \mathsf{Mod}(\mathcal{T})} \quad \mathsf{cAlg}^{\mathsf{op}}$$

between

- the 2-category Clan_{cc} of Cauchy-complete clans and functors preserving 1, display maps, and pullbacks of display maps, and
- the 2-category **cAlg** of clan-algebraic categories and functors preserving small limits, filtered colimits, and full maps.

Can we characterize clan-algebraic categories more abstractly?

Characterizing clan-algebraic categories

Assume \mathfrak{X} is clan-algebraic with w.f.s. $(\mathcal{E}, \mathcal{F})$. Then

1. \mathfrak{X} is cocomplete,

 $\mathit{2}.~\boldsymbol{\mathfrak{X}}$ has a small dense family of compact 0-extensions, and

3. $(\mathcal{E}, \mathcal{F})$ is cofibrantly generated by maps between compact 0-extensions.

Now assume we have a category \mathfrak{X} with w.f.s. $(\mathcal{E}, \mathcal{F})$ satisfying 1–3.

Then the subcategory $\mathbb{C} \subseteq \mathfrak{X}$ of compact 0-extensions is a coclan.

We get a nerve/realization adjunction

However, this adjunction is not an equivalence in general:

Characterizing clan-algebraic categories

Counterexample

Consider

- $\mathfrak{X} \subseteq [2^{op}, \mathbf{Set}]$ full subcategory on injections
- $(\mathcal{E}, \mathcal{F})$ w.f.s. on \mathfrak{X} cofib. generated by $\{(0 \rightarrow Y0), (0 \rightarrow Y1)\}$

Then $Mod(\{compact \ 0-extensions\}^{op}) \simeq [2^{op}, Set]$ and N is the subcategory inclusion.

Conclusion: We're missing an 'exactness condition' analogous to 'Barr-exactness' in the characterization of algebraic categories!

$Quotients \ of \ componentwise-full \ equivalence \ relations$

- Recall that a FL-category \mathcal{L} is called *Barr-exact*, if all equivalence relations in \mathcal{L} have stable effective quotients.
- This can't be the case for clan algebraic categories in general. However, we have:

Lemma

For any clan \mathcal{T} , $Mod(\mathcal{T})$ has full and effective quotients of componentwise-full equivalence relations.

Proof.

Given equivalence relation $r : R \rightarrow A \times A$ with $r_0, r_1 : R \rightarrow A$ full, show that component-wise quotient is a model again.

$Characterizing\ clan-algebraic\ categories$

Definition

An **adequate category** is a category \mathfrak{X} with a with a w.f.s. $(\mathcal{E}, \mathcal{F})$ (whose maps we call extensions and full, respectively), s.th.

- 1. \mathfrak{X} is cocomplete,
- 2. \mathfrak{X} has a small dense family of compact 0-extensions (in particular \mathfrak{X} is l.f.p.),
- 3. $(\mathcal{E},\mathcal{F})$ is cofibrantly generated by maps between compact 0-extensions, and
- 4. \mathfrak{X} has full and effective quotients of componentwise-full equivalence relations.

Lemma

Assume \mathfrak{X} is adequate and $F : \mathfrak{X} \to \mathbf{Set}$ preserves finite limits and sends full maps to surjections. Then F preserves quotients of componentwise-full equivalence relations.

Proof.

Let $R \xrightarrow{r_0} A \xrightarrow{f} B$ be a **full exact sequence** in \mathfrak{X} , i.e. all arrows are full, f is the coequalizer of r_0 , r_1 , and r_0 , r_1 is the kernel pair of f. Then Ff is a surjection with kernel pair Fr_0 , Fr_1 . But surjections are always coequalizers of their kernel pair.

Idea of proof

- Assume that \mathfrak{X} is adequate.
- To show that it is clan-algebraic, we want to show that its nerve/realization adjunction

is an equivalence.

- By density the right adjoint N is fully faithful, i.e. the counit is an isomorphism.
- It remains to show that the unit of the adjunction is an isomorphism, i.e.

 $A(C) \xrightarrow{\cong} \mathfrak{X}(C, \operatorname{colim}(\int A \to \mathbb{C} \xrightarrow{J} \mathfrak{X})).$

for all $A \in Mod(\mathbb{C}^{op})$ and $C \in \mathbb{C}$.

- We know that X(C, -) preserves filtered colimits and quotients of componentwise-full equivalence relations, so we'd like to decompose colim(∫A → C → X) in terms of these constructions.
- This is essentially what we're doing in the following.

