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HoTT+Data+Axioms

∞-Groupoids

Schemes
“Constructive
Zariski-sheaves”

* Schemes = quasi-compact, quasi-separated schemes of finite type



Now: Internal
𝑅 is a given commutative ring from now on.

𝑉 ≔ {(𝑥, 𝑦) ∶ 𝑅2 ∣ 𝑥2 + 𝑦2 = 1} is a geometric object.
Adding equations like 0 = 0, 𝑥(𝑥2 + 𝑦2) = 𝑥 does not change the
type 𝑉 .
𝑉 is determined by the 𝑅-algebra 𝐴 ≔ 𝑅[𝑋, 𝑌 ]/(𝑋2 + 𝑌 2 − 1).
We can recover it: 𝑉 = Hom𝑅-Alg(𝐴, 𝑅).

Definition
(i) An 𝑅-algebra is finitely presented (fp) if it is merely

𝑅[𝑋1, … , 𝑋𝑛]/(𝑃1, … , 𝑃𝑙).
(ii) Spec(𝐴) ≔ Hom𝑅-Alg(𝐴, 𝑅) is the spectrum of an fp

𝑅-algebra 𝐴.
(iii) Any 𝑋 such that there is an 𝐴 with 𝑋 = Spec(𝐴) is called

affine scheme.
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Classical vs synthetic

How can we make the functor

𝐴 ↦ Spec(𝐴)

fully faithful?

Classical algebraic geometry Synthetic algebraic geometry
Endow Spec(𝐴) with additional
structure:

▶ Zariski topology
▶ structure sheaf 𝒪Spec(𝐴)

Axiom (SQC)1. The map

𝐴 → 𝑅Spec 𝐴

𝑎 ↦ (𝜑 ↦ 𝜑(𝑎))

is an equivalence for any finitely
presented 𝑅-algebra 𝐴.

1“Synthetic Quasi-Coherence”, due to Ingo Blechschmidt



Basic consequences of SQC

𝐴 ∼−→ 𝑅Spec 𝐴

▶ Spec(𝑅[𝑋]) = 𝑅. Thus: 𝑅[𝑋] ∼−→ 𝑅𝑅

If Spec(𝐴) = ∅, then 𝐴 = 𝑅∅ = 0.

▶ Spec(𝑅/(𝑟)) = (𝑟 = 0). Thus: if 𝑟 ≠ 0, then 𝑟 is invertible.
▶ Spec(𝑅[𝑟−1]) = (𝑟 is invertible). Thus: if 𝑟 is not invertible,

then 𝑟 is nilpotent.

Axiom: The ring 𝑅 is local.

▶ If 𝑟1, … , 𝑟𝑛 ∶ 𝑅 are not all zero, then some 𝑟𝑖 is invertible.



Basic consequences of SQC

𝐴 ∼−→ 𝑅Spec 𝐴

▶ Spec(𝑅[𝑋]) = 𝑅. Thus: 𝑅[𝑋] ∼−→ 𝑅𝑅

If Spec(𝐴) = ∅, then 𝐴 = 𝑅∅ = 0.

▶ Spec(𝑅/(𝑟)) = (𝑟 = 0). Thus: if 𝑟 ≠ 0, then 𝑟 is invertible.
▶ Spec(𝑅[𝑟−1]) = (𝑟 is invertible). Thus: if 𝑟 is not invertible,

then 𝑟 is nilpotent.

Axiom: The ring 𝑅 is local.

▶ If 𝑟1, … , 𝑟𝑛 ∶ 𝑅 are not all zero, then some 𝑟𝑖 is invertible.



Basic consequences of SQC

𝐴 ∼−→ 𝑅Spec 𝐴

▶ Spec(𝑅[𝑋]) = 𝑅. Thus: 𝑅[𝑋] ∼−→ 𝑅𝑅

If Spec(𝐴) = ∅, then 𝐴 = 𝑅∅ = 0.

▶ Spec(𝑅/(𝑟)) = (𝑟 = 0). Thus: if 𝑟 ≠ 0, then 𝑟 is invertible.
▶ Spec(𝑅[𝑟−1]) = (𝑟 is invertible). Thus: if 𝑟 is not invertible,

then 𝑟 is nilpotent.

Axiom: The ring 𝑅 is local.

▶ If 𝑟1, … , 𝑟𝑛 ∶ 𝑅 are not all zero, then some 𝑟𝑖 is invertible.



An affine scheme

Let 𝑓 ∶ 𝐴.

