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Introduction and conventions

Vector bundles play a major role in classical homotopy theory.

They arise as the tangent bundles to manifolds, as the canonical bundles over
projective spaces, as normal bundles of embeddings, and in many other contexts.

Since vector spaces are contractible, we don’t have a good theory of vector bundles in
plain homotopy type theory.

However, we can study their associated sphere bundles as a homotopically interesting
replacement.

Indeed, we’ll see that some invariants of vector bundles can be defined just using their
sphere bundles.

Conventions.

We work in book HoTT, with pushouts, truncations and enough univalent universes.

We often use univalence and function extensionality implicitly.
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Bundles

Fix T : U . A T -bundle over B is a map P : B → U with ∥P (b) ≃ T∥ for all b : B.

That is, it’s a map B → BAut(T ), where BAut(T ) :≡
∑
X:U

∥X ≃ T∥.

By the usual correspondence between maps and type families, we have an equivalence(∑
E:U

∑
f :E→B

∏
b:B

∥fibf b ≃ T∥
)

≃
(
B → BAut(T )

)
,

so we say that BAut(T ) classifies maps whose fibres are merely equivalent to T .

For P : B → BAut(T ), we get a pullback square:∑
b:B

P (b)
∑

(X,p):BAut(T )

X

B BAut(T )

pr1

⌟
pr1

P

so the map on the right is called the universal T -bundle.
3 / 19



Oriented bundles

Recall: T -bundles are maps B → BAut(T ) :≡
∑

X:U ∥X ≃ T∥.

An oriented T -bundle is a map B → BAut1(T ), where

BAut1(T ) :≡
∑
X:U

∥X ≃ T∥0.

Instead of merely having an equivalence to T , we have a homotopy class of
equivalences.

Example: If X is merely equivalent to the sphere Sn, then ∥X ≃ Sn∥ is contractible,
but ∥X ≃ Sn∥0 is equivalent to Bool.

Aside: We have forgetful maps

BAut1(T ) −→ BAut(T ) −→ U .

BAut(T ) is the component of the universe containing T , which is also called the
0-connected cover of the pointed type (U , T ).

Since ∥X ≃ T∥0≃
(
|X|1 = |T |1

)
, BAut1(T ) is the fibre of the map U → ∥U∥1 at the

point |T |1. That is, it is the 1-connected cover of (U , T ), which explains the notation.
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Central types BCFR23

For x : X, the component of X containing x is denoted X(x) :≡
∑
y:X

∥y = x∥.

A pointed type T is central if the map below is an equivalence:

(T → T )(id)
ev−→ T f 7−→ f(pt)

Note. T is a connected H-space.

Proposition. Let T be a pointed type. Then the following are equivalent:

(1) T is central.

(2) T is a connected H-space and T →∗ T is a set.

(3) T is a connected H-space and T →∗ ΩT is contractible.

(4) T is a connected H-space and ΣT →∗ T is contractible.

Example. Every Eilenberg-Mac Lane space K(G,n) with G abelian and n > 0.

Non-example. S3 is not central, since π4(S
3) is non-trivial.
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Delooping central types

Recall. A pointed type T is central if the map ev : (T → T )(id) → T is an equivalence.

Proposition. If T is central, then BAut1(T ) is a delooping of T .

Proof.
ΩBAut1(T ) ≡

(
(T, |id|0) = (T, |id|0)

)
≃

∑
e:T≃T

(
|id|0 ◦ |e|0 = |id|0

)
≃ (T → T )(id)

≃ T (by centrality)

Note. In fact, one can show that T has a unique delooping.

Theorem. Let T be central. Then every pointed self-map of T has a unique
delooping. That is, the loop space functor gives an equivalence(

BAut1(T ) →∗ BAut1(T )
) ∼−→ (T →∗ T ).
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BAut1(T ) is an H-space

Let T be central.

Proposition. Let (X,ω), (Y, γ) : BAut1(T ). Then (X,ω) = (Y, γ) has a
T -orientation.

Proof. We need to construct an orientation ∥((X,ω) = (Y, γ)) ≃ T∥0.

Since the goal is a set, we may induct on ω and γ, thus reducing the goal to
∥ΩBAut1(T ) ≃ T∥0, which follows from the previous proposition.

Definition. Let (X,ω), (Y, γ) : BAut1(T ). We define

(X,ω)⊗ (Y, γ) :≡
(
(X,ω∗) = (Y, γ)

)
: BAut1(T ),

with the orientation from above. Here ω∗ is obtained from ω : ∥X ≃ T∥0 by
post-composing with the inversion map on T .

