

UNIVERSITETET 1 BERGEN Det matematisk-naturvitenskapelige fakultet

Pierre Cagne (joint work with Nicolai Kraus and Marc Bezem)

Universitetet i Bergen*

Symmetries of **\$**ⁿ

in univalent foundations

Homotopy Type Theory Electronic Seminar Talks November 19th, 2020

1. Symmetries of the circle

2. Symmetries of the 2-sphere

3. Symmetries of higher spheres

1. Symmetries of the circle

▶ a base point • : \$¹,

- ▶ a base point : \$¹,
- ▶ a path () : = •.

- ▶ a base point : \$¹,
- ▶ a path () : = •.

It comes with an elimination rule: for any $T: \mathbb{S}^1 \to \mathcal{U}$

$$t: T(\bullet)$$

$$\ell: t = \overset{T}{\bigcirc} t$$

- ▶ a base point : \$¹,
- ▶ a path () : = •.

It comes with an elimination rule: for any $T: \mathbb{S}^1 \to \mathcal{U}$

$$\begin{array}{c} t: T(\bullet) \\ \ell: t = {}^{T}_{\bigcirc} t \end{array} \right\} \qquad \longmapsto \qquad f: \prod_{x: \mathbb{S}^{1}} T(x)$$

- ▶ a base point : \$¹,
- ▶ a path () : = •.

It comes with an elimination rule: for any $T: \mathbb{S}^1 \to \mathcal{U}$

$$\begin{array}{c} t: T(\bullet) \\ \ell: t = {}^{T}_{\bigcirc} t \end{array} \right\} \qquad \longmapsto \qquad f: \prod_{x: \mathbb{S}^{1}} T(x)$$

such that $f(\bullet) \equiv t$ and $[f](\bigcirc) = \ell$.

• a point x : A,

- a point x : A,
- a symmetry ℓ : x = x.

- a point x : A,
- a symmetry ℓ : x = x.

Example: define $-id_{S^1}$ as the function $S^1 \to S^1$ given by: \blacktriangleright the point \bullet : S^1 ,

- a point x : A,
- a symmetry ℓ : x = x.

Example: define $-\mathrm{id}_{\mathbb{S}^1}$ as the function $\mathbb{S}^1 \to \mathbb{S}^1$ given by:

- the point : $\1 ,
- the symmetry \bigcirc^{-1} : = •.

$$\left(\mathbb{S}^1 = \mathbb{S}^1\right) \simeq \left(\mathbb{S}^1 + \mathbb{S}^1\right)$$

$$\left(\mathbb{S}^1 = \mathbb{S}^1\right) \simeq \left(\mathbb{S}^1 + \mathbb{S}^1\right)$$

• Identify
$$(\$^1 = \$^1)$$
 with $(\$^1 \simeq \$^1)$

$$\left(\mathbb{S}^1 = \mathbb{S}^1\right) \simeq \left(\mathbb{S}^1 + \mathbb{S}^1\right)$$

• Identify
$$(\$^1 = \$^1)$$
 with $(\$^1 \simeq \$^1)$

Prove that

$$\left(\mathbb{S}^{1}\simeq\mathbb{S}^{1}\right)\simeq\left(\mathbb{S}^{1}\longrightarrow\mathbb{S}^{1}\right)_{\left(\mathrm{id}_{\mathrm{S}^{1}}\right)}+\left(\mathbb{S}^{1}\longrightarrow\mathbb{S}^{1}\right)_{\left(-\mathrm{id}_{\mathrm{S}^{1}}\right)}$$

$$\left(\$^1 = \$^1\right) \simeq \left(\$^1 + \$^1\right)$$

• Identify
$$(\$^1 = \$^1)$$
 with $(\$^1 \simeq \$^1)$

Prove that

$$\left(\mathbb{S}^1 \simeq \mathbb{S}^1 \right) \simeq \left(\mathbb{S}^1 \longrightarrow \mathbb{S}^1 \right)_{\left(\mathrm{id}_{\mathbb{S}^1} \right)} + \left(\mathbb{S}^1 \longrightarrow \mathbb{S}^1 \right)_{\left(-\mathrm{id}_{\mathbb{S}^1} \right)}$$

• Identify both component with $\1 .

