Pierre Cagne
 (joint work with Nicolai Kraus and Marc Bezem)

Universitetet i Bergen*

Symmetries of $\mathbb{\n

in univalent foundations

Homotopy Type Theory Electronic Seminar Talks

November 19 ${ }^{\text {th }}, 2020$

1. Symmetries of the circle
2. Symmetries of the 2-sphere
3. Symmetries of higher spheres
4. Symmetries of the circle

$\1 as a HIT

$\1 is postulated as a type with:

- a base point • : $\1,

$\1 as a HIT

$\1 is postulated as a type with:

- a base point • : $\1,
- a path \circlearrowleft : • = •

$\1 as a HIT

$\1 is postulated as a type with:

- a base point • : $\1,
- a path \circlearrowleft : • = •

It comes with an elimination rule: for any $T: \mathbb{S}^{1} \rightarrow \mathcal{U}$

$$
\begin{aligned}
& t: T(\cdot) \\
& \ell: t=T
\end{aligned}
$$

$\1 as a HIT

$\1 is postulated as a type with:

- a base point • : $\1,
- a path \circlearrowleft : • = •

It comes with an elimination rule: for any $T: \mathbb{S}^{1} \rightarrow \mathcal{U}$

$$
\left.\begin{array}{l}
t: T(\cdot) \\
\ell: t=T
\end{array}\right\} \quad \longmapsto \quad f: \prod_{x: S^{1}} T(x)
$$

$\1 as a HIT

$\1 is postulated as a type with:

- a base point • : $\mathbb{\1,
- a path \circlearrowleft : • = •

It comes with an elimination rule: for any $T: \mathbb{S}^{1} \rightarrow \mathcal{U}$

$$
\left.\begin{array}{l}
t: T(\cdot) \\
\ell: t=T
\end{array}\right\} \quad \longmapsto \quad f: \prod_{x: S^{1}} T(x)
$$

such that $f(\cdot) \equiv t$ and $[f](\circlearrowleft)=\ell$.

Warming-up

In particular, functions $\mathbb{S}^{1} \longrightarrow A$ corresponds to

- a point $x: A$,

Warming-up

In particular, functions $\mathbb{S}^{1} \longrightarrow A$ corresponds to

- a point x : A,
- a symmetry $\ell: x=x$.

Warming-up

In particular, functions $\mathbb{S}^{1} \rightarrow A$ corresponds to

- a point x : A,
- a symmetry $\ell: x=x$.

Example: define $-\mathrm{id}_{\mathbb{S}^{1}}$ as the function $\mathbb{S}^{1} \rightarrow \1 given by:

- the point • : \mathbb{S}^{1},

Warming-up

In particular, functions $\mathbb{S}^{1} \rightarrow A$ corresponds to

- a point x : A,
- a symmetry $\ell: x=x$.

Example: define $-\mathrm{id}_{\mathbb{S}^{1}}$ as the function $\mathbb{S}^{1} \rightarrow \1 given by:

- the point • : \mathbb{S}^{1},
- the symmetry \circlearrowleft^{-1} : • = •

Proof sketch

Goal: prove that

$$
\left(\$^{1}=\mathbb{S}^{1}\right) \simeq\left(\$^{1}+\mathbb{S}^{1}\right)
$$

Proof sketch

Goal: prove that

$$
\left(\mathbb{S}^{1}=\mathbb{S}^{1}\right) \simeq\left(\mathbb{S}^{1}+\mathbb{S}^{1}\right)
$$

- Identify $\left(\$^{1}=\$^{1}\right)$ with $\left(\$^{1} \simeq \$^{1}\right)$

Proof sketch

Goal: prove that

$$
\left(\mathbb{S}^{1}=\mathbb{S}^{1}\right) \simeq\left(\mathbb{S}^{1}+\mathbb{S}^{1}\right)
$$

- Identify $\left(\mathbb{S}^{1}=\$^{1}\right)$ with $\left(\mathbb{S}^{1} \simeq \$^{1}\right)$
- Prove that

$$
\left(\mathbb{S}^{1} \simeq \mathbb{S}^{1}\right) \simeq\left(\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}\right)_{\left(\mathrm{id}_{S^{1}}\right)}+\left(\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}\right)_{\left(-\mathrm{id}_{\mathrm{S}^{1}}\right)}
$$

Proof sketch

Goal: prove that

$$
\left(\mathbb{S}^{1}=\mathbb{S}^{1}\right) \simeq\left(\mathbb{S}^{1}+\mathbb{S}^{1}\right)
$$

- Identify $\left(\$^{1}=\$^{1}\right)$ with $\left(\$^{1} \simeq \$^{1}\right)$
- Prove that

$$
\left(\mathbb{S}^{1} \simeq \mathbb{S}^{1}\right) \simeq\left(\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}\right)_{\left(\mathrm{id}_{\mathbb{S}^{1}}\right)}+\left(\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}\right)_{\left(-\mathrm{id}_{\mathrm{S}^{1}}\right)}
$$

- Identify both component with \mathbb{S}^{1}.

Suppose $p: \mathrm{id}_{\mathbb{S}^{1}}=-\mathrm{id}_{\mathbb{S}^{1}}$, and evaluate:

$$
\begin{gathered}
p(\cdot): \bullet=\cdot \\
{[p](\circlearrowleft): p(\cdot)=\$ p(\cdot)}
\end{gathered}
$$

Suppose $p: \mathrm{id}_{\mathbb{S}^{1}}=-\mathrm{id}_{\mathbb{S}^{1}}$, and evaluate:

$$
\simeq \mathbb{Z}
$$

$$
p(\cdot): \bullet=\bullet
$$

$$
[p](\circlearrowleft): p(\cdot)=\circlearrowleft p(\cdot)
$$

Suppose $p: \mathrm{id}_{\mathbb{S}^{1}}=-\mathrm{id}_{\mathbb{S}^{1}}$, and evaluate:

$$
\begin{gathered}
p(\cdot): \bullet=\cdot \\
{[p](\circlearrowleft): p(\cdot)={ }_{\circlearrowleft} p(\cdot)}
\end{gathered}
$$

i.e.

$$
\begin{aligned}
& k: \mathbb{Z} \\
& !: \circlearrowleft^{-1} \circlearrowleft^{k} \circlearrowleft^{-1}=\circlearrowleft^{k}
\end{aligned}
$$

Suppose $p: \mathrm{id}_{\mathbb{S}^{1}}=-\mathrm{id}_{\mathbb{S}^{1}}$, and evaluate:

$$
\begin{gathered}
p(\cdot): \bullet=\cdot \\
{[p](\circlearrowleft): p(\cdot)=\circlearrowleft p(\cdot)}
\end{gathered}
$$

i.e.

$$
\begin{aligned}
& k: \mathbb{Z} \\
& !: \circlearrowleft^{-1} \circlearrowleft^{k} \circlearrowleft^{-1}=\circlearrowleft^{k} \quad \text { 丩 }
\end{aligned}
$$

$\mathrm{id}_{\mathrm{S}^{1}} \neq-\mathrm{id}_{\mathrm{S}^{1}}$

Suppose $p: \mathrm{id}_{\mathbb{S}^{1}}=-\mathrm{id}_{\mathbb{S}^{1}}$, and evaluate:

$$
\begin{gathered}
p(\cdot): \bullet= \\
{[p](\circlearrowleft): p(\cdot)=\circlearrowleft p(\cdot)}
\end{gathered}
$$

i.e.

$$
\begin{aligned}
& k: \mathbb{Z} \\
& !: \circlearrowleft^{-1} \circlearrowleft^{k} \circlearrowleft^{-1}=\circlearrowleft^{k} \quad \text { ץ }
\end{aligned}
$$

Consequence: $\left\|f=\operatorname{id}_{\mathbb{S}^{1}}\right\|+\left\|f=-\operatorname{id}_{\mathbb{S}^{1}}\right\|$ is a proposition for $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$.

