A Foundation for Synthetic Algebraic Geometry

Felix Cherubini, Thierry Coquand, Matthias Hutzler

HoTTEST, Fall 2023

Related work

We continue work of Anders Kock and Ingo Blechschmidt using ideas of David Jaz Myers.

Related work

We continue work of Anders Kock and Ingo Blechschmidt using ideas of David Jaz Myers.

This work is part of a larger project with many collaborators. A lot of the things we have figured out are on github:

https://github.com/felixwellen/synthetic-zariski/

In addition to the authors this also contains contributions of

Peter Arndt Hugo Moeneclaey David Wärn Ingo Blechschmidt Marc Nieper-Wißkirchen

* Schemes = quasi-compact, quasi-separated schemes of finite type

 \boldsymbol{R} is a given commutative ring from now on.

 ${\boldsymbol{R}}$ is a given commutative ring from now on.

 $V\coloneqq\{(x,y):R^2\mid x^2+y^2=1\}$ is a geometric object.

 ${\boldsymbol R}$ is a given commutative ring from now on.

 $V:=\{(x,y):R^2\mid x^2+y^2=1\}$ is a geometric object. Adding equations like $0=0,\ x(x^2+y^2)=x$ does not change the type V.

 ${\boldsymbol R}$ is a given commutative ring from now on.

 $V:=\{(x,y):R^2\mid x^2+y^2=1\}$ is a geometric object. Adding equations like $0=0,\ x(x^2+y^2)=x$ does not change the type V.

V is determined by the $R\text{-algebra}\ A \coloneqq R[X,Y]/(X^2+Y^2-1).$ We can recover it: $V = \operatorname{Hom}_{R\text{-}\operatorname{Alg}}(A,R).$

 ${\boldsymbol R}$ is a given commutative ring from now on.

 $V:=\{(x,y):R^2\mid x^2+y^2=1\}$ is a geometric object. Adding equations like $0=0,\ x(x^2+y^2)=x$ does not change the type V.

V is determined by the $R\text{-algebra}\ A:=R[X,Y]/(X^2+Y^2-1).$ We can recover it: $V=\operatorname{Hom}_{R\text{-}\operatorname{Alg}}(A,R).$

Definition

- (i) An $R\text{-algebra is finitely presented (fp) if it is merely <math display="inline">R[X_1,\ldots,X_n]/(P_1,\ldots,P_l).$
- (ii) $\operatorname{Spec}(A) := \operatorname{Hom}_{R-\operatorname{Alg}}(A, R)$ is the *spectrum* of an fp R-algebra A.
- (iii) Any X such that there is an A with X = Spec(A) is called *affine scheme*.

Classical vs synthetic

How can we make the functor

 $A\mapsto \operatorname{Spec}(A)$

fully faithful?

Classical algebraic geometry	Synthetic algebraic geometry
Endow $\operatorname{Spec}(A)$ with additional	Axiom (SQC) ¹ . The map
 structure: Zariski topology structure sheaf O_{Spec(A)} 	$\begin{array}{c} A \rightarrow R^{\operatorname{Spec} A} \\ a \mapsto (\varphi \mapsto \varphi(a)) \end{array}$
	is an equivalence for any finitely presented R -algebra A .

¹"Synthetic Quasi-Coherence", due to Ingo Blechschmidt

Basic consequences of SQC

 $A \xrightarrow{\sim} R^{\operatorname{Spec} A}$

Spec
$$(R[X]) = R$$
. Thus: $R[X] \xrightarrow{\sim} R^R$

Basic consequences of SQC

$$A \xrightarrow{\sim} R^{\operatorname{Spec} A}$$

Spec
$$(R[X]) = R$$
. Thus: $R[X] \xrightarrow{\sim} R^R$

If $\operatorname{Spec}(A) = \emptyset$, then $A = R^{\emptyset} = 0$.

- Spec(R/(r)) = (r = 0). Thus: if $r \neq 0$, then r is invertible.
- Spec $(R[r^{-1}]) = (r \text{ is invertible})$. Thus: if r is not invertible, then r is nilpotent.

Basic consequences of SQC

$$A \xrightarrow{\sim} R^{\operatorname{Spec} A}$$

Spec
$$(R[X]) = R$$
. Thus: $R[X] \xrightarrow{\sim} R^R$

If $\operatorname{Spec}(A) = \emptyset$, then $A = R^{\emptyset} = 0$.

Spec(R/(r)) = (r = 0). Thus: if r ≠ 0, then r is invertible.
 Spec(R[r⁻¹]) = (r is invertible). Thus: if r is not invertible, then r is nilpotent.

Axiom: The ring R is local.

lf
$$r_1, \ldots, r_n : R$$
 are not all zero, then some r_i is invertible.