𝐷(𝑓) ≔ Spec(𝐴𝑓) = Spec(𝐴[𝑋]/(𝑓𝑋 − 1))
= {𝑥 ∶ Spec(𝐴) ∣ 𝑥(𝑓) invertible}

Or: Let 𝑓 ∶ Spec(𝐴) → 𝑅, then:

𝐷(𝑓) = {𝑥 ∶ Spec(𝐴) ∣ 𝑓(𝑥) invertible}
= {𝑥 ∶ Spec(𝐴) ∣ 𝑓(𝑥) ≠ 0}

𝐷(𝑓) is called a standard-open.
Any subset which is merely a finite union of 𝐷(𝑓)s is called
global-open. Let 𝑓1, … , 𝑓𝑛 ∶ 𝐴. Then Spec(𝐴) = ⋃𝑖 𝐷(𝑓𝑖) if and
only if (𝑓1, … , 𝑓𝑛) = (1).
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Closed and open propositions

For 𝑟1, … , 𝑟𝑛 ∶ 𝑅 we have the propositions

𝑉 (𝑟1, … , 𝑟𝑛) ≔ (𝑟1 = ⋯ = 𝑟𝑛 = 0),

𝐷(𝑟1, … , 𝑟𝑛) ≔ (𝑟1 ≠ 0 ∨ … ∨ 𝑟𝑛 ≠ 0).
Then define:

closedProp ≔ ∑
𝑝∶hProp

∃𝑟1, … , 𝑟𝑛. (𝑝 = 𝑉 (𝑟1, … , 𝑟𝑛))

openProp ≔ ∑
𝑝∶hProp

∃𝑟1, … , 𝑟𝑛. (𝑝 = 𝐷(𝑟1, … , 𝑟𝑛))

A closed subtype of 𝑋 is a map 𝑋 → closedProp.
An open subtype of 𝑋 is a map 𝑋 → openProp.



Zariski-local choice

Axiom (Zariski-local choice):
For every surjective 𝜋, there merely exist local sections 𝑠𝑖

𝐸

𝐷(𝑓𝑖) Spec(𝐴)
𝜋

𝑠𝑖

with 𝑓1, … , 𝑓𝑛 ∶ 𝐴 such that (𝑓1, … , 𝑓𝑛) = (1).

Alternative formulation:
Axiom (Zariski-local choice):
Let 𝐵 ∶ Spec(𝐴) → 𝒰 be such that (𝑥 ∶ Spec(𝐴)) → ‖𝐵(𝑥)‖. Then
there merely are 𝑛 ∶ ℕ, 𝑓1, … , 𝑓𝑛 ∶ 𝐴 such that (𝑓1, … , 𝑓𝑛) = (1)
and 𝑠𝑖 ∶ (𝑥 ∶ 𝐷(𝑓𝑖)) → 𝐵(𝑥).



Pointwise-global principle
Theorem
Let 𝑓 ∶ 𝐴.
(a) A global-open 𝑈 ⊆ 𝐷(𝑓) is global-open in Spec(𝐴)
(b) A subset 𝑈 ⊆ Spec(𝐴) is open if and only if it is global-open.

Proof-Idea.
Let 𝑈 ⊆ Spec(𝐴) be open.

That means we have

𝑡 ∶ ∏
𝑥∶Spec(𝐴)

∥ ∑
𝑛∶ℕ

∑
𝑟1,…,𝑟𝑛∶𝑅

𝑈(𝑥) = (𝑟1 ≠ 0 ∨ ⋯ ∨ 𝑟𝑛 ≠ 0)∥

By something called “boundedness”, we can assume we have a
global “𝑛 ∶ ℕ” and by Zariski-choice we have

𝑠𝑖 ∶ (𝑥 ∶ 𝐷(𝑓𝑖)) → ∑
𝑟1,…,𝑟𝑛∶𝑅

𝑈(𝑥) = (𝑟1 ≠ 0 ∨ ⋯ ∨ 𝑟𝑛 ≠ 0)
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Schemes

A type 𝑋 is a scheme if there exist 𝑈1, … , 𝑈𝑛 ∶ 𝑋 → openProp
such that 𝑋 = ⋃𝑖 𝑈𝑖 and every 𝑈𝑖 is an affine scheme.