Suppose p : $id_{S^1} = -id_{S^1}$, and evaluate:

$$p(\bullet): \bullet = \bullet$$
$$[p](\circlearrowleft): p(\bullet) =_{\circlearrowright} p(\bullet)$$

Suppose
$$p$$
 : $\mathrm{id}_{\mathbb{S}^1} = -\mathrm{id}_{\mathbb{S}^1}$, and evaluate:
 $p(\bullet) : \bullet = \bullet$
 $[p](\bigcirc) : p(\bullet) =_{\bigcirc} p(\bullet)$

Suppose p : $\mathrm{id}_{\mathbb{S}^1}$ = $-\mathrm{id}_{\mathbb{S}^1}$, and evaluate:

 $p(\bullet): \bullet = \bullet$ $[p](\bigcirc): p(\bullet) = \bigcirc p(\bullet)$

i.e.

$$k: \mathbb{Z}$$

$$!: (\mathfrak{I}^{-1} \mathfrak{I}^k \mathfrak{I}^{-1} = \mathfrak{I}^k$$

Suppose p : $\mathrm{id}_{\mathbb{S}^1}$ = $-\mathrm{id}_{\mathbb{S}^1}$, and evaluate:

 $p(\bullet): \bullet = \bullet$ $[p](\bigcirc): p(\bullet) = \bigcirc p(\bullet)$

i.e.

 $k: \mathbb{Z}$ $!: (\mathfrak{I}^{-1})^{k} (\mathfrak{I}^{-1}) = (\mathfrak{I}^{k})^{k}$

Suppose p : $id_{S^1} = -id_{S^1}$, and evaluate:

 $p(\bullet): \bullet = \bullet$ $[p](\bigcirc): p(\bullet) =_{\bigcirc} p(\bullet)$

i.e.

 $k: \mathbb{Z}$ $!: (\mathfrak{I}^{-1})^{k} (\mathfrak{I}^{-1}) = (\mathfrak{I}^{k})^{k}$

Consequence: $\|f = \mathrm{id}_{\mathbb{S}^1}\| + \|f = -\mathrm{id}_{\mathbb{S}^1}\|$ is a proposition for $f : \mathbb{S}^1 \to \mathbb{S}^1$.

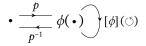
Let ϕ : $\mathbb{S}^1 \simeq \mathbb{S}^1$ and prove the proposition $\|\phi = \mathrm{id}_{\mathbb{S}^1}\| + \|\phi = -\mathrm{id}_{\mathbb{S}^1}\|$.

Let ϕ : $\mathbb{S}^1 \simeq \mathbb{S}^1$ and prove the proposition $\|\phi = \mathrm{id}_{\mathbb{S}^1}\| + \|\phi = -\mathrm{id}_{\mathbb{S}^1}\|$.

WLOG, suppose ϕ is pointed: $p : \bullet = \phi(\bullet)$.

Let ϕ : $\mathbb{S}^1 \simeq \mathbb{S}^1$ and prove the proposition $\|\phi = \mathrm{id}_{\mathbb{S}^1}\| + \|\phi = -\mathrm{id}_{\mathbb{S}^1}\|$.

WLOG, suppose ϕ is pointed: $p : \bullet = \phi(\bullet)$.



Let ϕ : $\mathbb{S}^1 \simeq \mathbb{S}^1$ and prove the proposition $\|\phi = id_{\mathbb{S}^1}\| + \|\phi = -id_{\mathbb{S}^1}\|$.

WLOG, suppose ϕ is pointed: $p : \bullet = \phi(\bullet)$.

$$\overset{p}{\longrightarrow} (\bullet) \xrightarrow{p} \phi(\bullet)) [\phi] (\textcircled{o})$$

Let ϕ : $\mathbb{S}^1 \simeq \mathbb{S}^1$ and prove the proposition $\|\phi = \mathrm{id}_{\mathbb{S}^1}\| + \|\phi = -\mathrm{id}_{\mathbb{S}^1}\|$.

WLOG, suppose ϕ is pointed: $p : \bullet = \phi(\bullet)$.

$$\bigcirc^{\pm 1} \bigcirc \bullet \xrightarrow{p} \phi(\bullet) \bigcirc [\phi](\circlearrowright)$$

Because ϕ equivalence: $p^{-1}\phi(\bigcirc)p = \bigcirc^{\pm 1}$.

Let ϕ : $\mathbb{S}^1 \simeq \mathbb{S}^1$ and prove the proposition $\|\phi = \mathrm{id}_{\mathbb{S}^1}\| + \|\phi = -\mathrm{id}_{\mathbb{S}^1}\|$.

WLOG, suppose ϕ is pointed: $p : \bullet = \phi(\bullet)$.

$$\bigcirc^{\pm 1} \underbrace{\bullet} \bullet \xrightarrow{p} \phi(\bullet) \underbrace{\frown} [\phi](\circlearrowright)$$

Because ϕ equivalence: $p^{-1}\phi(\bigcirc)p = \bigcirc^{\pm 1}$.

