Joint work with

- Peter Scholze

The Lean community

- Adam Topaz
- Riccardo Brasca
- Patrick Massot
- Scott Morrison
- Kevin Buzzard
- Bhavik Mehta

- Filippo A.E. Nuccio
- Andrew Yang
- Damiano Testa
- Heather Macbeth
- Mario Carneiro
- many others

On 5 Dec 2020, Peter Scholze posted a challenge:

On 5 Dec 2020, Peter Scholze posted a challenge:

Check the main theorem of liquid vector spaces

On 5 Dec 2020, Peter Scholze posted a challenge:

Check the main theorem of liquid vector spaces

... on a computer

Credit: https://spongebob.gavinr.com,

Credit: https://twitter.com/Jcrudess/status/1338922029278441483/photo/1

1999 Liquid Tension Experiment 2

1999 Liquid Tension Experiment 2

2020 Dec 05: "Liquid Tensor Experiment", Peter Scholze

1999 Liquid Tension Experiment 2

2020 Dec 05: "Liquid Tensor Experiment", Peter Scholze

2020 Dec 14: announcement LTE 3

1999 Liquid Tension Experiment 2

2020 Dec 05: "Liquid Tensor Experiment", Peter Scholze

2020 Dec 14: announcement LTE 3

2021 Apr 16: release LTE 3 tracks include: *Solid Resolution Theory, Beating the Odds, Shades of Hope*

1999 Liquid Tension Experiment 2

2020 Dec 05: "Liquid Tensor Experiment", Peter Scholze

2020 Dec 14: announcement LTE 3

2021 Apr 16: release LTE 3 tracks include: *Solid Resolution Theory, Beating the Odds, Shades of Hope*

2022 Jul 14: complete formal verification of main theorem of liquid vector spaces

Why liquid vector spaces?

 Embeds real/complex manifolds into a unifying category of geometric objects: *analytic spaces*

2. Makes algebraic methods available in functional analysis

Topological algebraic problem

 $\mathbb{R}^\delta \to \mathbb{R}$

Condensed sets

A *condensed* set is a functor

 $Profinite^{op} \to Set$

satisfying a certain sheaf condition.

"Yoneda" gives: Top \rightarrow Cond(Set)

Condensed sets (2)

CompHaus is equivalent to qcqs objects in Cond(Set).

Weakly Hausdorff compactly generated *X* are roughly the same as quasi-separated condensed sets.

Condensed abelian groups

Cond(Ab) is very nice:

abelian category satisfying (AB3), (AB4), (AB5), (AB3*), and even (AB4*) and (AB6).

An *analytic ring* is a condensed ring together with a "completion functor" for condensed *R*-modules

An *analytic ring* is a condensed ring together with a "completion functor" for condensed *R*-modules

Examples: discrete rings, *p*-adic rings

- An analytic ring has an analytic spectrum

- An analytic ring has an analytic spectrum
- Gluing these spectra gives *analytic spaces*

- An analytic ring has an analytic spectrum
- Gluing these spectra gives *analytic spaces*
- Examples: schemes, formal schemes, Berkovich spaces, adic spaces

- An analytic ring has an analytic spectrum
- Gluing these spectra gives *analytic spaces*
- Examples: schemes, formal schemes, Berkovich spaces, adic spaces
- What about real/complex manifolds?

Let *S* be a profinite set

- $\mathbb{R}[S]$ is the space of linear combinations of Dirac measures

Let *S* be a profinite set

- $\mathbb{R}[S]$ is the space of linear combinations of Dirac measures
- We want to complete it

Let *S* be a profinite set

- $\mathbb{R}[S]$ is the space of linear combinations of Dirac measures
- We want to complete it
- First candidate: $\mathcal{M}(S)$, the space of signed Radon measures

– What we want:

– What we want:

in other words:

 $\operatorname{Hom}(\mathbb{R}[S], V) = \operatorname{Hom}(\mathcal{M}(S), V).$

– What we want:

in other words:

 $\operatorname{Hom}(\mathbb{R}[S], V) = \operatorname{Hom}(\mathcal{M}(S), V).$

- We also want $\operatorname{Ext}^{i}(\mathcal{M}(S), V) = 0$ for i > 0

- What we want:

in other words:

 $\operatorname{Hom}(\mathbb{R}[S], V) = \operatorname{Hom}(\mathcal{M}(S), V).$

- We also want $\operatorname{Ext}^{i}(\mathcal{M}(S), V) = 0$ for i > 0

– But wait! For which kind of spaces *V*?