Example. Projective 𝑛-space:

ℙ𝑛 ≔ {𝑥 ∶ 𝑅𝑛+1 ∣ 𝑥 ≠ 0}/ ≈ where (𝑥 ≈ 𝑦) ≔ ∃𝜆 ∶ 𝑅.𝜆𝑥 = 𝑦
= { submodules 𝐿 ⊆ 𝑅𝑛+1 such that ‖𝐿 = 𝑅1‖ }

is a scheme, since

𝑈𝑖([𝑥]) ≔ (𝑥𝑖 is invertible)

is an open affine cover.
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Line bundles
The type

Lines ≔ ∑
𝐿∶𝑅-Mod

‖𝐿 = 𝑅1‖

has a wild group structure:
▶ 𝐿 ⊗ 𝐿′ is again a line
▶ 𝐿∨ ≔ Hom(𝐿, 𝑅1) is the inverse

A line bundle on 𝑋 is a map 𝑋 → Lines.
Example. tautological line bundle , [𝑥] ↦ 𝑅⟨𝑥⟩ ∶ ℙ𝑛 → Lines

The Picard group of 𝑋 is

Pic(𝑋) ≔ ‖𝑋 → Lines‖set.

(In fact, Lines = 𝐾(𝑅×, 1) and Pic(𝑋) = 𝐻1(𝑋, 𝑅×).)
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For 𝐴 ∶ 𝑋 → Ab, define cohomology as:

𝐻𝑛(𝑋, 𝐴) ∶≡ ∥ ∏
𝑥∶𝑋

𝐾(𝐴𝑥, 𝑛)∥
set

Good because:
▶ ∏-type.
▶ ‖_‖set is a modality.
▶ Homotopy group: 𝐻𝑛(𝑋, 𝐴) = 𝜋𝑘(∏𝑥∶𝑋 𝐾(𝐴, 𝑛 + 𝑘)).

Non-trivial for 𝑋 ∶ Set because:
𝑋 = Pushout of sets 𝑈 ← 𝑌 → 𝑉 ,
Then a “cohomology class” 𝑋 → 𝐾(𝐴, 1) is given by:

▶ Maps 𝑓 ∶ 𝑈 → 𝐾(𝐴, 1), 𝑔 ∶ 𝑉 → 𝐾(𝐴, 1).
▶ And ℎ ∶ (𝑥 ∶ 𝑌 ) → 𝑓(𝑥) = 𝑔(𝑥), which is essentially a map

𝑌 → 𝐴, if 𝑈 and 𝑉 don’t have higher cohomology...
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Zariski-Choice and Cohomology

Let 𝑋 = Spec(𝐴) and 𝑀 ∶ 𝑋 → 𝑅-Mod such that
((𝑥 ∶ 𝐷(𝑓)) → 𝑀𝑥) = ((𝑥 ∶ 𝑋) → 𝑀)𝑓 , then

𝐻1(𝑋, 𝑀) = 0

Proof: For 𝑇 ∶ (𝑥 ∶ 𝑋) → 𝐾(𝑀𝑥, 1) we have to show
‖(𝑥 ∶ 𝑋) → 𝑇𝑥 = ∗‖. By connectedness of the 𝐾(𝑀𝑥, 1) we have
(𝑥 ∶ 𝑋) → ‖𝑇𝑥 = ∗‖. Zariski-local choice merely gives us
covering 𝑓1, … , 𝑓𝑛 ∶ 𝐴, such that for each 𝑖 we have

𝑠𝑖 ∶ (𝑥 ∶ 𝐷(𝑓𝑖)) → 𝑇𝑥 = ∗.

So for 𝑡𝑖𝑗(𝑥) ∶≡ 𝑠𝑗(𝑥)−1 ⋅ 𝑠𝑖(𝑥) we have 𝑡𝑖𝑗 + 𝑡𝑗𝑘 = 𝑡𝑖𝑘. By algebra,
we get 𝑢𝑖 ∶ (𝑥 ∶ 𝐷(𝑓𝑖)) → 𝑀𝑥 with 𝑡𝑖𝑗 = 𝑢𝑖 − 𝑢𝑗. Then the

̃𝑠𝑖 ∶≡ 𝑠𝑖 − 𝑢𝑖 glue to a global trivialization.



Zariski-Choice and Cohomology

Let 𝑋 = Spec(𝐴) and 𝑀 ∶ 𝑋 → 𝑅-Mod such that
((𝑥 ∶ 𝐷(𝑓)) → 𝑀𝑥) = ((𝑥 ∶ 𝑋) → 𝑀)𝑓 , then

𝐻1(𝑋, 𝑀) = 0

Proof: For 𝑇 ∶ (𝑥 ∶ 𝑋) → 𝐾(𝑀𝑥, 1) we have to show
‖(𝑥 ∶ 𝑋) → 𝑇𝑥 = ∗‖.