In other words there is e_1 : $\phi = id_{S^1}$ or e_{-1} : $\phi = -id_{S^1}$. Then truncate.

$$\mathbb{S}^1 \longrightarrow \mathbb{S}^1$$

$$\left(\$^1 \to \$^1\right)$$

$$(\mathbb{S}^1 \longrightarrow \mathbb{S}^1) \simeq \left(\sum_{x:\mathbb{S}^1} x = x\right)$$

 $\mathbb{S}^1 \longrightarrow \mathbb{S}^1$

$$(\mathbb{S}^1 \to \mathbb{S}^1) \simeq \left(\sum_{x:\mathbb{S}^1} \underbrace{x=x}_{x=x}\right)$$

$$\left(\mathbb{S}^1 \longrightarrow \mathbb{S}^1\right) \simeq \left(\sum_{x:\mathbb{S}^1} x = x\right) \simeq \left(\mathbb{S}^1 \times \mathbb{Z}\right)$$

$$(\$^1 \to \$^1) \simeq \left(\sum_{x:\$^1} x = x\right) \simeq (\$^1 \times \mathbb{Z})$$

$$id_{\$^1} \longmapsto ?$$

$$-id_{\$^1} \longmapsto ?$$

$$\begin{pmatrix} \mathbb{S}^1 \longrightarrow \mathbb{S}^1 \end{pmatrix} \simeq \left(\sum_{x:\mathbb{S}^1} x = x \right) \simeq \left(\mathbb{S}^1 \times \mathbb{Z} \right)$$
$$id_{\mathbb{S}^1} \longmapsto (\bullet, 1)$$
$$-id_{\mathbb{S}^1} \longmapsto (\bullet, -1)$$

Conclusion: $(\$^1 = \$^1) \simeq \$^1 + \1

$$(\mathbb{S}^1 = \mathbb{S}^1) \simeq (\mathbb{S}^1 \longrightarrow \mathbb{S}^1)_{(\mathrm{id}_{\mathbb{S}^1})} + (\mathbb{S}^1 \longrightarrow \mathbb{S}^1)_{(-\mathrm{id}_{\mathbb{S}^1})}$$

Conclusion: $(\$^1 = \$^1) \simeq \$^1 + \1

$$(\mathbb{S}^{1} = \mathbb{S}^{1}) \simeq \underbrace{(\mathbb{S}^{1} \to \mathbb{S}^{1})_{(\mathrm{id}_{S^{1}})}}_{(\mathbb{S}^{1} \times \mathbb{Z})_{((\bullet, 1))}} + \underbrace{(\mathbb{S}^{1} \to \mathbb{S}^{1})_{(-\mathrm{id}_{S^{1}})}}_{(\mathbb{S}^{1} \times \mathbb{Z})_{((\bullet, -1))}}$$

Conclusion: $(\$^1 = \$^1) \simeq \$^1 + \1

$$(\mathbb{S}^{1} = \mathbb{S}^{1}) \simeq \underbrace{(\mathbb{S}^{1} \to \mathbb{S}^{1})_{(\mathrm{id}_{S^{1}})}}_{\mathbb{S}^{1}} + \underbrace{(\mathbb{S}^{1} \to \mathbb{S}^{1})_{(-\mathrm{id}_{S^{1}})}}_{\mathbb{S}^{1}}$$

2. Symmetries of the 2-sphere

- $\$^2 := \Sigma \1 is the suspension of $\1 , defined by:
 - two poles $N, S : \mathbb{S}^2$,

\mathbb{S}^2 as a suspension

- $\2 := $\Sigma\1 is the suspension of $\1 , defined by:
 - two poles $N, S : \mathbb{S}^2$,
 - for each $x : S^1$, a path mrd(x) : N = S.

 $\mathbb{S}^2 := \Sigma \mathbb{S}^1$ is the suspension of \mathbb{S}^1 , defined by:

- ▶ two poles $N, S : S^2$,
- for each $x : S^1$, a path mrd(x) : N = S.

 \mathbb{S}^2 comes with an elimination rule: for every $T: \mathbb{S}^2 \to \mathcal{U}$,

$$n: T(N)$$

$$s: T(S)$$

$$m: \prod_{x:S^1} n =_{mrd(x)}^T s$$

 $\mathbb{S}^2 := \Sigma \mathbb{S}^1$ is the suspension of \mathbb{S}^1 , defined by:

- two poles $N, S : \mathbb{S}^2$,
- for each $x : S^1$, a path mrd(x) : N = S.

 \mathbb{S}^2 comes with an elimination rule: for every $T\,:\,\mathbb{S}^2 o \mathcal{U}$,

$$\left. \begin{array}{c} n: T(N) \\ s: T(S) \\ m: \prod_{x: \$^1} n = {}^T_{\operatorname{mrd}(x)} s \end{array} \right\} \quad \longmapsto \quad f: \prod_{y: \$^2} T(y)$$

 $\mathbb{S}^2 := \Sigma \mathbb{S}^1$ is the suspension of \mathbb{S}^1 , defined by:

- two poles $N, S : \mathbb{S}^2$,
- for each $x : S^1$, a path mrd(x) : N = S.