Equivalences are merely $\mathrm{id}_{\mathrm{S}^{1}}$ or $-\mathrm{id}_{\mathrm{S}^{1}}$

Let $\phi: \Phi^{1} \simeq \Phi^{1}$ and prove the proposition $\left\|\phi=\mathrm{id}_{\mathrm{S}^{1}}\right\|+\left\|\phi=-\mathrm{id}_{\mathrm{S}^{1}}\right\|$.

Equivalences are merely $\mathrm{id}_{\mathrm{S}^{1}}$ or $-\mathrm{id}_{\mathrm{S}^{1}}$

Let $\phi: \mathbb{S}^{1} \simeq \mathbb{S}^{1}$ and prove the proposition $\left\|\phi=\operatorname{id}_{\mathbb{S}^{1}}\right\|+\left\|\phi=-\mathrm{id}_{\mathbb{S}^{1}}\right\|$.

WLOG, suppose ϕ is pointed: $p: \bullet=\phi(\bullet)$.

Equivalences are merely $\mathrm{id}_{\mathrm{S}^{1}}$ or $-\mathrm{id}_{\mathrm{S}^{1}}$

Let $\phi: \mathbb{S}^{1} \simeq \mathbb{S}^{1}$ and prove the proposition $\left\|\phi=\mathrm{id}_{\mathbb{S}^{1}}\right\|+\left\|\phi=-\mathrm{id}_{\mathbb{S}^{1}}\right\|$.

WLOG, suppose ϕ is pointed: $p: \bullet=\phi(\bullet)$.

$$
\stackrel{p}{p^{-1}} \stackrel{p}{\leftrightarrows} \phi(\cdot) \not[\phi](\circlearrowleft)
$$

Equivalences are merely $\mathrm{id}_{\mathrm{S}^{1}}$ or $-\mathrm{id}_{\mathrm{S}^{1}}$

Let $\phi: \mathbb{S}^{1} \simeq \mathbb{S}^{1}$ and prove the proposition $\left\|\phi=\operatorname{id}_{\mathbb{S}^{1}}\right\|+\left\|\phi=-\mathrm{id}_{\mathbb{S}^{1}}\right\|$.

WLOG, suppose ϕ is pointed: $p: \bullet=\phi(\bullet)$.

$$
\circlearrowleft_{k}^{k}\left(\cdot \underset{p^{-1}}{\xrightarrow[p]{\sim}} \phi(\cdot) \bigvee[\phi](\circlearrowleft)\right.
$$

Equivalences are merely $\mathrm{id}_{\mathrm{S}^{1}}$ or $-\mathrm{id}_{\mathrm{S}^{1}}$

Let $\phi: \mathbb{S}^{1} \simeq \mathbb{S}^{1}$ and prove the proposition $\left\|\phi=\operatorname{id}_{\mathbb{S}^{1}}\right\|+\left\|\phi=-\mathrm{id}_{\mathbb{S}^{1}}\right\|$.

WLOG, suppose ϕ is pointed: $p: \bullet=\phi(\bullet)$.

$$
\circlearrowleft^{ \pm 1} \smile \cdot \xrightarrow[p^{-1}]{\rightarrow} \phi(\cdot) \bigvee[\phi](\circlearrowleft)
$$

Because ϕ equivalence: $p^{-1} \phi(\circlearrowleft) p=\circlearrowleft^{ \pm 1}$.

Equivalences are merely $\mathrm{id}_{\mathbb{S}^{1}}$ or $-\mathrm{id}_{\mathbb{S}^{1}}$

Let $\phi: \mathbb{S}^{1} \simeq \mathbb{S}^{1}$ and prove the proposition $\left\|\phi=\operatorname{id}_{\mathbb{S}^{1}}\right\|+\left\|\phi=-\mathrm{id}_{\mathbb{S}^{1}}\right\|$.

WLOG, suppose ϕ is pointed: $p: \bullet=\phi(\bullet)$.

Because ϕ equivalence: $p^{-1} \phi(\circlearrowleft) p=\circlearrowleft^{ \pm 1}$.

In other words there is $e_{1}: \phi=\mathrm{id}_{\mathbb{S}^{1}}$ or $e_{-1}: \phi=-\mathrm{id}_{\mathbb{S}^{1}}$. Then truncate.
$\$^{1} \rightarrow \1

$$
\left(\mathrm{S}^{1} \rightarrow \mathrm{~S}^{1}\right)
$$

$\$^{1} \rightarrow \1

$$
\left.\left(s^{L} \rightarrow s\right)^{\prime}\right)=\left(\sum_{s_{1} x=x}\right)
$$

$\$^{1} \rightarrow \1

$\$^{1} \rightarrow \1

$$
\left(\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}\right) \simeq\left(\sum_{x: \mathbb{S}^{1}} x=x\right) \simeq\left(\mathbb{S}^{1} \times \mathbb{Z}\right)
$$

$\$^{1} \rightarrow \1

$$
\begin{gathered}
\left(\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}\right) \simeq\left(\sum_{x: S^{1}} x=x\right) \simeq\left(\mathbb{S}^{1} \times \mathbb{Z}\right) \\
\text { id }_{S^{1}} \longmapsto ? ~ ? ~
\end{gathered}
$$

$$
\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}
$$

$$
\begin{aligned}
\left(\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}\right) \simeq\left(\sum_{x: S^{1}} x=x\right) \simeq & \left(\mathbb{S}^{1} \times \mathbb{Z}\right) \\
& i d_{S^{1}} \longmapsto(\cdot, 1) \\
& \longrightarrow \mathrm{id}_{\mathrm{S}^{1}} \longmapsto
\end{aligned}
$$

Conclusion: $\left(\$^{1}=\$^{1}\right) \simeq \$^{1}+\1

$$
\left(\mathrm{S}^{1}=\mathbb{S}^{1}\right) \simeq\left(\mathrm{S}^{1} \rightarrow \mathbb{S}^{1}\right)_{\left(\mathrm{id}_{\mathrm{s}_{1}}\right)}+\left(\mathbb{S}^{1} \rightarrow \mathrm{~S}^{1}\right)_{\left(-\mathrm{id}_{\mathrm{s}^{1}}\right)}
$$

Conclusion: $\left(\$^{1}=\$^{1}\right) \simeq \$^{1}+\1

$$
\begin{aligned}
\left(\mathbb{S}^{1}=\mathbb{S}^{1}\right) \simeq & \underbrace{\left.\left(\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}\right)_{\left(\mathrm{id}_{1}\right)}\right)}_{\uparrow}+\underbrace{\left(\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}\right.}_{\left(\mathrm{-id}_{\left.\mathbb{S}^{1}\right)}\right)}{ }_{\left(\mathbb{S}^{1} \times \mathbb{Z}\right)_{((\cdot, 1))}} \quad\left(\mathbb{S}^{1} \times \mathbb{Z}\right)_{((\cdot,-1))}
\end{aligned}
$$

Conclusion: $\left(\$^{1}=\$^{1}\right) \simeq \$^{1}+\1

2. Symmetries of the 2 -sphere

$\2 as a suspension

$\$^{2}: \equiv \Sigma \1 is the suspension of $\1, defined by:

- two poles $N, S: \2,

$\2 as a suspension

$\$^{2}: \equiv \Sigma \1 is the suspension of $\1, defined by:

- two poles $N, S: \2,
- for each $x: \mathbb{S}^{1}$, a path $\operatorname{mrd}(x): N=S$.