Jointly full cones

- Let $D: \mathcal{I} \to \mathfrak{X}$ be a diagram in an adequate category.
- A cone (A, φ) over D is called jointly full, if for every cone (C, γ), extension e : B → C and map g : B → A constituting a cone morphism g : (B, γ ∘ e) → (A, φ), there exists a map h : C → A such that

$$\begin{array}{c} B \xrightarrow{g} A \\ e \downarrow & & \downarrow^{\gamma_i} \\ C \xrightarrow{\gamma_i} & D_i \end{array}$$

commutes for all $i \in \mathcal{I}$.

• **Observation:** The cone (A, ϕ) is jointly full iff the canonical map to the limit is full.

Definition

A nice diagram in an adequate category \mathfrak{X} is a truncated simplicial diagram

$$A_2 \xrightarrow[-d_0]{d_1 \ s_0} A_1 \xrightarrow[-d_1]{d_0} A_1$$

where

- 1. A_0 , A_1 , and A_2 are 0-extensions,
- 2. the maps $d_0, d_1 : A_1 \rightarrow A_0$ are full,
- 3. in the square $\begin{array}{c} A_2 & \longrightarrow & A_1 \\ d_2 \downarrow & & \downarrow d_1 \end{array}$ the span constitutes a jointly full diagram over the cospan, $A_1 & \longrightarrow & A_0 \end{array}$ 4. there exists a symmetry map $\begin{array}{c} A_1 & \stackrel{d_1}{\longrightarrow} & A_0 \\ d_0 \downarrow & \stackrel{\sigma}{\longrightarrow} & \uparrow d_0 \\ A_0 & \stackrel{d_1}{\longleftarrow} & A_1 \end{array}$ making the triangles commute, and
- 5. there exists a 0-extension \tilde{A} and full maps $f, g: \tilde{A} \rightarrow A_1$ constituting a jointly full cone over the diagram

Nice diagrams

Lemma

For any nice diagram, the pairing $A_1 \xrightarrow{\langle d_0, d_1 \rangle} A_0 \times A_0$ admits a decomposition $A_1 \twoheadrightarrow R \xrightarrow{\langle r_0, r_1 \rangle} A_0 \times A_0$ into a full map and a monomorphism, and $\langle r_0, r_1 \rangle$ is a componentwise-full equivalence relation.

Lemma

Assume \mathfrak{X} is adequate and $F : \mathfrak{X} \to \mathbf{Set}$ preserves finite limits and sends full maps to surjections. Then for every nice diagram, F preserves coequalizers of the arrows $d_0, d_1 : A_1 \to A_0$.

Lemma

The restriction ${\rm L}'$ of ${\rm L}$ in the nerve/realization adjunction

to 0-extensions is fully faithful and preserves full maps and nice diagrams.

Nice diagrams

Lemma

For every object A of an adequate category \mathfrak{X} there exists a nice diagram

$$A_2 \xrightarrow[-]{d_0} \xrightarrow[-]{s_0} A_1 \xrightarrow[-]{d_0} \xrightarrow[-]{s_0} A_1$$

such that A is the coequalizer of $d_0, d_1 : A_1 \rightarrow A_0$.

Proof.

- A_0 is given by covering A by a 0-extension, i.e. factoring $0 \to A$ as $0 \hookrightarrow A_0 \xrightarrow{e} A$.
- A_1 is given by covering the kernel of $A_0 \twoheadrightarrow A$ by a 0-extension $0 \hookrightarrow A_1 \longrightarrow R \xrightarrow{r_0} A_0$

$$0 \hookrightarrow A_2 \longrightarrow \bullet \longrightarrow A_1 \\ \downarrow^{\neg} \qquad \downarrow^{d_0} \\ A_1 \xrightarrow{d_1} A_0$$

 $A_0 \xrightarrow{e} A$

The theorem

Theorem

Adequate categories are clan-algebraic.

Proof.

Let \mathfrak{X} be adequate and let $\mathbb{C} \subseteq \mathfrak{X}$ be the co-clan of compact 0-extensions. It remains to show that

 $AC \cong \mathfrak{X}(C, LA).$

for all $A \in Mod(\mathbb{C}^{op})$ and $C \in \mathbb{C}$. Let A_{\bullet} be a nice diagram with coequalizer A. We have

```
\begin{aligned} \mathfrak{X}(C, LA) &= \mathfrak{X}(C, L(\operatorname{coeq}(A_1 \rightrightarrows A_0))) \\ &\cong \mathfrak{X}(C, \operatorname{coeq}(LA_1 \rightrightarrows LA_0)) \\ &\cong \operatorname{coeq}(\mathfrak{X}(C, LA_1) \rightrightarrows \mathfrak{X}(C, LA_0)) \\ &\cong \operatorname{coeq}(A_1 C \rightrightarrows A_0 C) \\ &\cong \operatorname{coeq}(\operatorname{Mod}(ZC, A_1) \rightrightarrows \operatorname{Mod}(ZC, A_0)) \\ &\cong \operatorname{Mod}(ZC, \operatorname{coeq}(A_1 \rightrightarrows A_0)) \\ &\cong \operatorname{Mod}(ZC, A)) \\ &\cong AC \end{aligned}
```

since $A = \text{coeq}(A_1 \rightrightarrows A_0)$ since L preserves colimits since $\mathfrak{X}(C, -)$ preserves coeqs of nice diags since $LA_i = \text{colim}(\int A_i \rightarrow \mathbb{C} \rightarrow \mathfrak{X})$ filtered