Theorem. The operation ⊗ makes BAut1(T ) into an H-space.
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Iterating

Theorem. Let T be central. Then BAut1(T ) is central.
It follows that T is an infinite loop space in a unique way.

Proof. BAut1(T ) is a (1-)connected H-space, so by an earlier result, it’s enough to
show that BAut1(T ) →∗ BAut1(T ) a set.

But
(
BAut1(T ) →∗ BAut1(T )

)
≃ (T →∗ T ), and the latter is a set.

Corollary. For G abelian and n > 0, BAut1(K(G,n)) is a K(G,n+ 1) and ⊗ gives
a concrete description of its H-space structure.

So we can use this to represent cohomology:

Hn+1(X;G) ≃
∥∥∥X → BAut1(K(G,n))

∥∥∥
0

with ⊗ giving the addition in cohomology.

Aside. If X is a simply-connected pointed type and ΩX →∗ ΩX is a set, then X is
central.
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Aside: open problems about central types

Fact. K(Z/2, 1)×K(Z, 2) is central, but K(Z/2, 1)×K(Z/2, 2) is not central.

Question. Is every central type a product of Eilenberg-Mac Lane spaces?

Question. If T is central, is the base point component of ΩT central?

Question. If T is central and n : N, is ∥T∥n central?
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Cup products BCMR24

The cup product is a family of bilinear operations

Hn(X;Z) →Grp Hm(X;Z) →Grp Hn+m(X;Z) (1)

which make cohomology into a graded ring.

First defined in HoTT by Guillaume Brunerie, and extended to other rings by
Lamiaux-Ljungström-Mörtberg, Brunerie-Ljungström-Mörtberg, and David Wärn.
We’ll give a new approach using oriented types.

Additive natural transformations. A map f : K(Z, n) → K(Z,m) induces a
natural transformation Hn(−) → Hm(−).

If f is Ωg for g : K(Z, n+ 1) →∗ K(Z,m+ 1), then the transformation will be additive.

So, to get Hm(X) →Grp Hn+m(X), we want a map K(Z,m+ 1) →∗ K(Z, n+m+ 1).

To get the left homomorphism in (1), we need a delooping of
K(Z,m+1) →∗ K(Z, n+m+1), which we take to be K(Z,m+1) →∗ K(Z, n+m+2).

So our final goal is a map of type

K(Z, n+ 1) →∗ K(Z,m+ 1) →∗ K(Z, n+m+ 2).
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Cup products via oriented types

Goal: ⋆n,m : K(Z, n+ 1) →∗ K(Z,m+ 1) →∗ K(Z, n+m+ 2).

Let K1 be any delooping of Z, and define Kn+1 := BAut1(Kn) for n ≥ 1.

For n = 0 or m = 0, we use an existing definition.

For n ≥ 1 and m ≥ 1, we define

⋆n,m : BAut1(Kn) →∗ BAut1(Km) →∗ BAut1(Kn+m+1)

by (X,ω) ⋆n,m (Y, γ) :≡ (∥X ⋆ Y ∥n+m+1, ), where the orientation requires a bit of work
to describe.

⋆n,m is bipointed: This follows from the fact that if (X,ω) : BAut1(T ) and we have
x : X, then (X,ω) = (T, |id|0). (For T central.)

Since Kn ⋆ Y is pointed, (Kn, |id|0) ⋆n,m (Y, γ) = (Kn+m+1, |id|0).

Theorem. The family of maps ⋆n,m agrees with the cup product, up to sign.
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The Euler class

Definition. For n > 0, the universal Euler class is the map

e : BAut1(S
n) −→ BAut1(K(Z, n))

which sends an oriented n-sphere (X,ω) to ∥X∥n with its natural
K(Z, n)-orientation coming from the equivalence ∥Sn∥n≃ K(Z, n).

Given an oriented sphere bundle P : B → BAut1(S
n), its Euler class is

e(P ) :≡ | e ◦P |0 :
∥∥∥B → BAut1(K(Z, n))

∥∥∥
0
≡ Hn+1(B;Z).

Moral: The Euler class is just the conversion of an oriented n-sphere bundle to an
oriented K(Z, n) bundle by truncating the fibres!

Question. How do we know we got it right?
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The Euler class and sections

Classically, the Euler class is the first obstruction to the existence of a nowhere zero
section of a vector bundle.

Theorem. Let n > 0 and let P : B → BAut1(S
n). If P merely has a section, then

e(P ) = 0.

Proof. Since the conclusion is a proposition, we can suppose that P has a section

s :
∏
b:B

P (b).

Then |s(b)|n is a point in (e ◦P )(b) ≡ ∥P (b)∥n.