 \mathbb{S}^2 comes with an elimination rule: for every $T: \mathbb{S}^2 \to \mathcal{U}$,

$$\left. \begin{array}{c} n: T(N) \\ s: T(S) \\ m: \prod_{x: \mathbb{S}^1} n = {}^T_{\operatorname{mrd}(x)} s \end{array} \right\} \quad \longmapsto \quad f: \prod_{y: \mathbb{S}^2} T(y)$$

such that $f(N) \equiv n$, $f(S) \equiv s$ and $[f] \circ mrd = m$.

Should we expect $(\$^2 = \$^2) \simeq \$^2 + \2 ?

Should we expect $(\$^2 = \$^2) \simeq \$^2 + \2 ?

Probably not: the argument for $\mathbb{S}^1 \xrightarrow{\sim} (\mathbb{S}^1 \longrightarrow \mathbb{S}^1)_{(id_{\mathbb{S}^1})}$ relies on

 $\Omega \mathbb{S}^1 \simeq \mathbb{Z}$ abelian group

Should we expect $(\$^2 = \$^2) \simeq \$^2 + \2 ?

Probably not: the argument for $\mathbb{S}^1 \xrightarrow{\simeq} (\mathbb{S}^1 \longrightarrow \mathbb{S}^1)_{(\mathrm{id}_{\mathbb{S}^1})}$ relies on

 $\Omega \mathbb{S}^1 \simeq \mathbb{Z}$ abelian group

Still plausible: there is two equivalent connected components, one at $id_{S^2},$ the other at $-id_{S^2}.$

 $-\mathrm{id}_{\mathbb{S}^2}\,:\,\mathbb{S}^2\longrightarrow\mathbb{S}^2$

$$-\mathrm{id}_{\mathbb{S}^2} : \mathbb{S}^2 \longrightarrow \mathbb{S}^2$$
$$N \mapsto n := S$$

$$-\mathrm{id}_{\mathbb{S}^2} : \mathbb{S}^2 \longrightarrow \mathbb{S}^2$$
$$N \longmapsto n :\equiv S$$
$$S \longmapsto s :\equiv N$$

$$-\mathrm{id}_{\mathbb{S}^2} : \mathbb{S}^2 \longrightarrow \mathbb{S}^2$$
$$N \mapsto n := S$$
$$S \mapsto s := N$$
$$: \mathbb{S}^1 \xrightarrow{m} S = N$$

$$-\mathrm{id}_{\mathbb{S}^2} : \mathbb{S}^2 \longrightarrow \mathbb{S}^2$$
$$N \mapsto n := S$$
$$S \mapsto s := N$$
$$\mathrm{mrd}(-)^{-1} : \mathbb{S}^1 \xrightarrow{m} S = N$$

$$-\mathrm{id}_{\mathbb{S}^2} : \mathbb{S}^2 \longrightarrow \mathbb{S}^2$$
$$N \mapsto n :\equiv S$$
$$S \mapsto s :\equiv N$$
$$\mathrm{mrd}(-)^{-1} : \mathbb{S}^1 \xrightarrow{m} S = N$$

Hopefully, $id_{\mathbb{S}^2} \neq -id_{\mathbb{S}^2}$ still holds.

WLOG, one can suppose $p(N) = mrd(\cdot)$ and $p(S) = mrd(\cdot)^{-1}$ inhabited.

WLOG, one can suppose $p(N) = mrd(\cdot)$ and $p(S) = mrd(\cdot)^{-1}$ inhabited.

Then one has

$$\pi: \prod_{x:\mathbb{S}^1} \operatorname{mrd}(\boldsymbol{\cdot}) =_{\operatorname{mrd}(x)} \operatorname{mrd}(\boldsymbol{\cdot})^{-1}$$

WLOG, one can suppose $p(N) = mrd(\cdot)$ and $p(S) = mrd(\cdot)^{-1}$ inhabited.

Then one has

$$\pi: \prod_{x:\mathbb{S}^1} \operatorname{mrd}(x)^{-1} \operatorname{mrd}(\cdot) \operatorname{mrd}(x)^{-1} = \operatorname{mrd}(\cdot)^{-1}$$

WLOG, one can suppose $p(N) = mrd(\cdot)$ and $p(S) = mrd(\cdot)^{-1}$ inhabited.

Then one has

$$\pi(\bullet) : \operatorname{mrd}(\bullet)^{-1}\operatorname{mrd}(\bullet)\operatorname{mrd}(\bullet)^{-1} = \operatorname{mrd}(\bullet)^{-1}$$
$$[\pi](\bigcirc) : \pi(\bullet) = {}_{\bigcirc} \pi(\bullet)$$

WLOG, one can suppose $p(N) = mrd(\cdot)$ and $p(S) = mrd(\cdot)^{-1}$ inhabited.

