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Sheaf Models and Constructive Mathematics

This talk

First part: (separable) algebraic closure of a field

Topos model where we have an algebraic closure

Effective model

Second part: this is a model of higher order logic (Simple Type Theory)

How to refine this model to a model of Dependent Type Theory
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Algebraic closure

F field

Study if an equation system has a solution in F

First try to see if the system has a solution in an algebraic closure of F

This is always possible

Then try to “descend” the solution to F

In general very difficult

E.g. if a solution in a Galois extension is invariant under automorphisms or
group representations where all characters are in F
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Constructive algebra

Algebra developped using intuitionistic logic

(Discrete) field: ∀x (x = 0 ∨ ∃y xy = 1)

Also 1 6= 0 and this implies ∀x (x = 0 ∨ x 6= 0)

Algebraic closure?? The problem is more basic than use of Zorn’s Lemma

We cannot decide if a given polynomial in F [X] is irreducible or not
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Constructive algebra

Kripke counter-model on 0 6 1

At time 0 we take F = Q

At time 1 we take F = Q[i]

This defines a field ∀x (x = 0 ∨ ∃y xy = 1)

We don’t have ∀x (x2 + 1 6= 0) ∨ ∃x (x2 + 1 = 0) at time 0
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Constructive algebra

How to make sense of the (separable) algebraic closure of F?

Solution: the algebraic closure of F may not exist in our “universe” but it
always exists in a topos extension of this universe

Furthermore this topos is effective
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Constructive algebra and topos theory

This is suggested in two short papers of André Joyal

Les théorèmes de Chevalley-Tarski et remarque sur l’algèbre constructive 1975

La Logique des Topos 1982 (with André Boileau)

Hilbert: introduction and elimination of ideal elements

Consistency of the first-order theory ACF of algebraically closed field over F
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Constructive algebra and topos theory

Consider the classifying topos of the theory ACF

This gives a “primitive recursive proof of consistency of the theory” (JSL
1982)

Why? The 1975 note presents an elegant algebraic formulation of quantifier
elimination

Tarski and Chevalley Theorem (projection of constructible sets)

Actually another way to prove the consistency is to establish some kind of
cut-elimination result
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Forcing

We consider the forcing relation R  ψ

R is a (f.p.) F -algebra and ψ a first-order formula with parameters in R

R  ψ → ϕ if for all f : R→ S we have S  ψf implies S  ϕf

R  ∀xψ if for all f : R→ S and a in S we have S  ψf(a/x)

R  ψ ∧ ϕ if R  ψ and R  ϕ

Beth (1956) and Kripke (1964) semantics
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Forcing

For ψ of the form a = b or ∃xψ1 or ψ0 ∨ ψ1

R  ψ if R/(a)  ψ and R[1/a]  ψ

R  ψ if R[X]/(P )  ψ with P monic (separable)

and we also have

R  ∃xψ if we have a in R such that R  ψ(a/x).

R  ψ ∨ ϕ if we have R  ψ or R  ϕ

R  a = b if a = b in R
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Forcing

Then we have R  ψ implies S  ψf for f : R→ S

We have R  ψ if ψ provable in the theory ACF

A proof of R  ψ for ψ coherent is a finite tree

For getting consistency it is enough to show that we don’t have F  0 = 1

10



Sheaf Models and Constructive Mathematics

Forcing

By a direct proof tree induction

R  a = b iff a− b is nilpotent in R

This follows from: if u nilpotent in R[1/a] and R/(a) then u is nilpotent in
R and if u nilpotent in R[X]/(P ) then u nilpotent in R

Corollary: The theory of algebraically closed field over F is consistent

Remark: the argument suggested by André Joyal is more complex but it gives
more information (quantifier elimination); this illustrates the fact that we can
prove consistency without proving quantifier elimination (Herbrand 1930 about
the theory of real closed fields)
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Forcing

This is a nice result since the proof of consistency is very simple

But we have more

We build a model of higher-order logic i.e. simple type theory with a type of
propositions, in which we have an algebraic closure