$\2 as a suspension

$\$^{2}: \equiv \Sigma \1 is the suspension of $\1, defined by:

- two poles $N, S: \2,
- for each $x: \mathbb{S}^{1}$, a path $\operatorname{mrd}(x): N=S$.
\mathbb{S}^{2} comes with an elimination rule: for every $T: \mathbb{S}^{2} \rightarrow \mathcal{U}$,

$$
\begin{aligned}
n & : T(N) \\
s & : T(S) \\
m & : \prod_{x: \mathbb{S}^{1}} n={ }_{\operatorname{mrd}(x)}^{T} s
\end{aligned}
$$

$\2 as a suspension

$\$^{2}: \equiv \Sigma \1 is the suspension of $\1, defined by:

- two poles $N, S: \2,
- for each $x: \mathbb{S}^{1}$, a path $\operatorname{mrd}(x): N=S$.
$\2 comes with an elimination rule: for every $T: \$^{2} \rightarrow \mathcal{U}$,

$$
\left.\begin{array}{rl}
n & : T(N) \\
s & : T(S) \\
m & : \prod_{x: \mathbb{S}^{1}} n={ }_{\operatorname{mrd}(x)}^{T} s
\end{array}\right\} \quad \longmapsto \quad f: \prod_{y: S^{2}} T(y)
$$

$\2 as a suspension

$\mathbb{S}^{2}: \equiv \Sigma \1 is the suspension of $\1, defined by:

- two poles $N, S: \2,
- for each $x: \mathbb{S}^{1}$, a path $\operatorname{mrd}(x): N=S$.
\mathbb{S}^{2} comes with an elimination rule: for every $T: \mathbb{S}^{2} \rightarrow \mathcal{U}$,

$$
\left.\begin{array}{rl}
n & : T(N) \\
s & : T(S) \\
m & : \prod_{x: \mathbb{S}^{1}} n={ }_{\operatorname{mrd}(x)}^{T} s
\end{array}\right\} \quad \longmapsto \quad f: \prod_{y: \mathbb{S}^{2}} T(y)
$$

such that $f(N) \equiv n, f(S) \equiv s$ and $[f] \circ \operatorname{mrd}=m$.

Generalization

Should we expect $\left(\$^{2}=\$^{2}\right) \simeq \$^{2}+\2 ?

Generalization

Should we expect $\left(\mathbb{S}^{2}=\mathbb{S}^{2}\right) \simeq \mathbb{S}^{2}+\mathbb{S}^{2}$?

Probably not: the argument for $\mathbb{S}^{1} \xrightarrow{\simeq}\left(\mathbb{S}^{1} \longrightarrow \mathbb{S}^{1}\right)_{\left(\mathrm{id}_{\mathbb{S}^{1}}\right)}$ relies on

$$
\Omega \mathbb{S}^{1} \simeq \mathbb{Z} \quad \text { abelian group }
$$

Generalization

Should we expect $\left(\mathbb{S}^{2}=\mathbb{S}^{2}\right) \simeq \mathbb{S}^{2}+\mathbb{S}^{2}$?

Probably not: the argument for $\mathbb{S}^{1} \xrightarrow{\simeq}\left(\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}\right)_{\left(\mathrm{id}_{\mathbb{S}^{1}}\right)}$ relies on

$$
\Omega \mathbb{S}^{1} \simeq \mathbb{Z} \quad \text { abelian group }
$$

Still plausible: there is two equivalent connected components, one at $\mathrm{id}_{\mathbb{S}^{2}}$, the other at - $\mathrm{id}_{\mathbb{S}^{2}}$.

Definition of $-\mathrm{id}_{\mathbb{S}^{2}}$

$$
-\mathrm{id}_{\mathbb{S}^{2}}: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}
$$

Definition of $-\mathrm{id}_{\mathbb{S}^{2}}$

$$
\begin{aligned}
&-\mathrm{id}_{\mathbb{S}^{2}}: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2} \\
& N \mapsto n: \equiv S
\end{aligned}
$$

Definition of $-\mathrm{id}_{\mathbb{S}^{2}}$

$$
\begin{aligned}
-\mathrm{id}_{\mathbb{S}^{2}}: \mathbb{S}^{2} & \longrightarrow \mathbb{S}^{2} \\
N & \mapsto n: \equiv S \\
S & \mapsto s: \equiv N
\end{aligned}
$$

$$
\begin{aligned}
-\mathrm{id}_{\mathbb{S}^{2}}: \mathbb{S}^{2} & \rightarrow \mathbb{S}^{2} \\
N & \mapsto n: \equiv S \\
S & \mapsto s: \equiv N
\end{aligned}
$$

$$
: \mathbb{S}^{1} \xrightarrow{m} S=N
$$

$$
\begin{aligned}
-\mathrm{id}_{\mathbb{S}^{2}}: \mathbb{S}^{2} & \rightarrow \mathbb{S}^{2} \\
N & \mapsto n: \equiv S \\
S & \mapsto s: \equiv N \\
& \operatorname{mrd}(-)^{-1}: \mathbb{S}^{1} \xrightarrow{m} S=N
\end{aligned}
$$

Definition of $-\mathrm{id}_{\mathbb{S}^{2}}$

$$
\begin{aligned}
-\mathrm{id}_{\mathbb{S}^{2}}: \mathbb{S}^{2} & \rightarrow \mathbb{S}^{2} \\
N & \mapsto n: \equiv S \\
S & \mapsto s: \equiv N \\
& \operatorname{mrd}(-)^{-1}: \mathbb{S}^{1} \xrightarrow{m} S=N
\end{aligned}
$$

Hopefully, $\mathrm{id}_{\mathbb{S}^{2}} \neq-\mathrm{id}_{\mathbb{S}^{2}}$ still holds.
$\mathrm{id}_{\mathrm{S}^{2}} \neq-\mathrm{id}_{\mathrm{S}^{2}}$

Suppose $p: \prod_{y: \mathbb{S}^{2}} \operatorname{id}(y)=-\operatorname{id}(y)$.

$\mathrm{id}_{\mathrm{S}^{2}} \neq-\mathrm{id}_{\mathrm{S}^{2}}$

Suppose $p: \prod_{y: \mathbb{S}^{2}} \operatorname{dd}(y)=-\operatorname{id}(y)$.

WLOG, one can suppose $p(N)=\operatorname{mrd}(\cdot)$ and $p(S)=\operatorname{mrd}(\cdot)^{-1}$ inhabited.

$\mathrm{id}_{\mathrm{S}^{2}} \neq-\mathrm{id}_{\mathrm{S}^{2}}$

Suppose $p: \prod_{y: \mathbb{S}^{2}} \operatorname{id}(y)=-\operatorname{id}(y)$.

WLOG, one can suppose $p(N)=\operatorname{mrd}(\cdot)$ and $p(S)=\operatorname{mrd}(\cdot)^{-1}$ inhabited.

Then one has

$$
\pi: \prod_{x: \mathbb{S}^{1}} \operatorname{mrd}(\cdot)={ }_{\operatorname{mrd}(x)} \operatorname{mrd}(\cdot)^{-1}
$$

$\mathrm{id}_{\mathrm{S}^{2}} \neq-\mathrm{id}_{\mathrm{S}^{2}}$

Suppose $p: \prod_{y: \mathbb{S}^{2}} \operatorname{id}(y)=-\operatorname{id}(y)$.

WLOG, one can suppose $p(N)=\operatorname{mrd}(\cdot)$ and $p(S)=\operatorname{mrd}(\cdot)^{-1}$ inhabited.

Then one has

$$
\pi: \prod_{x: S^{1}} \operatorname{mrd}(x)^{-1} \operatorname{mrd}(\cdot) \operatorname{mrd}(x)^{-1}=\operatorname{mrd}(\cdot)^{-1}
$$

$\mathrm{id}_{\mathrm{S}^{2}} \neq-\mathrm{id}_{\mathrm{S}^{2}}$

Suppose $p: \prod_{y: \mathbb{S}^{2}} \operatorname{id}(y)=-\operatorname{id}(y)$.

WLOG, one can suppose $p(N)=\operatorname{mrd}(\cdot)$ and $p(S)=\operatorname{mrd}(\cdot)^{-1}$ inhabited.

Then one has

$$
\begin{aligned}
\pi(\cdot) & : \operatorname{mrd}(\cdot)^{-1} \operatorname{mrd}(\cdot) \operatorname{mrd}(\cdot)^{-1}=\operatorname{mrd}(\cdot)^{-1} \\
{[\pi](\circlearrowleft) } & : \pi(\cdot)=\circlearrowleft \pi(\cdot)
\end{aligned}
$$

$\mathrm{id}_{\mathrm{S}^{2}} \neq-\mathrm{id}_{\mathrm{S}^{2}}$

Suppose $p: \prod_{y: \mathbb{S}^{2}} \operatorname{id}(y)=-\operatorname{id}(y)$.