Then one has

$$\pi(\bullet) : \operatorname{mrd}(\bullet)^{-1}\operatorname{mrd}(\bullet)\operatorname{mrd}(\bullet)^{-1} = \operatorname{mrd}(\bullet)^{-1}$$
$$[\pi](\circlearrowleft) : \pi(\bullet) =_{\circlearrowright} \pi(\bullet)$$

... ultimately, one gets an element of $[mrd](\bigcirc^2) = refl_{mrd(\bullet)}$

 $\mathcal{H}\,:\,\mathbb{S}^2\to\mathcal{U}$

$$\begin{aligned} \mathcal{H} \, : \, \mathbb{S}^2 & \longrightarrow \, \mathcal{U} \\ N & \longmapsto \, \boldsymbol{n} \, \coloneqq \, \mathbb{S}^1 \end{aligned}$$

$$\begin{array}{l} \mathcal{H} : \mathbb{S}^2 \longrightarrow \mathcal{U} \\ N \longmapsto n := \mathbb{S}^1 \\ S \longmapsto s := \mathbb{S}^1 \end{array}$$

$$\begin{aligned} \mathcal{H} &: \mathbb{S}^2 \longrightarrow \mathcal{U} \\ & N \mapsto n := \mathbb{S}^1 \\ & S \mapsto s := \mathbb{S}^1 \\ & x \mapsto (x, \bigcirc_x) : \mathbb{S}^1 \xrightarrow{m} (\mathbb{S}^1 = \mathbb{S}^1) \end{aligned}$$

$$\begin{array}{c} \mathcal{H} : \mathbb{S}^2 \to \mathcal{U} \\ N \mapsto n := \mathbb{S}^1 \\ S \mapsto s := \mathbb{S}^1 \\ x \mapsto (x, \mathbb{O}_x) : \mathbb{S}^1 \xrightarrow{m} (\mathbb{S}^1 = \mathbb{S}^1) \end{array}$$

$$\begin{aligned} \mathcal{H} &: \mathbb{S}^2 \to \mathcal{U} \\ & N \mapsto n := \mathbb{S}^1 \\ & S \mapsto s := \mathbb{S}^1 \\ & x \mapsto (x, \mathbb{O}_x) \\ \end{aligned}$$

$$\begin{aligned} \mathcal{H} : \mathbb{S}^2 &\to \mathcal{U} \\ N &\mapsto n := \mathbb{S}^1 \\ S &\mapsto s := \mathbb{S}^1 \\ x &\mapsto (x, \mathbb{O}_x) : \mathbb{S}^1 \xrightarrow{m} (\mathbb{S}^1 = \mathbb{S}^1) \end{aligned}$$

$$\begin{aligned} \mathcal{H} : \mathbb{S}^2 &\to \mathcal{U} \\ N &\mapsto n := \mathbb{S}^1 \\ S &\mapsto s := \mathbb{S}^1 \\ x &\mapsto (x, \mathbb{O}_x) : \mathbb{S}^1 \xrightarrow{m} (\mathbb{S}^1 = \mathbb{S}^1) \end{aligned}$$

$$\begin{aligned} \mathcal{H} &: \mathbb{S}^2 \longrightarrow \mathcal{U} \\ & N \mapsto n := \mathbb{S}^1 \\ & S \mapsto s := \mathbb{S}^1 \\ & x \mapsto (x, \bigcirc_x) : \mathbb{S}^1 \xrightarrow{m} (\mathbb{S}^1 = \mathbb{S}^1) \end{aligned}$$

$$\begin{aligned} \mathcal{H} &: \mathbb{S}^2 \longrightarrow \mathcal{U} \\ & N \mapsto n := \mathbb{S}^1 \\ & S \mapsto s := \mathbb{S}^1 \\ & x \mapsto (x, \bigcirc_x) : \mathbb{S}^1 \xrightarrow{m} (\mathbb{S}^1 = \mathbb{S}^1) \end{aligned}$$

Then $[\mathcal{H}] \circ mrd$ is an equivalence, in particular $[[\mathcal{H}] \circ mrd]$ is injective and one ends up with $\bigcirc^2 = refl_{\bullet}$.

$$\begin{aligned} \mathcal{H} &: \mathbb{S}^2 \longrightarrow \mathcal{U} \\ & N \mapsto n := \mathbb{S}^1 \\ & S \mapsto s := \mathbb{S}^1 \\ & x \mapsto (x, \bigcirc_x) : \mathbb{S}^1 \xrightarrow{m} (\mathbb{S}^1 = \mathbb{S}^1) \end{aligned}$$

Then $[\mathcal{H}] \circ mrd$ is an equivalence, in particular $[[\mathcal{H}] \circ mrd]$ is injective and one ends up with $\bigcirc^2 = refl_{\bullet}$.