By connectedness of the 𝐾(𝑀𝑥, 1) we have
(𝑥 ∶ 𝑋) → ‖𝑇𝑥 = ∗‖. Zariski-local choice merely gives us
covering 𝑓1, … , 𝑓𝑛 ∶ 𝐴, such that for each 𝑖 we have

𝑠𝑖 ∶ (𝑥 ∶ 𝐷(𝑓𝑖)) → 𝑇𝑥 = ∗.

So for 𝑡𝑖𝑗(𝑥) ∶≡ 𝑠𝑗(𝑥)−1 ⋅ 𝑠𝑖(𝑥) we have 𝑡𝑖𝑗 + 𝑡𝑗𝑘 = 𝑡𝑖𝑘. By algebra,
we get 𝑢𝑖 ∶ (𝑥 ∶ 𝐷(𝑓𝑖)) → 𝑀𝑥 with 𝑡𝑖𝑗 = 𝑢𝑖 − 𝑢𝑗. Then the

̃𝑠𝑖 ∶≡ 𝑠𝑖 − 𝑢𝑖 glue to a global trivialization.



Zariski-Choice and Cohomology

Let 𝑋 = Spec(𝐴) and 𝑀 ∶ 𝑋 → 𝑅-Mod such that
((𝑥 ∶ 𝐷(𝑓)) → 𝑀𝑥) = ((𝑥 ∶ 𝑋) → 𝑀)𝑓 , then

𝐻1(𝑋, 𝑀) = 0

Proof: For 𝑇 ∶ (𝑥 ∶ 𝑋) → 𝐾(𝑀𝑥, 1) we have to show
‖(𝑥 ∶ 𝑋) → 𝑇𝑥 = ∗‖. By connectedness of the 𝐾(𝑀𝑥, 1) we have
(𝑥 ∶ 𝑋) → ‖𝑇𝑥 = ∗‖.

Zariski-local choice merely gives us
covering 𝑓1, … , 𝑓𝑛 ∶ 𝐴, such that for each 𝑖 we have

𝑠𝑖 ∶ (𝑥 ∶ 𝐷(𝑓𝑖)) → 𝑇𝑥 = ∗.

So for 𝑡𝑖𝑗(𝑥) ∶≡ 𝑠𝑗(𝑥)−1 ⋅ 𝑠𝑖(𝑥) we have 𝑡𝑖𝑗 + 𝑡𝑗𝑘 = 𝑡𝑖𝑘. By algebra,
we get 𝑢𝑖 ∶ (𝑥 ∶ 𝐷(𝑓𝑖)) → 𝑀𝑥 with 𝑡𝑖𝑗 = 𝑢𝑖 − 𝑢𝑗. Then the

̃𝑠𝑖 ∶≡ 𝑠𝑖 − 𝑢𝑖 glue to a global trivialization.



Zariski-Choice and Cohomology

Let 𝑋 = Spec(𝐴) and 𝑀 ∶ 𝑋 → 𝑅-Mod such that
((𝑥 ∶ 𝐷(𝑓)) → 𝑀𝑥) = ((𝑥 ∶ 𝑋) → 𝑀)𝑓 , then

𝐻1(𝑋, 𝑀) = 0

Proof: For 𝑇 ∶ (𝑥 ∶ 𝑋) → 𝐾(𝑀𝑥, 1) we have to show
‖(𝑥 ∶ 𝑋) → 𝑇𝑥 = ∗‖. By connectedness of the 𝐾(𝑀𝑥, 1) we have
(𝑥 ∶ 𝑋) → ‖𝑇𝑥 = ∗‖. Zariski-local choice merely gives us
covering 𝑓1, … , 𝑓𝑛 ∶ 𝐴, such that for each 𝑖 we have

𝑠𝑖 ∶ (𝑥 ∶ 𝐷(𝑓𝑖)) → 𝑇𝑥 = ∗.

So for 𝑡𝑖𝑗(𝑥) ∶≡ 𝑠𝑗(𝑥)−1 ⋅ 𝑠𝑖(𝑥) we have 𝑡𝑖𝑗 + 𝑡𝑗𝑘 = 𝑡𝑖𝑘. By algebra,
we get 𝑢𝑖 ∶ (𝑥 ∶ 𝐷(𝑓𝑖)) → 𝑀𝑥 with 𝑡𝑖𝑗 = 𝑢𝑖 − 𝑢𝑗. Then the

̃𝑠𝑖 ∶≡ 𝑠𝑖 − 𝑢𝑖 glue to a global trivialization.