WLOG, one can suppose $p(N)=\operatorname{mrd}(\cdot)$ and $p(S)=\operatorname{mrd}(\cdot)^{-1}$ inhabited.

Then one has

$$
\begin{aligned}
\pi(\cdot) & : \operatorname{mrd}(\cdot)^{-1} \operatorname{mrd}(\cdot) \operatorname{mrd}(\cdot)^{-1}=\operatorname{mrd}(\cdot)^{-1} \\
{[\pi](\circlearrowleft) } & : \pi(\cdot)=\circlearrowleft \pi(\cdot)
\end{aligned}
$$

... ultimately, one gets an element of $[\mathrm{mrd}]\left(\circlearrowleft^{2}\right)=\left.r e f\right|_{\operatorname{mrd}}(\bullet)$
$\mathrm{id}_{\mathrm{S}^{2}} \neq-\mathrm{id}_{\mathrm{S}^{2}}($ cont'd $)$

Recall the Hopf family:

$$
\mathcal{H}: \mathbb{S}^{2} \rightarrow \mathcal{U}
$$

$\mathrm{id}_{\mathbb{S}^{2}} \neq-\mathrm{id}_{\mathbb{S}^{2}}($ cont'd $)$

Recall the Hopf family:

$$
\begin{aligned}
& \mathcal{H}: \mathbb{S}^{2} \longrightarrow \mathcal{U} \\
& N \mapsto n: \equiv \mathbb{S}^{1}
\end{aligned}
$$

$\mathrm{id}_{\mathbb{S}^{2}} \neq-\mathrm{id}_{\mathbb{S}^{2}}($ cont'd $)$

Recall the Hopf family:

$$
\begin{aligned}
\mathcal{H}: \mathbb{S}^{2} & \longrightarrow \mathcal{U} \\
N & \mapsto n: \equiv \mathbb{S}^{1} \\
S & \mapsto s: \equiv \mathbb{S}^{1}
\end{aligned}
$$

$\mathrm{id}_{\mathbb{S}^{2}} \neq-\mathrm{id}_{\mathbb{S}^{2}}($ cont'd $)$

Recall the Hopf family:

$$
\begin{aligned}
H: \mathbb{S}^{2} & \rightarrow \mathcal{U} \\
N & \mapsto n: \equiv \mathbb{S}^{1} \\
S & \mapsto s: \equiv \mathbb{S}^{1} \\
x & \mapsto\left(x, \circlearrowleft_{x}\right): \mathbb{S}^{1} \xrightarrow{m}\left(\mathbb{S}^{1}=\mathbb{S}^{1}\right)
\end{aligned}
$$

$\mathrm{id}_{\mathbb{S}^{2}} \neq-\mathrm{id}_{\mathbb{S}^{2}}($ cont'd $)$

Recall the Hopf family:

$$
\begin{aligned}
H: \mathbb{S}^{2} & \rightarrow \mathcal{U} \\
& N \mapsto n: \equiv \mathbb{S}^{1} \\
& S \mapsto s: \equiv \mathbb{S}^{1} \\
x & \mapsto\left(x, \circlearrowleft_{x}\right) \\
& : \mathbb{S}^{1} \xrightarrow{m}\left(\mathbb{S}^{1}=\mathbb{S}^{1}\right)
\end{aligned}
$$

$\mathrm{id}_{\mathbb{S}^{2}} \neq-\mathrm{id}_{\mathbb{S}^{2}}($ cont'd $)$

Recall the Hopf family:

$$
\begin{aligned}
H: \mathbb{S}^{2} & \rightarrow \mathcal{U} \\
N & \mapsto n: \equiv \mathbb{S}^{1} \\
S & \mapsto s: \equiv \mathbb{S}^{1} \\
x & \mapsto\left(x, \circlearrowleft_{x}\right): \mathbb{S}^{1} \xrightarrow{m}\left(\mathbb{S}^{1}=\mathbb{S}^{1}\right)
\end{aligned}
$$

$\mathrm{id}_{\mathbb{S}^{2}} \neq-\mathrm{id}_{\mathbb{S}^{2}}($ cont'd $)$

Recall the Hopf family:

$$
\begin{aligned}
H: \mathbb{S}^{2} & \rightarrow \mathcal{U} \\
N & \mapsto n: \equiv \mathbb{S}^{1} \\
S & \mapsto s: \equiv \mathbb{S}^{1} \\
x & \mapsto\left(x, \circlearrowleft_{x}\right)
\end{aligned}: \mathbb{S}^{1} \xrightarrow{\bullet}\left(\mathbb{S}^{1}=\mathbb{S}^{1}\right) \quad:(x=x) \simeq(\cdot=\cdot): \circlearrowleft
$$

$\mathrm{id}_{\mathbb{S}^{2}} \neq-\mathrm{id}_{\mathbb{S}^{2}}($ cont'd $)$

Recall the Hopf family:

$$
\begin{aligned}
H: \mathbb{S}^{2} & \rightarrow \mathcal{U} \\
N & \mapsto n: \equiv \mathbb{S}^{1} \\
S & \mapsto s: \equiv \mathbb{S}^{1} \\
x & \mapsto\left(x, \circlearrowleft_{x}\right)
\end{aligned}: \begin{aligned}
& \bullet \mapsto x \\
& \circlearrowleft \mapsto \mathbb{S}_{x}:(x=x) \simeq(\cdot=\cdot): \circlearrowleft \\
& \\
& \\
&
\end{aligned}
$$

$\mathrm{id}_{\mathbb{S}^{2}} \neq-\mathrm{id}_{\mathbb{S}^{2}}($ cont'd $)$

Recall the Hopf family:

$$
\begin{aligned}
H: \mathbb{S}^{2} & \rightarrow \mathcal{U} \\
N & \mapsto n: \equiv \mathbb{S}^{1} \\
S & \mapsto s: \equiv \mathbb{S}^{1} \\
x & \mapsto\left(x, \circlearrowleft_{x}\right): \mathbb{S}^{1} \xrightarrow{m}\left(\mathbb{S}^{1}=\mathbb{S}^{1}\right)
\end{aligned}
$$

$\mathrm{id}_{\mathrm{S}^{2}} \neq-\mathrm{id}_{\mathbb{S}^{2}}($ cont'd $)$

Recall the Hopf family:

$$
\begin{aligned}
\mathcal{H}: \mathbb{S}^{2} & \longrightarrow \mathcal{U} \\
N & \mapsto n: \equiv \mathbb{S}^{1} \\
S & \mapsto s: \equiv \mathbb{S}^{1} \\
x & \mapsto\left(x, \circlearrowleft_{x}\right): \mathbb{S}^{1} \xrightarrow{m}\left(\mathbb{S}^{1}=\mathbb{S}^{1}\right)
\end{aligned}
$$

Then $[\mathcal{H}] \circ \mathrm{mrd}$ is an equivalence, in particular $[[\mathcal{H}] \circ \mathrm{mrd}]$ is injective and one ends up with $\circlearrowleft^{2}=$ refl.