The degree of a function $f\,:\,\mathbb{S}^2\longrightarrow\mathbb{S}^2$ pointed by $f_0\,:\,N=f(N)$ is

$$\pi_2(\mathbb{S}^2) \xrightarrow{\pi_2(f,f_0)} \pi_2(\mathbb{S}^2)$$

The degree of a function $f : \mathbb{S}^2 \to \mathbb{S}^2$ pointed by $f_0 : N = f(N)$ is $\pi_n(X) := \|\Omega^n(X)\|_0 \qquad \pi_2(\mathbb{S}^2) \xrightarrow{\pi_2(f,f_0)} \pi_2(\mathbb{S}^2)$

The degree of a function $f : \mathbb{S}^2 \to \mathbb{S}^2$ pointed by $f_0 : N = f(N)$ is $\pi_n(X) := \|\Omega^n(X)\|_0$ $\pi_2(\mathbb{S}^2) \xrightarrow{\pi_2(f,f_0)} \pi_2(\mathbb{S}^2)$ $\Omega(X) := \operatorname{pt}_X = \operatorname{pt}_X$ $\Omega^{n+1}(X) := \Omega(\Omega^n X)$

The degree of a function $f\,:\,\mathbb{S}^2\longrightarrow\mathbb{S}^2$ pointed by $f_0\,:\,N=f(N)$ is

$$egin{array}{c|c} \pi_2(\mathbb{S}^2) & \xrightarrow{\pi_2(f,f_0)} & \pi_2(\mathbb{S}^2) \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$$

The degree of a function $f\,:\,\mathbb{S}^2\longrightarrow\mathbb{S}^2$ pointed by $f_0\,:\,N=f(N)$ is

$$\begin{array}{c|c} \pi_2(\mathbb{S}^2) \xrightarrow{\pi_2(f,f_0)} & \pi_2(\mathbb{S}^2) \\ & & | & & \\ & & & | \\ & \mathbb{Z} & & \mathbb{Z} \end{array}$$

$$1\longmapsto d(f,f_0)$$

The degree of a function $f\,:\,\mathbb{S}^2\longrightarrow\mathbb{S}^2$ pointed by $f_0\,:\,N$ = f(N) is

$$\begin{array}{c|c} \pi_2(\mathbb{S}^2) \xrightarrow{\pi_2(f,f_0)} & \pi_2(\mathbb{S}^2) \\ & & | & & \\ & & & | \\ & \mathbb{Z} & & \mathbb{Z} \end{array}$$

$$1\longmapsto d(f,f_0)$$

Because π_2 is a functor:

 $d(\mathrm{id}_{\mathbb{S}^2}, \mathrm{refl}_N) = 1$ $d((g, g_0) \circ (f, f_0)) = d(g, g_0) \times d(f, f_0)$

The degree of a function $f\,:\,\mathbb{S}^2\longrightarrow\mathbb{S}^2$ pointed by $f_0\,:\,N$ = f(N) is

$$\begin{array}{c|c} \pi_2(\mathbb{S}^2) \xrightarrow{\pi_2(f,f_0)} & \pi_2(\mathbb{S}^2) \\ & & | & & \\ & & & | \\ & \mathbb{Z} & & \mathbb{Z} \end{array}$$

$$1\longmapsto d(f,f_0)$$

Because π_2 is a functor:

$$d(\operatorname{id}_{S^2}, \operatorname{refl}_N) = 1$$

$$d((g, g_0) \circ (f, f_0)) = d(g, g_0) \times d(f, f_0)$$

$$= (g \circ f, [g](f_0) \cdot g_0)$$

The degree of a function $f\,:\,\mathbb{S}^2\longrightarrow\mathbb{S}^2$ pointed by $f_0\,:\,N$ = f(N) is

$$\begin{array}{c|c} \pi_2(\mathbb{S}^2) \xrightarrow{\pi_2(f,f_0)} & \pi_2(\mathbb{S}^2) \\ & & | & & \\ & & & | \\ & \mathbb{Z} & & \mathbb{Z} \end{array}$$

$$1\longmapsto d(f,f_0)$$

Because π_2 is a functor:

$$d(id_{S^2}, refl_N) = 1$$

$$d((g, g_0) \circ (f, f_0)) = d(g, g_0) \times d(f, f_0)$$

Consequence: the degree maps pointed equivalences to either 1 or -1.

