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Why liquid vector spaces?

1. Embeds real/complex
manifolds into a unifying
category of geometric objects:
analytic spaces

2. Makes algebraic methods
available in functional analysis



Topological algebraic problem

Rδ → R



Condensed sets

A condensed set is a functor

Profiniteop → Set

satisfying a certain
sheaf condition.

“Yoneda” gives: Top → Cond(Set)



Condensed sets (2)

CompHaus is equivalent to
qcqs objects in Cond(Set).

Weakly Hausdorff compactly generated X
are roughly the same as
quasi-separated condensed sets.



Condensed abelian groups

Cond(Ab) is very nice:

abelian category satisfying
(AB3), (AB4), (AB5), (AB3*),
and even (AB4*) and (AB6).
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together with a “completion functor”
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Functional analysis

– What we want:

S V

M(S)

f

∃! µ 7→
∫

s f (s)dµ

in other words:

Hom(R[S],V) = Hom(M(S),V).

– We also want Exti(M(S),V) = 0 for i > 0

– But wait! For which kind of spaces V?
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– The formalism of analytic rings
forces non-locally-convex
topological vector spaces
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– V needs to be a p-Banach space for p < 1:
a complete TVS whose topology
is induced by a p-norm:
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– The entropy function

ℓ1 → ℓ2

(xn)n 7→ (xn log |xn|)n

can be used to show that M(S) does not
satisfy the required universal property

– We need to use use Mp ′(S) instead:
the subspace of signed Radon measures
satisfying some ℓp ′

-convergence condition
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Theorem (Clausen–Scholze)

Let 0 < p ′ < p < 1 be real numbers,

let S be a profinite set,
and let V be a p-Banach space.

Let Mp ′(S) be the space of p ′-measures on S.

Then
Exti

Cond(Ab)(Mp ′(S),V) = 0

for i ⩾ 1.
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Liquid vector spaces

Fix a real parameter 0 < p ⩽ 1

Then p-liquid vector spaces
form a full subcat Liqp ⊂ Cond(R)

with good properties . . .



Liquid vector spaces (2)

– Liqp is an abelian category

– Closed under
limits, colimits, extensions

– If p ′ ⩽ p, then Liqp ⊂ Liqp ′

– Examples:
Banach spaces, nuclear Fréchet spaces

– Liquid tensor product is compatible with
topological tensor product of nuclear Fréchets
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Liquid vector spaces

Summary:

Liquid analytic ring structure on R



The Experiment
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– “I think this may be my most important
theorem to date”

– “I think nobody else has dared to look at the
details, and so I still have some small
lingering doubts”



Scholze (LTE blogpost, 2020)

– “spent much of 2019 obsessed with the proof
of this theorem, almost getting crazy over it”

– “proof has some very unexpected features
. . . very much of arithmetic nature”

– “I think this may be my most important
theorem to date”

– “I think nobody else has dared to look at the
details, and so I still have some small
lingering doubts”



Scholze (LTE blogpost, 2020)

– “spent much of 2019 obsessed with the proof
of this theorem, almost getting crazy over it”

– “proof has some very unexpected features
. . . very much of arithmetic nature”

– “I think this may be my most important
theorem to date”

– “I think nobody else has dared to look at the
details, and so I still have some small
lingering doubts”



Scholze (LTE blogpost, 2020)

– “spent much of 2019 obsessed with the proof
of this theorem, almost getting crazy over it”

– “proof has some very unexpected features
. . . very much of arithmetic nature”

– “I think this may be my most important
theorem to date”

– “I think nobody else has dared to look at the
details, and so I still have some small
lingering doubts”



Theorem (Clausen–Scholze)

Let 0 < p ′ < p < 1 be real numbers,
let S be a profinite set,
and let V be a p-Banach space.

Let Mp ′(S) be the space of p ′-measures on S.

Then
Exti

Cond(Ab)(Mp ′(S),V) = 0

for i ⩾ 1.



First target (Thm 9.4 of Analytic.pdf)

Fix 0 < r < r ′ < 1.

For any m, there exists a k and c0

such that for all profinite sets S
and r-normed Z[T±1]-modules V
the system of complexes

C•
c : V̂(Mr ′(S)⩽c)

T−1
→ V̂(Mr ′(S)2

⩽κ1c)
T−1

→ . . .

is ⩽ k-exact in degrees ⩽ m for c ⩾ c0.



Progress report

target 1 100% on May 29, 2021

target 2 100% on Jul 14, 2022

– Some statements/proofs of lemmas and
auxiliary definitions were changed

– Detailed blueprint

– Answer to Question 9.9 of Analytic.pdf

– Alternative to Breen–Deligne resolutions

– Effort to conceptualize parts of the proof
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Theorem (Breen–Deligne)

There exists a functorial resolution of an abelian
group A of the form

· · · →
nj⊕

j=1

Z[Ari,j ] · · · → Z[A3]⊕Z[A2] → Z[A2] → Z[A] → A → 0

where all nj and ri,j are natural numbers.

Proof uses homotopy theory.
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Lemma

The MacLane Q ′-construction is a functorial
complex of an abelian group A of the form

Q ′(A) : · · · → Z[A2i
] · · · → Z[A4] → Z[A2] → Z[A] → A → 0

with the property that:

if Exti(Q ′(A),B) = 0 for all i ⩾ 0,

then Exti(A,B) = 0 for all i ⩾ 0.
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Human-friendly proof?

Can we find a proof that does not
need computer verification?

I will present some thoughts

(j/w Reid Barton)



Back to technical theorem 9.4

The technical key ingredient
involved a chain complex of objects:

R
op
⩾0 → NormAbGrp

The theorem claims that this complex
is “exact” in some sense.



Logics

The presence of functors

R
op
⩾0 → NormAbGrp

and the metric on objects in NormAbGrp
suggests that we can try to
mix sheaf semantics and continuous logic.



Sheaf semantics

Suppose we have

A
f
−→ B

g
−→ C

with A,B,C : R
op
⩾0 → NormAbGrp.

Then ∀b : B, g(b) = 0 ⊢ ∃a : A, f (a) = b
interpretes to

∃k ⩾ 1,∀s ≫ 0, . . .

∀b ∈ Bks, g(b) = 0 =⇒ ∃a ∈ As, f (a) = b|s
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Normed exactness

Combine the sheaf semantics and continuous logic

Result:
“exactness” interpretes to “normed exactness”
as needed for the chain complex in theorem 9.4.



Upshot

We can “compile” the proofs
of homological algebra results
into the “normed-and-sheafy“ setting.

Examples: snake lemma, long exact sequence,
spectral sequence



A diamond “modality”?

At one point in the global proof,
this strategy fails.

We need to make a certain norm estimate.

And it is not simply the interpretation
of an internal reasoning step.

We think it is related to some modal operator.
But there are some speedbumps. WIP!



Other input

The proof is certainly not “a formality”.

At crucial points one needs:

– Combinatorics (Gordan’s lemma)

– Results about cohomology of profinite sets



Lessons



Lessons (1)

State of the art maths

can be formalized

in a reasonable amount of time



Lessons (2)

Proof assistant

Lean showed to be a powerful tool

for managing complex proofs
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Partial lessons (3)

What makes the proof tick?

Why does it pass through arithmetic?

In which logic should the proof work?