$\mathrm{id}_{\mathrm{S}^{2}} \neq-\mathrm{id}_{\mathbb{S}^{2}}($ cont'd $)$

Recall the Hopf family:

$$
\begin{aligned}
\mathcal{H}: \mathbb{S}^{2} & \longrightarrow \mathcal{U} \\
N & \mapsto n: \equiv \mathbb{S}^{1} \\
S & \mapsto s: \equiv \mathbb{S}^{1} \\
x & \mapsto\left(x, \circlearrowleft_{x}\right): \mathbb{S}^{1} \xrightarrow{m}\left(\mathbb{S}^{1}=\mathbb{S}^{1}\right)
\end{aligned}
$$

Then $[\mathcal{H}] \circ \mathrm{mrd}$ is an equivalence, in particular $[[\mathcal{H}] \circ \mathrm{mrd}]$ is injective and one ends up with $\circlearrowleft^{2}=$ refl. . 4

Degree is a monoid morphism

The degree of a function $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ pointed by $f_{0}: N=f(N)$ is

$$
\pi_{2}\left(\mathbb{S}^{2}\right) \xrightarrow{\pi_{2}\left(f, f_{0}\right)} \pi_{2}\left(\mathbb{S}^{2}\right)
$$

Degree is a monoid morphism

The degree of a function $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ pointed by $f_{0}: N=f(N)$ is

$$
\pi_{n}(X): \equiv\left\|\Omega^{n}(X)\right\|_{0} \quad \stackrel{\downarrow}{\pi_{2}\left(\mathbb{S}^{2}\right)} \xrightarrow{\pi_{2}\left(f, f_{0}\right)} \pi_{2}\left(\mathbb{S}^{2}\right)
$$

Degree is a monoid morphism

The degree of a function $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ pointed by $f_{0}: N=f(N)$ is

Degree is a monoid morphism

The degree of a function $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ pointed by $f_{0}: N=f(N)$ is

$$
\underset{\|}{\pi_{2}\left(\mathbb{S}^{2}\right) \xrightarrow{\pi_{2}\left(f, f_{0}\right)}}{\underset{\sim}{\mathbb{Z}}}_{\pi_{2}\left(\mathbb{S}^{2}\right)}^{\|}
$$

Degree is a monoid morphism

The degree of a function $f: \mathbb{S}^{2} \rightarrow \2 pointed by $f_{0}: N=f(N)$ is

$$
\underset{\Downarrow}{\pi_{2}\left(\mathbb{S}^{2}\right) \xrightarrow{\pi_{2}\left(f, f_{0}\right)}}{\underset{\sim}{\mathbb{Z}}}_{\pi_{2}\left(\mathbb{S}^{2}\right)}^{\left.\Downarrow\right|_{\mathbb{Z}}}
$$

$1 \longmapsto d\left(f, f_{0}\right)$

Degree is a monoid morphism

The degree of a function $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ pointed by $f_{0}: N=f(N)$ is

$1 \longmapsto d\left(f, f_{0}\right)$

Because π_{2} is a functor: $\begin{aligned} & d\left(\mathrm{id}_{\mathbb{S}^{2}}, \text { refl }_{N}\right)=1 \\ & d\left(\left(g, g_{0}\right) \cdot\left(f, f_{0}\right)\right)=d\left(g, g_{0}\right) \times d\left(f, f_{0}\right)\end{aligned}$

Degree is a monoid morphism

The degree of a function $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ pointed by $f_{0}: N=f(N)$ is

$$
\underset{\Downarrow}{\pi_{2}\left(\mathbb{S}^{2}\right) \xrightarrow{\pi_{2}\left(f, f_{0}\right)}}{\underset{\sim}{\mathbb{Z}}}_{\pi_{2}\left(\mathbb{S}^{2}\right)}^{\left.\Downarrow\right|_{\mathbb{Z}}}
$$

$$
1 \longmapsto d\left(f, f_{0}\right)
$$

Because $\boldsymbol{\pi}_{2}$ is a functor: $\begin{aligned} & d\left(\mathrm{id}_{\left.\mathcal{S}^{2}, \text { refl }_{N}\right)=1}\right. \\ & d(\underbrace{}_{\left(g, g_{0}\right) \cdot\left(f, f_{0}\right)})=d\left(g, g_{0}\right) \times d\left(f, f_{0}\right) \\ & =\left(g \circ f,[g]\left(f_{0}\right) \cdot g_{0}\right)\end{aligned}$

Degree is a monoid morphism

The degree of a function $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ pointed by $f_{0}: N=f(N)$ is

$1 \longmapsto d\left(f, f_{0}\right)$

Because $\boldsymbol{\pi}_{2}$ is a functor: $\begin{aligned} & d\left(\mathrm{id}_{\mathbb{S}^{2}}, \text { refl }_{N}\right)=1 \\ & d\left(\left(g, g_{0}\right) \cdot\left(f, f_{0}\right)\right)=d\left(g, g_{0}\right) \times d\left(f, f_{0}\right)\end{aligned}$

Consequence: the degree maps pointed equivalences to either 1 or -1 .

Alternative description

$$
\left(\mathrm{S}^{2} \rightarrow_{*} \mathrm{~S}^{2}\right) \longrightarrow\left(\mathrm{S}^{1} \rightarrow_{*} \Omega \mathrm{~S}^{2}\right) \longrightarrow \Omega^{2} \mathrm{~S}^{2} \longrightarrow \Omega \mathrm{~S}^{1} \simeq \mathbb{Z}
$$

Alternative description

$$
\left(\mathbb{S}^{2} \rightarrow_{*} \mathrm{~S}^{2}\right) \xrightarrow{\Sigma-\Omega}\left(\mathbb{S}^{1} \rightarrow_{*} \Omega \mathrm{~S}^{2}\right) \longrightarrow \Omega^{2} \mathbb{S}^{2} \longrightarrow \Omega \mathbb{S}^{1} \simeq \mathbb{Z}
$$

Alternative description

$$
\left(\mathbb{S}^{2} \rightarrow_{*} \mathbb{S}^{2}\right) \xrightarrow{\Sigma-\Omega}\left(\mathbb{S}^{1} \rightarrow_{*} \Omega \mathbb{S}^{2}\right) \xrightarrow[\sim]{\mathbb{S}^{1} \mathrm{UMP}} \Omega^{2} \mathbb{S}^{2} \longrightarrow \Omega \mathbb{S}^{1} \simeq \mathbb{Z}
$$

Alternative description

$$
\left(\mathbb{S}^{2} \rightarrow_{*} \mathbb{S}^{2}\right) \xrightarrow{\Sigma-\Omega}\left(\mathbb{S}^{1} \rightarrow_{*} \Omega \mathbb{S}^{2}\right) \xrightarrow{\mathrm{S}^{1}-\mathrm{UMP}} \Omega^{2} \mathbb{S}^{2} \xrightarrow{?} \Omega \mathbb{S}^{1} \simeq \mathbb{Z}
$$

Alternative description

$$
\left(\mathbb{S}^{2} \rightarrow_{*} \mathbb{S}^{2}\right) \xrightarrow{\Sigma _\Omega}\left(\mathbb{S}^{1} \rightarrow_{*} \Omega \mathrm{~S}^{2}\right) \xrightarrow[\sim]{\mathrm{S}^{1} \mathrm{UMP}} \Omega^{2} \mathbb{S}^{2} \xrightarrow{?} \Omega \mathbb{S}^{1} \simeq \mathbb{Z}
$$

Define $\tau(p): \equiv[H](p)(\cdot)$ for $p: N=N$.

Alternative description

$$
\left(\mathbb{S}^{2} \rightarrow_{*} \mathbb{S}^{2}\right) \xrightarrow{\Sigma-\Omega}\left(\mathbb{S}^{1} \rightarrow_{*} \Omega \mathbb{S}^{2}\right) \xrightarrow[\sim]{S^{1}-U M P} \Omega^{2} \mathbb{S}^{2} \xrightarrow{\Omega(\tau)} \Omega \mathbb{S}^{1} \simeq \mathbb{Z}
$$

Define $\tau(p): \equiv[H](p)(\cdot)$ for $p: N=N$.

Alternative description

Define $\tau(p): \equiv[H](p)(\cdot)$ for $p: N=N$.

Alternative description

Define $\tau(p): \equiv[H](p)(\cdot)$ for $p: N=N$.

Consequence: for $\left(f, f_{0}\right),\left(g, g_{0}\right): \mathbb{S}^{2} \rightarrow_{*} \mathbb{S}^{2}$,

$$
d\left(f, f_{0}\right)=d\left(g, g_{0}\right) \Longleftrightarrow\left\|\left(f, f_{0}\right)=\left(g, g_{0}\right)\right\| .
$$

Putting things together

Recall one has $\operatorname{id}_{\mathbb{S}^{2}} \neq-\mathrm{id}_{\mathbb{S}^{2}}$.