We need only to consider a special kind of F -algebra: the triangular F -algebras
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Sheaf models

Definition: A F -algebra is triangular if it can be obtained from F by a
sequence of (formal) monic separable extensions

P separable: we have AP +BP ′ = 1 “all roots are simple roots”

Example: F [x] where x2 = 3 and then F [x, y] where y3 + xy + 1 = 0

Theorem: If R is triangular then R = R/(a)×R[1/a] for all a in R

Furthermore R/(a) and R[1/a] are products of triangular algebras
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Site

Example: P = X2 − 4X + 3

R = F [b] where b2 − 4b+ 3 = 0

Inverse of a = b− 4? Compute gcd of X − 4 and X2 − 4X + 3

We have (b− 4)b = −3 so inverse is −b/3 and R[1/a] = R

Inverse of a = b− 3? Compute gcd of X − 3 and X2 − 4X + 3

Discover (X − 3)(X − 1) = X2 − 4X + 3

R = F [X]/(X − 3)× F [X]/(X − 1) = R/(a)×R[1/a]

We have R[1/a] = F and R/(a) = F
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Site

Only need to compute gcd of polynomials

This is computable, while to decide irreducibility is not possible in general

Introduced by Dominique Duval (1985), following a suggestion of Daniel
Lazard, for computer algebra
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Site

We define a site

Objects: triangular F -algebra

Maps: maps of F -algebra

Coverings:

R = R1 × · · · ×Rm

R→ R[X]/(P ) with P separable monic polynomial
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Algebraic closure

In the topos model over this site, we can consider

L(R) = Hom(F [X], R)

(Note that F [X] is not in the base category, not being triangular.)

Theorem: L is actually a sheaf and is the (separable) algebraic closure of F

L(R) = L(R1)× · · · × L(Rm)
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Algebraic closure

We have the pull-back diagram P (a) = P (b) = 0 and P monic

R

��

// R[b]

��

R[a] // R[a, b]

Note that R[a] is a free R-module of basis 1, a, . . . , an−1

If Q(a) = Q(b) with d(Q) < d(P ) then Q is a constant
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Algebraic closure

The classifying topos of ACF satisfies the axioms

1 6= 0 ∀x x = 0 ∨ ∃y (xy = 1)

∀x1 . . . ∀xn∃x xn + x1x
n−1 + · · ·+ xn = 0

The site we presented defines a topos over which we have L algebraic closure
of F , which also satisfies the geometric (non coherent) axiom∨

a1,...,an
xn + a1x

n−1 + · · ·+ an = 0

where the disjunction is over all lists a1, . . . , an in F

19



Sheaf Models and Constructive Mathematics

Algebraic closure

This model is effective

We can use it to do actual computations (Th. C. and B. Mannaa)

E.g. Abhyankar proof of Newton-Puiseux Theorem

For instance, given an equation y4 − 3y2 + xy + x2 = 0 find y as a formal
serie in x (in general x1/n)?

The coefficients have to be in an algebraic extension of F

We first prove that theorem assuming an algebraic closure of F

We find the triangular algebra F [a, b] with a2 = 13/36 and b2 = 3
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Algebraic closure

We want to consider structures we can build from L, in this examples L((X))

Theorem: ∪nL((X1/n)) is separably closed
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Weak existence

We have ∀x:L∃y:L y2 = x in this topos with car(F ) 6= 2

Proposition: There is no function f : L→ L such that f(x)2 = x

Πx:L{y : L | y2 = x} is empty

If u 6= 0 in R and a2 = u = b2 we don’t have a = b in R[a, b]

R

��

// R[b]

��

R[a] // R[a, b]
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More general structures

We would like e.g. to consider the (groupoid) of all L-vectors spaces

This is not possible in the topos of sheaves since we don’t have universes

Other example: we have the sheaf Gm(A) = Hom(F [X, 1/X], A)

Abelian group, one would like to form the groupoid of Gm-torsors

Theorem: Any given Gm-torsor is trivial
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More general structures

Can we extend the model to a model of univalent dependent type theory
where we have an algebraic closure of a given field