Let f : A.

$$\begin{split} D(f) &\coloneqq \operatorname{Spec}(A_f) = \operatorname{Spec}(A[X]/(fX-1)) \\ &= \{x:\operatorname{Spec}(A) \mid x(f) \text{ invertible}\} \end{split}$$

Let f : A.

$$\begin{split} D(f) &\coloneqq \operatorname{Spec}(A_f) = \operatorname{Spec}(A[X]/(fX-1)) \\ &= \{x: \operatorname{Spec}(A) \mid x(f) \text{ invertible} \} \end{split}$$

Or: Let $f : \operatorname{Spec}(A) \to R$, then:

$$D(f) = \{x : \operatorname{Spec}(A) \mid f(x) \text{ invertible}\}$$
$$= \{x : \operatorname{Spec}(A) \mid f(x) \neq 0\}$$

Let f : A.

$$\begin{split} D(f) &\coloneqq \operatorname{Spec}(A_f) = \operatorname{Spec}(A[X]/(fX-1)) \\ &= \{x: \operatorname{Spec}(A) \mid x(f) \text{ invertible} \} \end{split}$$

Or: Let $f : \operatorname{Spec}(A) \to R$, then:

$$D(f) = \{x : \operatorname{Spec}(A) \mid f(x) \text{ invertible}\}\$$
$$= \{x : \operatorname{Spec}(A) \mid f(x) \neq 0\}\$$

D(f) is called a *standard-open*.

Let f : A.

$$\begin{split} D(f) &\coloneqq \operatorname{Spec}(A_f) = \operatorname{Spec}(A[X]/(fX-1)) \\ &= \{x:\operatorname{Spec}(A) \mid x(f) \text{ invertible}\} \end{split}$$

Or: Let $f : \operatorname{Spec}(A) \to R$, then:

$$D(f) = \{x : \operatorname{Spec}(A) \mid f(x) \text{ invertible}\}\$$
$$= \{x : \operatorname{Spec}(A) \mid f(x) \neq 0\}\$$

D(f) is called a *standard-open*.

Any subset which is merely a finite union of D(f)s is called *global-open*.

Let f : A.

$$\begin{split} D(f) &\coloneqq \operatorname{Spec}(A_f) = \operatorname{Spec}(A[X]/(fX-1)) \\ &= \{x: \operatorname{Spec}(A) \mid x(f) \text{ invertible} \} \end{split}$$

Or: Let $f : \operatorname{Spec}(A) \to R$, then:

$$D(f) = \{x : \operatorname{Spec}(A) \mid f(x) \text{ invertible}\}\$$
$$= \{x : \operatorname{Spec}(A) \mid f(x) \neq 0\}\$$

D(f) is called a *standard-open*.

Any subset which is merely a finite union of D(f)s is called global-open. Let $f_1, \ldots, f_n : A$. Then $\operatorname{Spec}(A) = \bigcup_i D(f_i)$ if and only if $(f_1, \ldots, f_n) = (1)$.

Closed and open propositions

For $r_1,\ldots,r_n:R$ we have the propositions $V(r_1,\ldots,r_n)\coloneqq (r_1=\cdots=r_n=0),$ $D(r_1,\ldots,r_n)\coloneqq (r_1\neq 0\vee\ldots\vee r_n\neq 0).$

Then define:

$$\begin{split} \text{closedProp} &\coloneqq \sum_{p:\text{hProp}} \exists r_1, \dots, r_n. \, (p = V(r_1, \dots, r_n)) \\ \text{openProp} &\coloneqq \sum_{p:\text{hProp}} \exists r_1, \dots, r_n. \, (p = D(r_1, \dots, r_n)) \end{split}$$

A closed subtype of X is a map $X \to \text{closedProp}$. An open subtype of X is a map $X \to \text{openProp}$.

Zariski-local choice

Axiom (Zariski-local choice):

For every surjective π , there merely exist local sections s_i

with $f_1,\ldots,f_n:A$ such that $(f_1,\ldots,f_n)=(1).$

Alternative formulation:

Axiom (Zariski-local choice):

Let $B:\operatorname{Spec}(A)\to \mathcal{U}$ be such that $(x:\operatorname{Spec}(A))\to \|B(x)\|.$ Then there merely are $n:\mathbb{N},\ f_1,\ldots,f_n:A$ such that $(f_1,\ldots,f_n)=(1)$ and $s_i:(x:D(f_i))\to B(x).$

Pointwise-global principle

Theorem Let f : A. (a) A global-open $U \subseteq D(f)$ is global-open in Spec(A)

(b) A subset $U \subseteq \operatorname{Spec}(A)$ is open if and only if it is global-open.