Putting things together

Recall one has $\mathrm{id}_{\mathbb{S}^{2}} \neq-\mathrm{id}_{\mathbb{S}^{2}}$.

Hence, proving $\left\|f=\operatorname{id}_{\mathbb{S}^{2}}\right\|+\left\|f=-\mathrm{id}_{\mathbb{S}^{2}}\right\|$ for an equivalence $f: \mathbb{S}^{2} \simeq \mathbb{S}^{2}$, one can suppose that f is pointed by some $f_{0}: N=f(N)$.

Putting things together

Recall one has $\operatorname{id}_{\mathbb{S}^{2}} \neq-\mathrm{id}_{\mathbb{S}^{2}}$.
Hence, proving $\left\|f=\mathrm{id}_{\mathbb{S}^{2}}\right\|+\left\|f=-\mathrm{id}_{\mathbb{S}^{2}}\right\|$ for an equivalence $f: \mathbb{S}^{2} \simeq \mathbb{\2, one can suppose that f is pointed by some $f_{0}: N=f(N)$.

Then $d\left(f, f_{0}\right)= \pm 1$. Also, $d\left(\mathrm{id}_{\mathbb{S}^{2}}, \operatorname{refl}_{N}\right)=1$ and $d\left(-\mathrm{id}_{\mathbb{S}^{2}}, \operatorname{mrd}(\cdot)\right)=-1$.

Putting things together

Recall one has $\operatorname{id}_{\mathbb{S}^{2}} \neq-\mathrm{id}_{\mathbb{S}^{2}}$.
Hence, proving $\left\|f=\mathrm{id}_{\mathbb{S}^{2}}\right\|+\left\|f=-\mathrm{id}_{\mathbb{S}^{2}}\right\|$ for an equivalence $f: \mathbb{S}^{2} \simeq \2, one can suppose that f is pointed by some $f_{0}: N=f(N)$.

Then $d\left(f, f_{0}\right)= \pm 1$. Also, $d\left(\mathrm{id}_{\mathbb{S}^{2}}\right.$, refl $\left._{N}\right)=1$ and $d\left(-\mathrm{id}_{\mathbb{S}^{2}}, \operatorname{mrd}(\cdot)\right)=-1$.

This yield $\|\left(f, f_{0}\right)=\left(\mathrm{id}_{\mathbb{S}^{2}}\right.$, refl $\left._{N}\right)\|+\|\left(f, f_{0}\right)=\left(-\mathrm{id}_{\mathbb{S}^{2}}, \operatorname{mrd}(\cdot)\right) \|$. From which derives $\left\|f=\operatorname{id}_{\mathbb{S}^{2}}\right\|+\left\|f=-\mathrm{id}_{\mathbb{S}^{2}}\right\|$.

Equivalence of both components

Define $\Psi:\left(\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}\right) \rightarrow\left(\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}\right)$ by mapping a map f to:

$$
\Psi(f)(N): \equiv f(S), \quad \Psi(f)(S): \equiv f(N), \quad[\Psi(f)] \circ \operatorname{mrd}=[f] \circ \operatorname{mrd}(-)^{-1}
$$

Equivalence of both components

Define $\Psi:\left(\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}\right) \rightarrow\left(\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}\right)$ by mapping a map f to:

$$
\Psi(f)(N): \equiv f(S), \quad \Psi(f)(S): \equiv f(N), \quad[\Psi(f)] \circ \operatorname{mrd}=[f] \circ \operatorname{mrd}(-)^{-1}
$$

- Ψ is an equivalence (it is its own inverse)

Equivalence of both components

Define $\Psi:\left(\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}\right) \rightarrow\left(\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}\right)$ by mapping a map f to:
$\Psi(f)(N): \equiv f(S), \quad \Psi(f)(S): \equiv f(N), \quad[\Psi(f)] \circ \operatorname{mrd}=[f] \circ \operatorname{mrd}(-)^{-1}$

- Ψ is an equivalence (it is its own inverse)
- $\Psi\left(\mathrm{id}_{\mathbb{S}^{2}}\right)=-\mathrm{id}_{\mathbb{S}^{2}}$

Equivalence of both components

Define $\Psi:\left(\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}\right) \rightarrow\left(\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}\right)$ by mapping a map f to:
$\Psi(f)(N): \equiv f(S), \quad \Psi(f)(S): \equiv f(N), \quad[\Psi(f)] \circ \operatorname{mrd}=[f] \circ \operatorname{mrd}(-)^{-1}$

- Ψ is an equivalence (it is its own inverse)
- $\Psi\left(\mathrm{id}_{\mathbb{S}^{2}}\right)=-\mathrm{id}_{\mathbb{S}^{2}}$

Hence,

$$
\left(\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}\right)_{\left(\mathrm{id}_{\mathrm{S}^{2}}\right)} \stackrel{\Psi}{\underline{\Psi}}\left(\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}\right)_{\left(-\mathrm{id}_{\mathrm{S}^{2}}\right)}
$$

Equivalence of both components

Define $\Psi:\left(\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}\right) \rightarrow\left(\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}\right)$ by mapping a map f to:
$\Psi(f)(N): \equiv f(S), \quad \Psi(f)(S): \equiv f(N), \quad[\Psi(f)] \circ \operatorname{mrd}=[f] \circ \operatorname{mrd}(-)^{-1}$

- Ψ is an equivalence (it is its own inverse)
- $\Psi\left(\mathrm{id}_{\mathbb{S}^{2}}\right)=-\mathrm{id}_{\mathbb{S}^{2}}$

Hence,

$$
\left(\mathbb{S}^{2} \simeq \mathbb{S}^{2}\right)_{\left(\mathrm{id}_{\mathrm{S}^{2}}\right)} \stackrel{\Psi}{\mathscr{\Psi}}\left(\mathbb{S}^{2} \simeq \mathbb{S}^{2}\right)_{\left(-\mathrm{id}_{\mathrm{s}^{2}}\right)}
$$

Conclusion for $n=2$

$$
\left(\mathbb{S}^{2}=\mathbb{S}^{2}\right) \simeq 2 \times\left(\mathbb{S}^{2}=\mathbb{S}^{2}\right)_{\left(\mathrm{id}_{\mathrm{S}^{2}}\right)}
$$

3. Symmetries of higher spheres

Freudenthal's theorem

Inductively, $\mathbb{S}^{n+1}: \equiv \Sigma \mathbb{S}^{n}$ with the appropriate elimination rule.

Freudenthal's theorem

Inductively, $\mathbb{S}^{n+1}: \equiv \Sigma \mathbb{S}^{n}$ with the appropriate elimination rule.

Freudenthal's suspension theorem implies that

$$
\sigma: \mathbb{S}^{n} \rightarrow \Omega\left(\mathbb{S}^{n+1}\right), \quad x \mapsto \operatorname{mrd}\left(N_{n}\right)^{-1} \operatorname{mrd}(x)
$$

is $2(n-1)$-connected.

Freudenthal's theorem

Inductively, $\mathbb{S}^{n+1}: \equiv \Sigma \mathbb{S}^{n}$ with the appropriate elimination rule.

Freudenthal's suspension theorem implies that

$$
\sigma: \mathbb{S}^{n} \rightarrow \Omega\left(\mathbb{S}^{n+1}\right), \quad x \mapsto \operatorname{mrd}\left(N_{n}\right)^{-1} \operatorname{mrd}(x)
$$

is $2(n-1)$-connected.

Hence, $\Omega^{n}(\sigma): \Omega^{n}\left(\mathbb{S}^{n}\right) \longrightarrow \Omega^{n+1}\left(\mathbb{S}^{n+1}\right)$ is $(n-2)$-connected.