$(\mathbb{S}^2 \longrightarrow_{\star} \mathbb{S}^2) \longrightarrow (\mathbb{S}^1 \longrightarrow_{\star} \Omega \, \mathbb{S}^2) \longrightarrow \Omega^2 \, \mathbb{S}^2 \longrightarrow \Omega \, \mathbb{S}^1 \simeq \mathbb{Z}$

$(\mathbb{S}^2 \longrightarrow_* \mathbb{S}^2) \xrightarrow{\Sigma \to \Omega} (\mathbb{S}^1 \longrightarrow_* \Omega \mathbb{S}^2) \longrightarrow \Omega^2 \mathbb{S}^2 \longrightarrow \Omega \mathbb{S}^1 \simeq \mathbb{Z}$

$(\mathbb{S}^2 \longrightarrow_{\star} \mathbb{S}^2) \xrightarrow[\simeq]{\Sigma \to \Omega} (\mathbb{S}^1 \longrightarrow_{\star} \Omega \mathbb{S}^2) \xrightarrow[\simeq]{\mathbb{S}^1 - \mathrm{UMP}} \Omega^2 \mathbb{S}^2 \longrightarrow \Omega \mathbb{S}^1 \simeq \mathbb{Z}$

$(\mathbb{S}^2 \longrightarrow_{\star} \mathbb{S}^2) \xrightarrow{\Sigma \to \Omega} (\mathbb{S}^1 \longrightarrow_{\star} \Omega \mathbb{S}^2) \xrightarrow{\mathbb{S}^1 - \bigcup \mathbb{MP}} \Omega^2 \mathbb{S}^2 \xrightarrow{?} \Omega \mathbb{S}^1 \simeq \mathbb{Z}$

$$(\mathbb{S}^2 \longrightarrow_{\star} \mathbb{S}^2) \xrightarrow{\Sigma \to \Omega} (\mathbb{S}^1 \longrightarrow_{\star} \Omega \mathbb{S}^2) \xrightarrow{\mathbb{S}^1 \cup \mathsf{UMP}} \Omega^2 \mathbb{S}^2 \xrightarrow{?} \Omega \mathbb{S}^1 \simeq \mathbb{Z}$$

Define $\tau(p) := [\mathcal{H}](p)(\bullet)$ for p : N = N.

$$(\mathbb{S}^2 \longrightarrow_* \mathbb{S}^2) \xrightarrow{\Sigma \to \Omega} (\mathbb{S}^1 \longrightarrow_* \Omega \mathbb{S}^2) \xrightarrow{\mathbb{S}^1 - \text{UMP}} \Omega^2 \mathbb{S}^2 \xrightarrow{\Omega(\tau)} \Omega \mathbb{S}^1 \simeq \mathbb{Z}$$

Define $\tau(p) := [\mathcal{H}](p)(\bullet)$ for p : N = N.

Alternative description

$$(\mathbb{S}^{2} \xrightarrow{} \mathbb{S}^{2}) \xrightarrow{\Sigma \to \Omega} (\mathbb{S}^{1} \xrightarrow{} \Omega \mathbb{S}^{2}) \xrightarrow{\mathbb{S}^{1} \cup \mathsf{UMP}}{\simeq} \Omega^{2} \mathbb{S}^{2} \xrightarrow{\Omega(\tau)} \Omega \mathbb{S}^{1} \simeq \mathbb{Z}$$

Define $\tau(p) := [\mathcal{H}](p)(\bullet)$ for p : N = N.

Alternative description

$$(\mathbb{S}^{2} \xrightarrow{\times} \mathbb{S}^{2}) \xrightarrow{\Sigma \to \Omega} (\mathbb{S}^{1} \xrightarrow{\times} \Omega \mathbb{S}^{2}) \xrightarrow{\mathbb{S}^{1} \text{-UMP}} \Omega^{2} \mathbb{S}^{2} \xrightarrow{\Omega(\tau)} \Omega \mathbb{S}^{1} \simeq \mathbb{Z}$$

Define $\tau(p) := [\mathcal{H}](p)(\bullet)$ for p : N = N.

Consequence: for $(f, f_0), (g, g_0) : \mathbb{S}^2 \longrightarrow_* \mathbb{S}^2$,

$$d(f, f_0) = d(g, g_0) \iff ||(f, f_0) = (g, g_0)||.$$

Recall one has $id_{S^2} \neq -id_{S^2}$.

Recall one has $id_{S^2} \neq -id_{S^2}$.

Hence, proving $\|f = \mathrm{id}_{\mathbb{S}^2}\| + \|f = -\mathrm{id}_{\mathbb{S}^2}\|$ for an equivalence $f : \mathbb{S}^2 \simeq \mathbb{S}^2$, one can suppose that f is pointed by some $f_0 : N = f(N)$.

Recall one has $id_{S^2} \neq -id_{S^2}$.

Hence, proving $\|f = \mathrm{id}_{\mathbb{S}^2}\| + \|f = -\mathrm{id}_{\mathbb{S}^2}\|$ for an equivalence $f : \mathbb{S}^2 \simeq \mathbb{S}^2$, one can suppose that f is pointed by some $f_0 : N = f(N)$.

Then $d(f, f_0) = \pm 1$. Also, $d(\operatorname{id}_{S^2}, \operatorname{refl}_N) = 1$ and $d(-\operatorname{id}_{S^2}, \operatorname{mrd}(\bullet)) = -1$.

Recall one has $id_{\mathbb{S}^2} \neq -id_{\mathbb{S}^2}$.