Proof-Idea. Let $U \subseteq \operatorname{Spec}(A)$ be open.

Pointwise-global principle

Theorem Let f : A. (a) A global-open $U \subseteq D(f)$ is global-open in Spec(A)(b) A subset $U \subseteq \text{Spec}(A)$ is open if and only if it is global-open.

Proof-Idea.

Let $U \subseteq \operatorname{Spec}(A)$ be open. That means we have

$$t:\prod_{x:\operatorname{Spec}(A)} \Bigl\| \sum_{n:\mathbb{N}} \sum_{r_1,\ldots,r_n:R} U(x) = (r_1 \neq 0 \vee \cdots \vee r_n \neq 0) \Bigr\|$$

By something called "boundedness", we can assume we have a global " $n:\mathbb{N}$ " and by Zariski-choice we have

$$s_i:(x:D(f_i))\rightarrow \sum_{r_1,\dots,r_n:R}U(x)=(r_1\neq 0\vee\dots\vee r_n\neq 0)$$

Schemes

A type X is a scheme if there exist $U_1, \ldots, U_n : X \to \text{openProp}$ such that $X = \bigcup_i U_i$ and every U_i is an affine scheme.

Schemes

A type X is a scheme if there exist $U_1, \ldots, U_n : X \to \text{openProp}$ such that $X = \bigcup_i U_i$ and every U_i is an affine scheme.

Example. *Projective n*-space:

$$\begin{split} \mathbb{P}^n &:= \{x : R^{n+1} \mid x \neq 0\} / \approx \text{ where } (x \approx y) := \exists \lambda : R.\lambda x = y \\ &= \{ \text{ submodules } L \subseteq R^{n+1} \text{ such that } \|L = R^1\| \} \end{split}$$

is a scheme, since

$$U_i([x]) \coloneqq (x_i \text{ is invertible})$$

is an open affine cover.

Line bundles

The type

$$\mathrm{Lines} \coloneqq \sum_{L:R\operatorname{\mathsf{-Mod}}} \|L = R^1\|$$

has a wild group structure:

 $\blacktriangleright \ L \otimes L' \text{ is again a line}$

 $\blacktriangleright \ L^{\vee} \coloneqq \operatorname{Hom}(L,R^1) \text{ is the inverse}$

Line bundles

The type

$$\text{Lines} \coloneqq \sum_{L:R\text{-}\mathsf{Mod}} \|L = R^1\|$$

has a wild group structure:

 $\blacktriangleright \ L\otimes L' \text{ is again a line}$

 $\blacktriangleright \ L^{\vee} \coloneqq \operatorname{Hom}(L,R^1) \text{ is the inverse}$

A line bundle on X is a map $X \to \text{Lines}$. Example. tautological line bundle , $[x] \mapsto R\langle x \rangle : \mathbb{P}^n \to \text{Lines}$

Line bundles

The type

$$\text{Lines} \coloneqq \sum_{L:R\text{-}\mathsf{Mod}} \|L = R^1\|$$

has a wild group structure:

▶ $L \otimes L'$ is again a line ▶ $L^{\vee} := \operatorname{Hom}(L, R^1)$ is the inverse

A line bundle on X is a map $X \to \text{Lines}$. Example. tautological line bundle , $[x] \mapsto R\langle x \rangle : \mathbb{P}^n \to \text{Lines}$

The *Picard group* of X is

$$\operatorname{Pic}(X) := \|X \to \operatorname{Lines}\|_{\operatorname{set}}.$$

(In fact, Lines = $K(R^{\times}, 1)$ and $\operatorname{Pic}(X) = H^1(X, R^{\times})$.)

For $A: X \to Ab$, define *cohomology* as:

$$H^n(X,A):\equiv \Bigl\|\prod_{x:X}K(A_x,n)\Bigr\|_{\rm set}$$

For $A: X \to Ab$, define *cohomology* as:

$$H^n(X,A):\equiv \Bigl\|\prod_{x:X}K(A_x,n)\Bigr\|_{\rm set}$$

Good because:

► ∏-type.

 $|| \|_{set}$ is a modality.

• Homotopy group: $H^n(X, A) = \pi_k(\prod_{x:X} K(A, n+k)).$

For $A: X \to Ab$, define *cohomology* as:

$$H^n(X,A):\equiv \Big\|\prod_{x:X}K(A_x,n)\Big\|_{\rm set}$$

Good because:

► ∏-type.

 $|| \|_{set}$ is a modality.

► Homotopy group: $H^n(X, A) = \pi_k(\prod_{x:X} K(A, n+k))$. Non-trivial for X: Set because: X = Pushout of sets $U \leftarrow Y \rightarrow V$, Then a "cohomology class" $X \rightarrow K(A, 1)$ is given by:

Maps
$$f: U \to K(A, 1)$$
, $g: V \to K(A, 1)$.