 The formalism of analytic rings forces non-locally-convex topological vector spaces into the picture

- The formalism of analytic rings forces non-locally-convex topological vector spaces into the picture
- *V* needs to be a *p*-Banach space for *p* < 1:
 a complete TVS whose topology
 is induced by a *p*-norm:

$$\|\lambda v\| = |\lambda|^p \|v\|$$

The entropy function

 $\ell^1 \to \ell^2$ $(x_n)_n \mapsto (x_n \log |x_n|)_n$

can be used to show that $\mathcal{M}(S)$ does not satisfy the required universal property

– The entropy function

 $\ell^1 \to \ell^2$ $(x_n)_n \mapsto (x_n \log |x_n|)_n$

can be used to show that $\mathcal{M}(S)$ does not satisfy the required universal property

- We need to use use $\mathcal{M}_{p'}(S)$ instead: the subspace of signed Radon measures satisfying some $\ell^{p'}$ -convergence condition

Theorem (Clausen–Scholze)

Let 0 < p' < p < 1 be real numbers,
Let 0 < p' < p < 1 be real numbers, let *S* be a profinite set,

Let 0 < p' < p < 1 be real numbers, let *S* be a profinite set, and let *V* be a *p*-Banach space.

Let 0 < p' < p < 1 be real numbers, let *S* be a profinite set, and let *V* be a *p*-Banach space.

Let $\mathcal{M}_{p'}(S)$ be the space of p'-measures on S.

Let 0 < p' < p < 1 be real numbers, let *S* be a profinite set, and let *V* be a *p*-Banach space.

Let $\mathcal{M}_{p'}(S)$ be the space of p'-measures on S.

Then

$$\operatorname{Ext}^{i}_{\operatorname{Cond}(\operatorname{Ab})}(\mathcal{M}_{p'}(S), V) = 0$$

for $i \ge 1$.

Fix a real parameter 0

Then *p*-liquid vector spaces form a full subcat $\operatorname{Liq}_p \subset \operatorname{Cond}(\mathbb{R})$ with good properties . . .

– Liq_p is an abelian category

- Liq_p is an abelian category
- Closed under limits, colimits, extensions

- Liq_p is an abelian category
- Closed under limits, colimits, extensions
- If $p' \leq p$, then $\operatorname{Liq}_p \subset \operatorname{Liq}_{p'}$

- Liq_p is an abelian category
- Closed under limits, colimits, extensions
- − If $p' \leq p$, then $\operatorname{Liq}_p \subset \operatorname{Liq}_{p'}$
- Examples:
 - Banach spaces, nuclear Fréchet spaces

- Liq_p is an abelian category
- Closed under limits, colimits, extensions
- − If $p' \leq p$, then $\operatorname{Liq}_p \subset \operatorname{Liq}_{p'}$
- Examples:
 - Banach spaces, nuclear Fréchet spaces
- Liquid tensor product is compatible with topological tensor product of nuclear Fréchets

Summary:

Liquid analytic ring structure on $\mathbb R$

The Experiment

 "spent much of 2019 obsessed with the proof of this theorem, almost getting crazy over it"

- "spent much of 2019 obsessed with the proof of this theorem, almost getting crazy over it"
- "proof has some very unexpected features
 ...very much of arithmetic nature"

- "spent much of 2019 obsessed with the proof of this theorem, almost getting crazy over it"
- "proof has some very unexpected features...very much of arithmetic nature"
- "I think this may be my most important theorem to date"

- "spent much of 2019 obsessed with the proof of this theorem, almost getting crazy over it"
- "proof has some very unexpected features
 ...very much of arithmetic nature"
- "I think this may be my most important theorem to date"
- "I think nobody else has dared to look at the details, and so I still have some small lingering doubts"

Let 0 < p' < p < 1 be real numbers, let *S* be a profinite set, and let *V* be a *p*-Banach space.

Let $\mathcal{M}_{p'}(S)$ be the space of p'-measures on S.

Then

$$\operatorname{Ext}^{i}_{\operatorname{Cond}(\operatorname{Ab})}(\mathcal{M}_{p'}(S), V) = 0$$

for $i \ge 1$.

First target (Thm 9.4 of Analytic.pdf)

Fix 0 < r < r' < 1.

For any *m*, there exists a *k* and c_0 such that for all profinite sets *S* and *r*-normed $\mathbb{Z}[T^{\pm 1}]$ -modules *V* the system of complexes

 $C_{c}^{\bullet}: \hat{V}(\overline{\mathcal{M}}_{r'}(S)_{\leqslant c})^{T^{-1}} \to \hat{V}(\overline{\mathcal{M}}_{r'}(S)^{2}_{\leqslant \kappa_{1}c})^{T^{-1}} \to \dots$

is \leqslant *k*-exact in degrees \leqslant *m* for $c \ge c_0$.

 Some statements/proofs of lemmas and auxiliary definitions were changed

- Some statements/proofs of lemmas and auxiliary definitions were changed
- Detailed blueprint

- Some statements/proofs of lemmas and auxiliary definitions were changed
- Detailed blueprint
- Answer to Question 9.9 of Analytic.pdf

- Some statements/proofs of lemmas and auxiliary definitions were changed
- Detailed blueprint
- Answer to Question 9.9 of Analytic.pdf
- Alternative to Breen–Deligne resolutions

- Some statements/proofs of lemmas and auxiliary definitions were changed
- Detailed blueprint
- Answer to Question 9.9 of Analytic.pdf
- Alternative to Breen–Deligne resolutions
- Effort to conceptualize parts of the proof

Theorem (Breen–Deligne)

There exists a functorial resolution of an abelian group A of the form

$$\cdots \to \bigoplus_{j=1}^{n_j} \mathbb{Z}[A^{r_{i,j}}] \cdots \to \mathbb{Z}[A^3] \oplus \mathbb{Z}[A^2] \to \mathbb{Z}[A^2] \to \mathbb{Z}[A] \to A \to 0$$

where all n_j and $r_{i,j}$ are natural numbers.