Zariski-Choice and Cohomology

Let 𝑋 = Spec(𝐴) and 𝑀 ∶ 𝑋 → 𝑅-Mod such that
((𝑥 ∶ 𝐷(𝑓)) → 𝑀𝑥) = ((𝑥 ∶ 𝑋) → 𝑀)𝑓 , then

𝐻1(𝑋, 𝑀) = 0

Proof: For 𝑇 ∶ (𝑥 ∶ 𝑋) → 𝐾(𝑀𝑥, 1) we have to show
‖(𝑥 ∶ 𝑋) → 𝑇𝑥 = ∗‖. By connectedness of the 𝐾(𝑀𝑥, 1) we have
(𝑥 ∶ 𝑋) → ‖𝑇𝑥 = ∗‖. Zariski-local choice merely gives us
covering 𝑓1, … , 𝑓𝑛 ∶ 𝐴, such that for each 𝑖 we have

𝑠𝑖 ∶ (𝑥 ∶ 𝐷(𝑓𝑖)) → 𝑇𝑥 = ∗.

So for 𝑡𝑖𝑗(𝑥) ∶≡ 𝑠𝑗(𝑥)−1 ⋅ 𝑠𝑖(𝑥) we have 𝑡𝑖𝑗 + 𝑡𝑗𝑘 = 𝑡𝑖𝑘.

By algebra,
we get 𝑢𝑖 ∶ (𝑥 ∶ 𝐷(𝑓𝑖)) → 𝑀𝑥 with 𝑡𝑖𝑗 = 𝑢𝑖 − 𝑢𝑗. Then the

̃𝑠𝑖 ∶≡ 𝑠𝑖 − 𝑢𝑖 glue to a global trivialization.



Zariski-Choice and Cohomology

Let 𝑋 = Spec(𝐴) and 𝑀 ∶ 𝑋 → 𝑅-Mod such that
((𝑥 ∶ 𝐷(𝑓)) → 𝑀𝑥) = ((𝑥 ∶ 𝑋) → 𝑀)𝑓 , then

𝐻1(𝑋, 𝑀) = 0

Proof: For 𝑇 ∶ (𝑥 ∶ 𝑋) → 𝐾(𝑀𝑥, 1) we have to show
‖(𝑥 ∶ 𝑋) → 𝑇𝑥 = ∗‖. By connectedness of the 𝐾(𝑀𝑥, 1) we have
(𝑥 ∶ 𝑋) → ‖𝑇𝑥 = ∗‖. Zariski-local choice merely gives us
covering 𝑓1, … , 𝑓𝑛 ∶ 𝐴, such that for each 𝑖 we have

𝑠𝑖 ∶ (𝑥 ∶ 𝐷(𝑓𝑖)) → 𝑇𝑥 = ∗.

So for 𝑡𝑖𝑗(𝑥) ∶≡ 𝑠𝑗(𝑥)−1 ⋅ 𝑠𝑖(𝑥) we have 𝑡𝑖𝑗 + 𝑡𝑗𝑘 = 𝑡𝑖𝑘. By algebra,
we get 𝑢𝑖 ∶ (𝑥 ∶ 𝐷(𝑓𝑖)) → 𝑀𝑥 with 𝑡𝑖𝑗 = 𝑢𝑖 − 𝑢𝑗. Then the

̃𝑠𝑖 ∶≡ 𝑠𝑖 − 𝑢𝑖 glue to a global trivialization.



Results of the larger project

▶ Vanishing of 𝐻𝑛(Spec(𝐴), 𝑀) for 𝑛 > 0 and
Čech-Cohomology.

▶ Serre’s theorem on Affineness: If all 𝐻1(𝑋, 𝑀) vanish, then
𝑋 is affine.

▶ Smooth schemes are locally standard smooth.
▶ Closed subsets of ℙ𝑛 are compact as defined by Martín

Escardó in synthetic topology.
▶ ℙ∞ is 𝔸1-equivalent to 𝐵𝑅×.
▶ A subcanonical candidate for the synthetic fppf-topology.
▶ Stacks...



Thank you!

If you want to know more:
▶ There is a workshop in Gothenburg planned for

11-15 March 2024.
▶ The github page mentioned above:

https://github.com/felixwellen/synthetic-zariski/
▶ A formalization project:

https:
//github.com/felixwellen/synthetic-geometry/
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