And $h: (x:Y) \to f(x) = g(x)$, which is essentially a map $Y \to A$, if U and V don't have higher cohomology...

Let $X={\rm Spec}(A)$ and $M:X\to R\text{-Mod}$ such that $((x:D(f))\to M_x)=((x:X)\to M)_f,$ then

 $H^1(X,M) = 0$

Let
$$X={\rm Spec}(A)$$
 and $M:X\to R\text{-Mod such that}$ $((x:D(f))\to M_x)=((x:X)\to M)_f,$ then
$$H^1(X,M)=0$$

 $\begin{array}{l} \textbf{Proof:} \mbox{ For } T: (x:X) \to K(M_x,1) \mbox{ we have to show } \\ \|(x:X) \to T_x = \ast\|. \end{array} \end{array}$

Let
$$X={\rm Spec}(A)$$
 and $M:X\to R\text{-Mod}$ such that
$$((x:D(f))\to M_x)=((x:X)\to M)_f\text{, then}$$

$$H^1(X,M)=0$$

 $\begin{array}{l} \textbf{Proof: For } T:(x:X) \rightarrow K(M_x,1) \text{ we have to show} \\ \|(x:X) \rightarrow T_x = \ast\|. \text{ By connectedness of the } K(M_x,1) \text{ we have } \\ (x:X) \rightarrow \|T_x = \ast\|. \end{array}$

Let
$$X={\rm Spec}(A)$$
 and $M:X\to R\text{-Mod}$ such that
$$((x:D(f))\to M_x)=((x:X)\to M)_f\text{, then}$$

$$H^1(X,M)=0$$

Proof: For $T:(x:X)\to K(M_x,1)$ we have to show $\|(x:X)\to T_x=*\|$. By connectedness of the $K(M_x,1)$ we have $(x:X)\to \|T_x=*\|$. Zariski-local choice merely gives us covering $f_1,\ldots,f_n:A$, such that for each i we have

 $s_i:(x:D(f_i))\to T_x=*.$

Let
$$X={\rm Spec}(A)$$
 and $M:X\to R\text{-Mod}$ such that
$$((x:D(f))\to M_x)=((x:X)\to M)_f\text{, then}$$

$$H^1(X,M)=0$$

Proof: For $T:(x:X)\to K(M_x,1)$ we have to show $\|(x:X)\to T_x=*\|$. By connectedness of the $K(M_x,1)$ we have $(x:X)\to \|T_x=*\|$. Zariski-local choice merely gives us covering $f_1,\ldots,f_n:A$, such that for each i we have

$$s_i:(x:D(f_i))\to T_x=*.$$

So for $t_{ij}(x) :\equiv s_j(x)^{-1} \cdot s_i(x)$ we have $t_{ij} + t_{jk} = t_{ik}$.

Let
$$X={\rm Spec}(A)$$
 and $M:X\to R\text{-Mod}$ such that
$$((x:D(f))\to M_x)=((x:X)\to M)_f\text{, then}$$

$$H^1(X,M)=0$$

Proof: For $T:(x:X)\to K(M_x,1)$ we have to show $\|(x:X)\to T_x=*\|$. By connectedness of the $K(M_x,1)$ we have $(x:X)\to \|T_x=*\|$. Zariski-local choice merely gives us covering $f_1,\ldots,f_n:A$, such that for each i we have

$$s_i:(x:D(f_i))\to T_x=*.$$

So for $t_{ij}(x) :\equiv s_j(x)^{-1} \cdot s_i(x)$ we have $t_{ij} + t_{jk} = t_{ik}$. By algebra, we get $u_i : (x : D(f_i)) \to M_x$ with $t_{ij} = u_i - u_j$. Then the $\tilde{s}_i :\equiv s_i - u_i$ glue to a global trivialization.

Results of the larger project

- ▶ Vanishing of Hⁿ(Spec(A), M) for n > 0 and Čech-Cohomology.
- Serre's theorem on Affineness: If all $H^1(X, M)$ vanish, then X is affine.
- Smooth schemes are locally standard smooth.
- Closed subsets of Pⁿ are compact as defined by Martín Escardó in synthetic topology.
- \triangleright \mathbb{P}^{∞} is \mathbb{A}^1 -equivalent to BR^{\times} .
- A subcanonical candidate for the synthetic fppf-topology.
- Stacks...

Thank you!

Thank you!

If you want to know more:

There is a workshop in Gothenburg planned for

11-15 March 2024.

The github page mentioned above:

https://github.com/felixwellen/synthetic-zariski/

A formalization project:

https:

//github.com/felixwellen/synthetic-geometry/