Theorem (Breen–Deligne)

There exists a functorial resolution of an abelian group A of the form

$$\cdots \to \bigoplus_{j=1}^{n_j} \mathbb{Z}[A^{r_{i,j}}] \cdots \to \mathbb{Z}[A^3] \oplus \mathbb{Z}[A^2] \to \mathbb{Z}[A^2] \to \mathbb{Z}[A] \to A \to 0$$

where all n_i and $r_{i,j}$ are natural numbers.

Proof uses homotopy theory.

Lemma

The MacLane Q'-construction is a functorial *complex* of an abelian group A of the form

 $|Q'(A): \cdots \to \mathbb{Z}[A^{2^{i}}] \cdots \to \mathbb{Z}[A^{4}] \to \mathbb{Z}[A^{2}] \to \mathbb{Z}[A] \to A \to 0$

with the property that:

Lemma

The MacLane Q'-construction is a functorial *complex* of an abelian group A of the form $Q'(A): \quad \cdots \to \mathbb{Z}[A^{2^{i}}] \cdots \to \mathbb{Z}[A^{4}] \to \mathbb{Z}[A^{2}] \to \mathbb{Z}[A] \to A \to 0$ with the property that:

if $\operatorname{Ext}^{i}(Q'(A), B) = 0$ for all $i \ge 0$,

Lemma

The MacLane Q'-construction is a functorial *complex* of an abelian group *A* of the form $|O'(A): \cdots \to \mathbb{Z}[A^{2^i}] \cdots \to \mathbb{Z}[A^4] \to \mathbb{Z}[A^2] \to \mathbb{Z}[A] \to A \to 0$ with the property that: if $\operatorname{Ext}^{i}(Q'(A), B) = 0$ for all $i \ge 0$, then $\operatorname{Ext}^{i}(A, B) = 0$ for all $i \ge 0$.

Human-friendly proof?

Can we find a proof that does not need computer verification?

I will present some thoughts

(j/w Reid Barton)

Back to technical theorem 9.4

The technical key ingredient involved a chain complex of objects:

 $\mathbb{R}^{op}_{\geqslant 0} \to NormAbGrp$

The theorem claims that this complex is "exact" in some sense.

The presence of functors

 $\mathbb{R}^{op}_{\geqq 0} \to NormAbGrp$

and the metric on objects in NormAbGrp suggests that we can try to mix *sheaf semantics* and *continuous logic*.

Sheaf semantics

Suppose we have

 $A \xrightarrow{f} B \xrightarrow{g} C$

with *A*, *B*, *C* : $\mathbb{R}^{op}_{\geq 0} \rightarrow \text{NormAbGrp.}$

Sheaf semantics

Suppose we have

$$A \xrightarrow{f} B \xrightarrow{g} C$$

with *A*, *B*, *C* : $\mathbb{R}^{op}_{\geq 0} \rightarrow \text{NormAbGrp.}$

Then $\forall b : B, g(b) = 0 \vdash \exists a : A, f(a) = b$ interpretes to

 $\exists k \ge 1, \forall s \gg 0, \ldots$

 $\forall b \in B_{ks}, g(b) = 0 \implies \exists a \in A_s, f(a) = b|_s$

Continuous logic

Suppose we have

$$A \xrightarrow{f} B \xrightarrow{g} C$$

with A, B, $C \in NormAbGrp$.

Continuous logic

Suppose we have

$$A \xrightarrow{f} B \xrightarrow{g} C$$

with A, B, $C \in NormAbGrp$.

Then $\forall b : B, g(b) = 0 \vdash \exists a : A, f(a) = b$ interpretes to

 $\exists K, \ldots$

 $\forall b \in B, \forall \varepsilon > 0, \exists a \in A, \|f(a) - b\| \leqslant K \|g(b)\| + \varepsilon$
Combine the sheaf semantics and continuous logic

Result: "exactness" interpretes to "normed exactness" as needed for the chain complex in theorem 9.4.

Upshot

We can "compile" the proofs of homological algebra results into the "normed-and-sheafy" setting.

Examples: snake lemma, long exact sequence, spectral sequence

A diamond "modality"?

At one point in the global proof, this strategy fails.

We need to make a certain norm estimate.

And it is not simply the interpretation of an internal reasoning step.

We think it is related to some modal operator. But there are some speedbumps. WIP!

Other input

The proof is certainly not "a formality".

At crucial points one needs:

- Combinatorics (Gordan's lemma)
- Results about cohomology of profinite sets

State of the art maths

can be formalized

in a reasonable amount of time

Proof assistant

Proof assistant

Lean showed to be a powerful tool

for managing complex proofs

Partial lessons (3)

What makes the proof tick?

Why does it pass through arithmetic?

In which logic should the proof work?