Therefore, (e ◦P )(b) is a pointed type in BAut1(K(Z, n)), so by the result mentioned
earlier, it is equal to the basepoint.

Theorem. Let n > 0 and let P : Sn+1 → BAut1(S
n). If e(P ) = 0, then P merely

has a section.
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The Whitney sum formula

Classically, the unit sphere in the direct sum of two real vector spaces is the join of the
unit spheres:

S(V ⊕W ) ≃ S(V ) ⋆ S(W ).

So we represent this direct sum operation on sphere bundles using the join:

BAut(Sn) −→ BAut(Sm) −→ BAut(Sn+m+1).

This also works for oriented bundles:

BAut1(S
n) −→ BAut1(S

m) −→ BAut1(S
n+m+1).

Whitney Sum Formula. For (X,ω) : BAut1(S
n) and (Y, γ) : BAut1(S

m),

e((X,ω) ⋆ (Y, γ)) = e(X,ω) ⋆n,m e(Y, γ).

Proof. e((X,ω) ⋆ (Y, γ)) ≡ ∥X ⋆ Y ∥n+m+1 ≃
∥∥∥∥X∥n ⋆ ∥Y ∥m

∥∥∥
n+m+1

≡ ∥e(X,ω) ⋆ e(Y, γ)∥n+m+1≡ e(X,ω) ⋆n,m e(Y, γ).
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The Thom isomorphism

The Thom space Thom(P ) of P : B → BAut1(S
n) is the pushout∑

b:B

P (b) 1

B Thom(P ) .

pr1

⌜
pt

i

Theorem. For i ≥ 0,
(
B → K(Z, i)

)
≃

(
Thom(P ) →∗ K(Z, i+ n+ 1)

)
and so H i(B) ≃ H̃ i+n+1(Thom(P )).

Proof. We have(
Thom(P ) →∗ K(Z, i+ n+ 1)

)
≃

(∏
b

(
ΣP (b) →∗ K(Z, i+ n+ 1)

))
≃

(
B → K(Z, i)

)
.

The first equivalence is easy, and the second uses that ΣP (b) →∗ K(Z, i+ n+ 1) is a
pointed type with a K(Z, i)-orientation and that K(Z, i) ≃∗ K(Z, i) is a set.
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The Thom class

Recall. For P : B → BAut1(S
n) an oriented sphere bundle and i ≥ 0,(

B → K(Z, i)
)
≃

(
Thom(P ) →∗ K(Z, i+ n+ 1)

)
.

Taking i = 0 gives (
B → Z

)
≃

(
Thom(P ) →∗ K(Z, n+ 1)

)
.

The Thom class th(P ) : Thom(B) →∗ K(Z, n+ 1) is the image of λb.1.

Proposition. Up to sign, the Thom isomorphism above is given by taking a
pointwise cup product with Thom class.

Theorem. The restriction of the Thom class th(P ) along the “zero section”
i : B → Thom(P ) gives the Euler class e(P ).

To prove the Theorem, we give a different (less natural) definition of the Thom class,
which restricts by definition to the Euler class, and then we prove that the two Thom
classes are equal.
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The tangent bundles of spheres

Theorem. For each n ≥ 0, there is an oriented sphere bundle

τn+1 : Sn+1 → BAut1(S
n)

along with equivalences

θn+1 :
∏

x:Sn+1

(S0 ⋆ τn+1(x) ≃ Sn+1).

In fact, we prove a more general result, which lets us define tangent bundles to join
powers E⋆n for certain E.

As a special case, we get tangent bundles for real and complex projective spaces RPn

and CPn.

See David Jaz Myers’ HoTTEST talk for a beautiful description of this construction.
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The hairy ball theorem

Theorem. The tangent bundle τn+1 : Sn+1 → BAut1(S
n) has a section if and only

if n+ 1 is odd.

Proof 1. For n+ 1 odd, we construct explicit sections.

For general n, we show that if you have a section, then we get a homotopy∏
x:Sn+1

(x = −x),

where −x denotes the action of the antipodal map.

The antipodal map has degree (−1)n+2, so this gives a contradiction when n+ 1 is
even.

Proof 2. We prove that e(τn+1) = 1 + (−1)n+1, up to sign.

By earlier results on Euler classes, τn+1 has a section if and only if the Euler class
vanishes.
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The power of BAut1

Using BAut1, we can:

Define oriented bundles. Thanks!
Define addition in cohomology.

Define multiplication in cohomology.

Define the Euler class and prove the Whitney sum formula.

Prove the Thom isomorphism.

Define the Thom class and prove that it restricts to the Euler class.

Use these to prove the hairy ball theorem.
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