Part III

Models in higher types

Let $\boldsymbol{\mathcal{S}}$ be the ∞ -topos of spaces/types.

Let C_{Mon} be the finite-product theory of monoids, and let \mathcal{L}_{Mon} be the finite-limit theory of monoids. Then

```
\mathsf{FP}(\mathcal{C}_{\mathsf{Mon}}, \mathsf{Set}) \simeq \mathsf{FL}(\mathcal{L}_{\mathsf{Mon}}, \mathsf{Set})
```

but $FP(\mathcal{C}_{Mon}, \mathcal{S})$ and $FL(\mathcal{L}_{Mon}, \mathcal{S})$ are different:

- $\mathsf{FL}(\mathcal{L}_{\mathsf{Mon}}, \mathcal{S})$ is just the category of monoids
- $FP(\mathcal{C}_{Mon}, \mathcal{S})$ is the ∞ -category ' A_{∞} -algebras', i.e. homotopy-coherent monoids.

Moral

By being 'slimmer', finite-product theories leave room for higher coherences when interpreted in higher types.

This phenomenon has been discussed under the name 'animation' in:

• K. Cesnavicius and P. Scholze. "Purity for flat cohomology". In: *arXiv preprint arXiv:1912.10932* (2019)

Four clans for categories

Cat admits several clan-algebraic weak factorization systems:

- $(\mathcal{E}_1,\mathcal{F}_1)$ is cofib. generated by $\{(0
 ightarrow 1),(2
 ightarrow 2)$
- $(\mathcal{E}_2,\mathcal{F}_2)$ is cofib. generated by $\{(0 \to 1), (2 \to 2), (2 \to 1)\}$
- $(\mathcal{E}_3,\mathcal{F}_3)$ is cofib. generated by $\{(0 \to 1),(2 \to 2),(\mathbb{P} \to 2)\}$
- $(\mathcal{E}_4, \mathcal{F}_4)$ is cofib. generated by $\{(0 \to 1), (2 \to 2), (\mathbb{P} \to 2), (2 \to 1)\}$ where $\mathbb{P} = (\bullet \rightrightarrows \bullet)$.

The right classes are:

$$\begin{split} \mathcal{F}_1 &= \{ \text{full and surjective-on-objects functors} \} \\ \mathcal{F}_2 &= \{ \text{full and bijective-on-objects functors} \} \\ \mathcal{F}_3 &= \{ \text{fully faithful and surjective-on-objects functors} \} \\ \mathcal{F}_4 &= \{ \text{isos} \} \end{split}$$

Note that \mathcal{F}_3 is the class of trivial fibrations for the canonical model structure on **Cat**.

Four clans for categories

These correspond to the following clans:

$$\begin{split} \mathcal{T}_1 &= \{ \text{free cats on fin. graphs} \}^{\text{op}} \\ \mathcal{T}_2 &= \{ \text{free cats on fin. graphs} \}^{\text{op}} \\ \mathcal{T}_3 &= \{ \text{f.p. cats} \}^{\text{op}} \\ \mathcal{T}_4 &= \{ \text{f.p. cats} \}^{\text{op}} \end{split}$$

$$\begin{split} \mathcal{T}_{1}^{\dagger} &= \{ \text{graph inclusions} \} \\ \mathcal{T}_{2}^{\dagger} &= \{ \text{injective-on-edges maps} \} \\ \mathcal{T}_{3}^{\dagger} &= \{ \text{injective-on-objects functors} \} \\ \mathcal{T}_{4}^{\dagger} &= \{ \text{all functors} \} \end{split}$$

Models in higher types:

$$\begin{split} & \infty \text{-} \textbf{Mod}(\mathcal{T}_1) = \{ \text{Segal spaces} \} \\ & \infty \text{-} \textbf{Mod}(\mathcal{T}_2) = \{ \text{Segal categories} \} \\ & \infty \text{-} \textbf{Mod}(\mathcal{T}_3) = \{ \text{pre-categories} \} \\ & \infty \text{-} \textbf{Mod}(\mathcal{T}_4) = \{ \text{discrete 1-categories} \} \end{split}$$

Thanks for your attention!