Central H-spaces and banded types

$$(A \simeq A)_{(ia)} \longrightarrow A$$

Jarl G. Taxerås Flaten j.w.w. Buchholtz, Christensen, Myers, and Rijke

University of Western Ontario

November 17, 2022 HoTTEST

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Our goals today

1st goal: HSpace(A) \simeq ($A \land A \rightarrow_* A$) via evaluation fibrations

 generalises a classical formula of Arkowitz–Curjel [1] and Copeland [3] for spaces

• no H-space structures on \mathbb{S}^{2n} for n > 0

2nd goal: centrality and tensoring of banded types
o new construction of K(A, n) with H-space structure
(applications to computation of Euler classes)

Most results formalised using the Coq-HoTT library [5].

Coherent H-spaces

Let A be a pointed type throughout, with pt : A.

Def. A (coherent) H-space structure on A consists of:

- ▶ a binary operation $\mu : A \rightarrow A \rightarrow A$
- a left identity $\mu_I : \prod_{a:A} \mu(\mathsf{pt}, a) = a$
- a right identity $\mu_r : \prod_{a:A} \mu(a, pt) = a$
- a coherence $\mu_{lr}: \mu_l(pt) =_{\mu(pt,pt)=pt} \mu_r(pt)$

We get a type HSpace(**A**) of (coherent) H-space structures on A. (NB: The HoTT Book works with 'noncoherent' H-spaces!)

$$\frac{Cg}{S}, \frac{d}{S}, \frac{d}{S},$$

Evaluation fibrations

L

Def. Let $\alpha : B \rightarrow_* A$. The evaluation fibration (of α) is

$$ev_{\alpha}(f,h) :\equiv f(pt) : (B \to A)_{(\alpha)} \to_{*} A.$$
Let A be connected.
Lemma. HSpace(A) \simeq { pointed sections of ev_{id} }.
Prop. Any μ : HSpace(A) induces a trivialisation of ev_{id} .
 $(A \simeq A)_{(id)}$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \times A$
 $f(\mu \to A) \to (A \to A) \to$

*CO*M

● ◆ □ > ◆ □ = ◆ □ = ● □ = ● □ = ● □ = ● □ = ● □ = ● □ = ● □ =

The moduli type of H-space structures

(

Prop. Any μ : HSpace(A) induces a trivialisation of ev_{id} .

Prop.¹ Let A be an H-space. Then HSpace(A) $\simeq (A \land A \rightarrow_* A)$. Proof.

HSpace (A)
$$\cong$$
 (pointed set of f
 ev_{iA}
 $\cong A \xrightarrow{\sim} (A \xrightarrow{\sim} A, id)$
 $\cong A \xrightarrow{\sim} (A \xrightarrow{\sim} A, id)$
 $\cong A \xrightarrow{\sim} (A \xrightarrow{\sim} A, id)$
 $\cong A \xrightarrow{\sim} (A \xrightarrow{\sim} A, cst) \cong (A \land A \xrightarrow{\sim} A)$
Thus, e.g., HSpace (S¹) $\cong \Omega^2 S^1 \simeq *$ and HSpace (S³) $\cong \Omega^6 S^3$.
(The H-space structure on S³ is due to Ulrik and Egbert [2].)

¹Formula on path components due to Arkowitz–Curjel [1] and Copeland [3] for spaces. ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

H-space structures on even spheres

Lemma. HSpace(A) \simeq { pointed sections of ev_{id} }, A connected.

Lemma.² Let n, m > 1 and $\alpha : \mathbb{S}^m \to_* \mathbb{S}^n$. If the evaluation fibration $ev_{\alpha} : (\mathbb{S}^m \to \mathbb{S}^n)_{(\alpha)} \to_* \mathbb{S}^n$ merely admits a section, then the Whitehead product $[\alpha, \iota_n]$: $\pi_{n+m-1}(\mathbb{S}^n)$ vanishes. Suppose s: st -> (su -> su)(a) to a section. Proof. Mrh $\left[l_{n}, l_{n} \right] = 2$ **Prop.** There are no H-space structures on \mathbb{S}^{2n} for n > 0.

²This is one direction of Lemma 2.2 in [4].

Central types

Lemma. HSpace(A) \simeq { pointed sections of ev_{id} }, A connected.

Def. A pointed type A is **central** if ev_{id} is an equivalence.

It follows that A is connected, HSpace(A) is contractible, and A is a "coherently abelian" H-space.

A **central H-space** is an H-space whose underlying type is central. We give conditions for when a connected H-space is central, e.g.:

Prop. Let X be a connected H-space.

X is central $\iff X \rightarrow_* \Omega X$ is contractible.

Examples: K(G,n) (for Gabelian), RP^ox CP^o But not \$' x CP^o.

Banded types

Suppose A is central, i.e., $ev_{id} : (A \simeq A)_{(id)} \xrightarrow{\sim}_* A$. **Def.** BAut₁(A) := $\Sigma_{X:\mathcal{U}} ||X = A||_0$ is the type of **A-bands**. Lemma. $\Omega \text{ BAut}_1(A) \simeq \sum_{\substack{p : A = A}} \| p = \operatorname{refl} \| \cong (A \simeq A)_{(A)} \xrightarrow{N} A$ We have an inversion operation $inv(a) :\equiv pt / a : A \rightarrow A$. For an A-band X_p , its dual is $X_p^* := (X, X \stackrel{p}{=} A \stackrel{inv}{=} A)$. **Prop.** $X_p \otimes Y_q := (X_p^* =_{BAut_1} Y_q)$ is banded by A. *Proof.* WTS $\| (X_p^* = Y_q) = A \|_0$, induct on p_1q $(A = A) \xrightarrow{inV^{*}} (A \approx A) \xrightarrow{\sim} A$

The H-space structure on $BAut_1(A)$

Suppose A is central, i.e., $ev_{id} : (A \simeq A)_{(id)} \xrightarrow{\sim}_* A$.

Prop. $X_p \otimes A_1 = X_p$ and $A_1 \otimes X_p = X_p$. *Proof.*

Theorem. BAut₁(A) is an abelian H-space for \otimes .

It's easy to show that K(G, n) is central (for G abelian), for a given H-space K(G, n). But we can also use this theorem to construct K(G, n), given some H-space K(G, 1).

Construction of K(G, n)

Theorem. BAut₁(A) is an abelian H-space for \otimes .

Given a K(G, 1) with an H-space structure, inductively for $n \ge 1$:

1st, $K(G_1, n)$ is central So $K(G_1, n+1) := BAut_1(K(L_1, n))$ is an H-space, in fact central Struce $K(G_1, n+1) \xrightarrow{\pi} K(G_1, n)$ is contractible.

Thank you for your attention!

References:

- M. Arkowitz and C. R. Curjel. "On the number of multiplications of an H-space". In: *Topology* 2 (1963), pp. 205–207.
- U. Buchholtz and E. Rijke. "The Cayley-Dickson Construction in Homotopy Type Theory". In: (2016). ArXiv: 1610.01134.
- A. H. Copeland. "Binary operations on sets of mapping classes.". In: Michigan Mathematical Journal 6 (1959), pp. 7–23.
- V. L. Hansen. "The homotopy problem for the components in the space of maps on the *n*-sphere". In: *Q. J. Math.* 25.1 (Jan. 1974), pp. 313–321.
- The Coq HoTT Library. URL: https://github.com/HoTT/Coq-HoTT.