0 -connectedness

$$
\begin{aligned}
& \left(\mathbb{S}^{n} \rightarrow_{*} \mathbb{S}^{n}\right) \xrightarrow{\Sigma(-)}\left(\mathbb{S}^{n+1} \rightarrow_{*} \mathbb{S}^{n+1}\right) \\
& \downarrow \text { 部 } \\
& \Omega^{n}\left(\mathbb{S}^{n}\right) \xrightarrow[\Omega^{n}(\sigma)]{ } \Omega^{n+1}\left(\mathbb{S}^{n+1}\right)
\end{aligned}
$$

0 -connectedness

$$
\begin{gathered}
\left(\mathbb{S}^{n} \longrightarrow_{*} \mathbb{S}^{n}\right) \stackrel{\Sigma(-)}{\longrightarrow}\left(\mathbb{S}^{n+1} \longrightarrow_{*} \mathbb{S}^{n+1}\right) \\
\downarrow^{\downarrow} \\
\Omega^{n}\left(\mathbb{S}^{n}\right) \xrightarrow[\Omega^{n}(\sigma)]{ } \Omega^{n+1}\left(\mathbb{S}^{n+1}\right)
\end{gathered}
$$

Then $\Sigma(-):\left(\mathbb{S}^{n} \longrightarrow_{*} \mathbb{S}^{n}\right) \longrightarrow\left(\mathbb{S}^{n+1} \longrightarrow_{*} \mathbb{S}^{n+1}\right)$ is $(n-2)$-connected, hence 0 -connected.

0 -connectedness

$$
\begin{gathered}
\left(\mathbb{S}^{n} \longrightarrow_{*} \mathbb{S}^{n}\right) \stackrel{\Sigma(-)}{\longrightarrow}\left(\mathbb{S}^{n+1} \longrightarrow_{*} \mathbb{S}^{n+1}\right) \\
\downarrow_{\mathrm{R}}^{\downarrow^{2}} \\
\Omega^{n}\left(\mathbb{S}^{n}\right) \xrightarrow[\Omega^{n}(\sigma)]{ } \Omega^{n+1}\left(\mathbb{S}^{n+1}\right)
\end{gathered}
$$

Then $\Sigma(-):\left(\mathbb{S}^{n} \rightarrow_{*} \mathbb{S}^{n}\right) \longrightarrow\left(\mathbb{S}^{n+1} \longrightarrow_{*} \mathbb{S}^{n+1}\right)$ is $(n-2)$-connected, hence 0 -connected.

Because \mathbb{S}^{n} and $\$^{n+1}$ are 1-connected, the forgetful maps

$$
\left(\mathbb{S}^{n} \rightarrow_{*} \mathbb{S}^{n}\right) \longrightarrow\left(\mathbb{S}^{n} \longrightarrow \mathbb{S}^{n}\right), \quad\left(\mathbb{S}^{n+1} \rightarrow_{*} \mathbb{S}^{n+1}\right) \longrightarrow\left(\mathbb{S}^{n+1} \longrightarrow \mathbb{S}^{n+1}\right)
$$

are 0-connected.

$$
\begin{aligned}
& \left\|S^{n} \rightarrow_{*} S^{n}\right\|_{0} \xrightarrow[\sim]{\|\Sigma(-)\|_{0}}\left\|S^{n+1} \rightarrow_{*} S^{n+1}\right\|_{0} \\
& \downarrow \text { 風 } \downarrow^{n} \\
& \left\|\mathbb{S}^{n} \rightarrow \mathbb{S}^{n}\right\|_{0} \xrightarrow[\|\Sigma(-)\|_{0}]{ }\left\|\mathbb{S}^{n+1} \rightarrow \mathbb{S}^{n+1}\right\|_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \left\|S^{n} \rightarrow_{*} S^{n}\right\|_{0} \xrightarrow[\sim]{\|\Sigma(-)\|_{0}}\left\|S^{n+1} \rightarrow_{*} S^{n+1}\right\|_{0} \\
& \downarrow \vDash \downarrow^{n} \\
& \left\|\mathbb{S}^{n} \rightarrow \mathbb{S}^{n}\right\|_{0} \xrightarrow[\|\Sigma(-)\|_{0}]{\simeq}\left\|S^{n+1} \rightarrow \mathbb{S}^{n+1}\right\|_{0}
\end{aligned}
$$

Induction

$$
\begin{gathered}
\left\|\mathbb{S}^{n} \rightarrow_{\star} \mathbb{S}^{n}\right\|_{0} \xrightarrow[\simeq]{\|\Sigma(-)\|_{0}}\left\|\mathbb{S}^{n+1} \rightarrow_{\star} \mathbb{S}^{n+1}\right\|_{0} \\
\\
\downarrow \mathrm{\downarrow} \\
\left\|\mathbb{S}^{n} \xrightarrow{\longrightarrow} \mathbb{S}^{n}\right\|_{0} \xrightarrow[\|\Sigma(-)\|_{0}]{\simeq}\left\|\mathbb{S}^{n+1} \rightarrow \mathbb{S}^{n+1}\right\|_{0}
\end{gathered}
$$

There is an isomorphism of monoids

$$
\left\|\mathbb{S}^{n} \rightarrow \mathbb{S}^{n}\right\|_{0} \rightarrow\left\|\mathbb{S}^{n+1} \longrightarrow \mathbb{S}^{n+1}\right\|_{0}
$$

for all $n \geq 2$, and the type of invertible elements of $\left\|S^{n} \longrightarrow \mathbb{S}^{n}\right\|_{0}$ is equivalent to $\left\|\mathbb{S}^{n}=\mathbb{S}^{n}\right\|_{0}$.

Induction

$$
\begin{gathered}
\left\|\mathbb{S}^{n} \rightarrow_{\star} \mathbb{S}^{n}\right\|_{0} \xrightarrow[\sim]{\|\Sigma(-)\|_{0}}\left\|\mathbb{S}^{n+1} \rightarrow_{\star} \mathbb{S}^{n+1}\right\|_{0} \\
\\
\downarrow \mathrm{\downarrow} \\
\left\|\mathbb{S}^{n} \xrightarrow{\longrightarrow} \mathbb{S}^{n}\right\|_{0} \xrightarrow[\|\Sigma(-)\|_{0}]{\simeq}\left\|\mathbb{S}^{n+1} \rightarrow \mathbb{S}^{n+1}\right\|_{0}
\end{gathered}
$$

There is an isomorphism of monoids

$$
\left\|\mathbb{S}^{n} \rightarrow \mathbb{S}^{n}\right\|_{0} \rightarrow\left\|\mathbb{S}^{n+1} \longrightarrow \mathbb{S}^{n+1}\right\|_{0}
$$

for all $n \geq 2$, and the type of invertible elements of $\left\|\mathbb{S}^{n} \longrightarrow \mathbb{S}^{n}\right\|_{0}$ is equivalent to $\left\|\mathbb{S}^{n}=\mathbb{S}^{n}\right\|_{0}$.

As $\left\|\mathbb{S}^{2}=\mathbb{S}^{2}\right\|_{0} \simeq 2$, by induction $\left\|\mathbb{S}^{n}=\mathbb{S}^{n}\right\|_{0} \simeq 2$ for all $n \geq 2$.

On the shape of $\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right)_{\left(\mathrm{id}_{S^{n}}\right)}$

$$
\left(\mathbb{S}^{n} \simeq_{*} \mathbb{S}^{n}\right) \rightarrow\left(\mathbb{S}^{n} \simeq \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}
$$

is a fiber sequence.

On the shape of $\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right)_{\left(\mathrm{id}_{S^{n}}\right)}$

$$
\left(\mathbb{S}^{n} \simeq_{*} \mathbb{S}^{n}\right) \rightarrow\left(\mathbb{S}^{n} \simeq \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}
$$

is a fiber sequence.

Hence a long exact sequence:

$$
\ldots \rightarrow \pi_{2}\left(\mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n} \simeq_{*} \mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n} \simeq \mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n}\right) \rightarrow \ldots
$$

On the shape of $\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right)_{\left(\mathrm{id}_{S^{n}}\right)}$

$$
\left(\mathbb{S}^{n} \simeq_{*} \mathbb{S}^{n}\right) \rightarrow\left(\mathbb{S}^{n} \simeq \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}
$$

is a fiber sequence.