In such a model we should be able to state and prove

Πx:L

∥∥Σy:L y2 =L x
∥∥
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Combining forcing and realizability

Recursive realizability emphasizes the active aspect of constructive
mathematics. However, Kleene’s notion has the weakness that it disreagards
that aspect of constructive mathematics which concern epistemological change.
Precisely that aspect of constructive mathematics which Kleene’s notion neglects
is emphasized by Kripke’s semantics for intuitionistic logic. However, Kripke’s
notion makes it appear that the constructive mathematician is a passive observer
of a structure which gradually reveals itself. What is lacking is the emphasis on
the mathematician as active which Kleene’s notion provides.

Relativised realizability in intuitionistic arithmetic at all finite types

N. Goodman, JSL 1978
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How to go from presheaves to sheaves

Base category C

Ω(X) set of sieves on X

Grothendieck topology: subpresheaf Cov(X) of Ω(X)

Each a : Ω defines an idempotent monad ηFa : F 7→ FT (a)

FT (a) type of “partial elements” of F of extent a

F is a sheaf if, and only if, each ηFa is an isomorphism

Note that F 7→ FT (a) defines an idempotent monad
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Model of dependent type theory

Category of “shapes” B with an interval object I and a cofibration classifier Φ

A type is interpreted as a presheaf on B with an extra “filling” structure

Dependent type Γ ` A

Dependent presheaf with a fibration structure

Usual Kan filling condition is a property

We can then model univalence and Higher Inductive Types

Th. C. A survey of constructive presheaf models of univalence
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Presheaf models

Since this approach is effective and essentially algebraic there is no problem
to relativise it to an arbitrary presheaf model

We replace B by C × B

I(X, J) = IB(J)

Different options are possible for Φ
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Descent data

For going to presheaves to sheaves we have the condition that

ηa : F → FT (a)

is an isomorphism

Descent data for a sieve S on X:

we have uf in F (Y ) for f : Y → X in the sieve S and ufg = ufg
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Descent data operation

Over a type theoretic model, F (X) is now a space

It is natural to change the notion of descent data to the following

-we have a path u(f, g) between ufg and ufg

-we have a triangle u(f, g, h) connecting ufgh and ufgh and ufgh

-and so on

For groupoids the condition with triangles is the cocycle condition used to
glue algebraic structures

This defines an operation DaF (X) and we have a map ηDa : F → DaF
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Descent data operation

Constructive Sheaf Models of Type Theory
Th. C., Fabian Ruch and Christian Sattler

Operation D which is pointed ηA : A→ DA

Theorem: If D is a descent data operation then D(ηA) and ηDA are path
equal and are equivalences

This generalizes idempotent monads

For instance ηA is an equivalence if it has a left inverse

Axiomatisation: lex operation which generalizes the exponential operation

A descent data operation is a lex operation which is a modality
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Descent data operation

If the base category C is small

Theorem: Da defines a left exact modality preserving universe size and such
that each universe of modal Da-types is itself modal

Left exact modality are systematically studied in

Modalities in homotopy type theory
Egbert Rijke, Michael Shulman, Bas Spitters

See Remark A. 29
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Descent data operation

For each universe U we have Da : U → U

We have that ΣF :U isModa(F ) is itself Da-modal

Definition: F is a (proof relevant) sheaf if it is Da-modal for all a

Theorem: If Cov is a Grothendieck topology on B then each universe of
sheaves is itself a sheaf

ΣF :UΠa:CovisModa(F ) is itself Da-modal for all a : Cov
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Sheaf Model

We get a new model of type theory where a type is interpreted by a type
together with a proof that this type if Da-modal for all a

This is a model of univalence and Higher Inductive Types

“Internal model” methods, from PM Pédrot, K. Quirin, N. Tabareau, . . .