Hence a long exact sequence:

$$
\ldots \rightarrow \pi_{2}\left(\mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n} \simeq_{*} \mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n} \simeq \mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n}\right) \rightarrow \ldots
$$

So for $n \geq 3$,

$$
\pi_{1}\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right)
$$

On the shape of $\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right)_{\left(\mathrm{id}_{s^{n}}\right)}$

$$
\left(\mathbb{S}^{n} \simeq_{*} \mathbb{S}^{n}\right) \rightarrow\left(\mathbb{S}^{n} \simeq \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}
$$

is a fiber sequence.

Hence a long exact sequence:

$$
\ldots \rightarrow \pi_{2}\left(\mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n} \simeq_{*} \mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n} \simeq \mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n}\right) \rightarrow \ldots
$$

So for $n \geq 3$,

$$
\pi_{1}\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right) \simeq \pi_{1}\left(\mathbb{S}^{n} \simeq_{*} \mathbb{S}^{n}\right)
$$

On the shape of $\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right)_{\left(\mathrm{id}_{S_{n}}\right)}$

$$
\left(\mathbb{S}^{n} \simeq_{*} \mathbb{S}^{n}\right) \rightarrow\left(\mathbb{S}^{n} \simeq \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}
$$

is a fiber sequence.

Hence a long exact sequence:

$$
\ldots \rightarrow \pi_{2}\left(\mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n} \simeq_{\star} \mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n} \simeq \mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n}\right) \rightarrow \ldots
$$

So for $n \geq 3$,

$$
\pi_{1}\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right) \simeq \pi_{1}\left(\mathbb{S}^{n} \simeq_{*} \mathbb{S}^{n}\right) \simeq \pi_{1}\left(\mathbb{S}^{n} \rightarrow_{*} \mathbb{S}^{n}\right)
$$

On the shape of $\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right)_{\left(\mathrm{id}_{S_{n}}\right)}$

$$
\left(\mathbb{S}^{n} \simeq_{*} \mathbb{S}^{n}\right) \rightarrow\left(\mathbb{S}^{n} \simeq \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}
$$

is a fiber sequence.

Hence a long exact sequence:

$$
\ldots \rightarrow \pi_{2}\left(\mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n} \simeq_{\star} \mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n} \simeq \mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n}\right) \rightarrow \ldots
$$

So for $n \geq 3$,

$$
\pi_{1}\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right) \simeq \pi_{1}\left(\mathbb{S}^{n} \simeq_{\star} \mathbb{S}^{n}\right) \simeq \pi_{1}\left(\mathbb{S}^{n} \rightarrow_{\star} \mathbb{S}^{n}\right)=\pi_{n+1}\left(\mathbb{S}^{n}\right)
$$

On the shape of $\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right)\left(\operatorname{id}_{S^{n}}\right)$

$$
\left(\mathbb{S}^{n} \simeq_{*} \mathbb{S}^{n}\right) \rightarrow\left(\mathbb{S}^{n} \simeq \mathbb{S}^{n}\right) \rightarrow \mathbb{S}^{n}
$$

is a fiber sequence.

Hence a long exact sequence:

$$
\ldots \rightarrow \pi_{2}\left(\mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n} \simeq_{*} \mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n} \simeq \mathbb{S}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{S}^{n}\right) \rightarrow \ldots
$$

So for $n \geq 3$,

$$
\pi_{1}\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right) \simeq \pi_{1}\left(\mathbb{S}^{n} \simeq_{*} \mathbb{S}^{n}\right) \simeq \pi_{1}\left(\mathbb{S}^{n} \rightarrow_{*} \mathbb{S}^{n}\right)=\pi_{n+1}\left(\mathbb{S}^{n}\right)=\mathbb{Z}_{2}
$$

Sum up

What we have proved:

Sum up

What we have proved:

- $\left(\$^{1}=\$^{1}\right) \simeq \$^{1}+\1

Sum up

What we have proved:

- $\left(\$^{1}=\$^{1}\right) \simeq \$^{1}+\1
- $\left(S^{2}=S^{2}\right) \simeq 2 \times\left(S^{2}=\$^{2}\right)_{\left(\mathrm{id}_{\mathrm{S}^{2}}\right)}$

Sum up

What we have proved:

- $\left(\$^{1}=\$^{1}\right) \simeq \$^{1}+\1
- $\left(S^{2}=S^{2}\right) \simeq 2 \times\left(S^{2}=S^{2}\right)\left(\mathrm{id}_{\mathrm{S}^{2}}\right)$
- $\left\|\mathbb{S}^{n}=\mathbb{S}^{n}\right\|_{0} \simeq 2$ for $n \geq 3$

Sum up

What we have proved:

- $\left(\$^{1}=S^{1}\right) \simeq \$^{1}+\1
- $\left(\mathbb{S}^{2}=\mathbb{S}^{2}\right) \simeq 2 \times\left(\mathbb{S}^{2}=\mathbb{S}^{2}\right)_{\left(\mathrm{id}_{\mathrm{S}^{2}}\right)}$
- $\left\|\mathbb{S}^{n}=\mathbb{S}^{n}\right\|_{0} \simeq 2$ for $n \geq 3$
- $\left(\$^{n}=\mathbb{S}^{n}\right) \neq\left(\mathbb{S}^{n}+\$^{n}\right)$ for $n \geq 3$

Sum up

What we have proved:

- $\left(\$^{1}=S^{1}\right) \simeq \$^{1}+\1
- $\left(\mathbb{S}^{2}=\mathbb{S}^{2}\right) \simeq 2 \times\left(\mathbb{S}^{2}=\mathbb{S}^{2}\right)_{\left(\mathrm{id}_{\mathrm{S}^{2}}\right)}$
- $\left\|\mathbb{S}^{n}=\mathbb{S}^{n}\right\|_{0} \simeq 2$ for $n \geq 3$
- $\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right) \neq\left(\mathbb{S}^{n}+\mathbb{S}^{n}\right)$ for $n \geq 3$

What about:

Sum up

What we have proved:

- $\left(\$^{1}=S^{1}\right) \simeq \$^{1}+\1
- $\left(\mathbb{S}^{2}=\mathbb{S}^{2}\right) \simeq 2 \times\left(\mathbb{S}^{2}=\mathbb{S}^{2}\right)_{\left(\mathrm{id}_{\mathrm{S}^{2}}\right)}$
- $\left\|\mathbb{S}^{n}=\mathbb{S}^{n}\right\|_{0} \simeq 2$ for $n \geq 3$
- $\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right) \neq\left(\mathbb{S}^{n}+\mathbb{S}^{n}\right)$ for $n \geq 3$

What about:

- $\left(\mathbb{S}^{2}=\mathbb{S}^{2}\right) \neq\left(\mathbb{S}^{2}+\mathbb{S}^{2}\right) ?$

Sum up

What we have proved:

- $\left(\$^{1}=\$^{1}\right) \simeq \$^{1}+\1
- $\left(S^{2}=S^{2}\right) \simeq 2 \times\left(\mathbb{S}^{2}=S^{2}\right)_{\left(\mathrm{id}_{\mathrm{S}^{2}}\right)}$
- $\left\|\mathbb{S}^{n}=\mathbb{S}^{n}\right\|_{0} \simeq 2$ for $n \geq 3$
- $\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right) \neq\left(\mathbb{S}^{n}+\mathbb{S}^{n}\right)$ for $n \geq 3$

What about:

- $\left(\mathbb{S}^{2}=\mathbb{S}^{2}\right) \neq\left(\mathbb{S}^{2}+\mathbb{S}^{2}\right)$?
- $\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right) \simeq\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right)_{\left(\mathrm{id}_{S_{n}}\right)}+\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right)_{\left(-\mathrm{id}_{\mathrm{S}_{n}}\right)}$?
(In other words, is $\mathrm{id}_{\mathbb{S}^{n}} \neq-\mathrm{id}_{\mathbb{S}^{n}}$).
Then $\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right) \simeq 2 \times\left(\mathbb{S}^{n}=\mathbb{S}^{n}\right)_{\left(\mathrm{id}_{S^{n}}\right)}$

Thank you.