Lawvere-Tierney Sheafification in Homotopy Type Theory, K. Quirin PhD

Failure is Not an Option: An Exceptional Type Theory
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Sheaf Model

E.g. for nat, we consider the type with constructors

0 : N

S : N → N

patch : Πa:Cov DaN → N

linv : Πa:CovΠn:N patcha (ηa n) =N n
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Sheaf Model

For T = ‖A‖

inc : A→ T

squash : Πt0 t1:T t0 =T t1

patch : Πa:Cov DaT → T

linv : Πa:CovΠt:T patcha (ηa t) =T t
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Sheaf Model

In the special case where the topology is trivial Cov = 1

We only have one descent operation D

It is not the case that all presheaves are D-modal in general

This operation D is reminiscent of the cobar operation used by Mike Shulman

All (∞, 1)-topos have a strict univalent universe

however it is a left exact modality
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Sheaf Model

Lemma: If Γ ` A and Γ ` S : Cov and A is DS-modal and each Aρf is
contractible for f in Sρ then Aρ is inhabited

L is a sheaf

Application Πx:L

∥∥Σy:L y2 =L x
∥∥ is valid in the sheaf model
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Sheaf Model

u 6= 0 in R and a2 = u = b2

R

��

// R[b]

��

R[a] // R[a, b]

inc(a, reflu) and inc(b, reflu) path related in
∥∥Σy:L y2 =L u

∥∥ (R[a, b])

This forms a descent data
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Sheaf Model

We get a model of Dependent Type Theory with univalence and higher
inductive types with an algebraic closure of F

We have a type L which is a F -algebra and satisfies∥∥Σx:Lx
n + a1x

n−1 + · · ·+ an =L 0
∥∥

Πx:L (x =L 0 + Σy:Lxy =L 1)

¬(0 =L 1)

Furthermore this model is effective
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Future work: Long exact sequence

We have the short exact sequence of Abelian groups if car(F ) 6= 2

1 // µ2
// Gm

()2

// Gm
// 1

We deduce the fibration sequence Bµ2 → BGm → BGm hence the long
fibration sequence (I learnt this from Ulrik Buchholtz)

µ2 → Gm → Gm → Bµ2 → BGm → BGm
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Long exact sequence

Applying global section

µ2(F )→ Gm(F )→ Gm(F )→ Bµ2(F )→ BGm(F )

and then we apply π0 and get an exact sequence

π0(Gm(F ))→ π0(Gm(F ))→ π0(Bµ2(F ))→ π0(BGm(F ))

Hence π0(Bµ2(F )) = F×/F×2, which is H1(G(Fsep/F ), µ2),
since BGm(F ) is trivial

We can do the same for B2µ2 → B2Gm → B2Gm

Merkurjev’s Theorem provides a simple description of H2(G(Fsep/F ), µ2)
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Future work: Nominal notations

In some models (cartesian or Dedekind cubical sets) we can think of stages I
as finite sets of spatial “dimensions” i1, . . . , in

We get a “nominal” extension of type theory where elements may depend on
dimensions u(i1, . . . , in)

For the algebraic closure model, the elements now also depend on algebraic
quantity, e.g. u(i, j, k, a, b) with a2 = 2, b3 = b+ a

The maps in C × B can be thought of as substitutions
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Future work: simplify the model

Connection with Galois descent

R[x1, . . . , xn] universal decomposition algebra of a monic separable polynomial
over R

The sheaf condition can be reformulated as: if u(x1) in F (R[x1]) is such that
u(x1) = · · · = u(xn) in F (R[x1, . . . , xn]) then u(x1) in F (R)

It implies that if v(x1, . . . , xn) is invariant by permutation then it is in F (R)
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Sheaf Model

Can one simplify the descent data condition?

For instance a descent data for R→ R[a], with a of degree 3

filled triangle connecting u(a), u(b), u(c)

natural strengthening of u(a) = u(b) = u(c)
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Future work: Zariski topology

We can extend the base category, taking all finitely presented F -algebra

We take Zariski topology instead, so that F [X] represents a sheaf

It is not a field anymore but a local ring which is separably closed (and
contains the separable closure of F )

At any point we have a finite number of dimension variables and algebraic
variables, with some conditions on these variables

F [X] represents a “line”

We then have two notion of intervals and we can force F [X] to be contractible
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