Hence, proving $\|f = \mathrm{id}_{\mathbb{S}^2}\| + \|f = -\mathrm{id}_{\mathbb{S}^2}\|$ for an equivalence $f : \mathbb{S}^2 \simeq \mathbb{S}^2$, one can suppose that f is pointed by some $f_0 : N = f(N)$.

Then $d(f, f_0) = \pm 1$. Also, $d(\operatorname{id}_{S^2}, \operatorname{refl}_N) = 1$ and $d(-\operatorname{id}_{S^2}, \operatorname{mrd}(\bullet)) = -1$.

This yield $\|(f, f_0) = (\operatorname{id}_{S^2}, \operatorname{refl}_N)\| + \|(f, f_0) = (-\operatorname{id}_{S^2}, \operatorname{mrd}(\bullet))\|$. From which derives $\|f = \operatorname{id}_{S^2}\| + \|f = -\operatorname{id}_{S^2}\|$.

Define $\Psi : (\$^2 \rightarrow \$^2) \rightarrow (\$^2 \rightarrow \$^2)$ by mapping a map f to:

 $\Psi(f)(N) := f(S), \quad \Psi(f)(S) := f(N), \quad [\Psi(f)] \circ \operatorname{mrd} = [f] \circ \operatorname{mrd}(-)^{-1}$

Define $\Psi : (\$^2 \rightarrow \$^2) \rightarrow (\$^2 \rightarrow \$^2)$ by mapping a map f to:

 $\Psi(f)(N) := f(S), \quad \Psi(f)(S) := f(N), \quad [\Psi(f)] \circ \operatorname{mrd} = [f] \circ \operatorname{mrd}(-)^{-1}$

• Ψ is an equivalence (it is its own inverse)

Define $\Psi : (\$^2 \rightarrow \$^2) \rightarrow (\$^2 \rightarrow \$^2)$ by mapping a map f to:

 $\Psi(f)(N) := f(S), \quad \Psi(f)(S) := f(N), \quad [\Psi(f)] \circ \operatorname{mrd} = [f] \circ \operatorname{mrd}(-)^{-1}$

- Ψ is an equivalence (it is its own inverse)
- ► $\Psi(id_{S^2}) = -id_{S^2}$

Define $\Psi:(\mathbb{S}^2 \longrightarrow \mathbb{S}^2) \longrightarrow (\mathbb{S}^2 \longrightarrow \mathbb{S}^2)$ by mapping a map f to:

 $\Psi(f)(N) := f(S), \quad \Psi(f)(S) := f(N), \quad [\Psi(f)] \circ \operatorname{mrd} = [f] \circ \operatorname{mrd}(-)^{-1}$

- Ψ is an equivalence (it is its own inverse)
- ► $\Psi(id_{S^2}) = -id_{S^2}$

Hence,

$$(\mathbb{S}^2 \to \mathbb{S}^2)_{(\mathrm{id}_{\mathbb{S}^2})} \stackrel{\Psi}{\simeq} (\mathbb{S}^2 \to \mathbb{S}^2)_{(-\mathrm{id}_{\mathbb{S}^2})}$$

Define $\Psi:(\mathbb{S}^2 \longrightarrow \mathbb{S}^2) \longrightarrow (\mathbb{S}^2 \longrightarrow \mathbb{S}^2)$ by mapping a map f to:

 $\Psi(f)(N) := f(S), \quad \Psi(f)(S) := f(N), \quad [\Psi(f)] \circ \operatorname{mrd} = [f] \circ \operatorname{mrd}(-)^{-1}$

- Ψ is an equivalence (it is its own inverse)
- ► $\Psi(\operatorname{id}_{\mathbb{S}^2}) = -\operatorname{id}_{\mathbb{S}^2}$

Hence,

$$(\$^2 \simeq \$^2)_{(\mathrm{id}_{\$^2})} \stackrel{\Psi}{\simeq} (\$^2 \simeq \$^2)_{(-\mathrm{id}_{\$^2})}$$

$$\left(\$^2 = \$^2\right) \simeq \mathbf{2} \times \left(\$^2 = \$^2\right)_{\left(\mathrm{id}_{\$^2}\right)}$$

3. Symmetries of higher spheres

Inductively, $\mathbb{S}^{n+1} := \Sigma \mathbb{S}^n$ with the appropriate elimination rule.

Inductively, $\mathbb{S}^{n+1} := \Sigma \mathbb{S}^n$ with the appropriate elimination rule.

Freudenthal's suspension theorem implies that

$$\sigma: \mathbb{S}^n \to \Omega(\mathbb{S}^{n+1}), \quad x \mapsto \operatorname{mrd}(N_n)^{-1}\operatorname{mrd}(x)$$

is 2(n-1)-connected.

Inductively, $\mathbb{S}^{n+1} := \Sigma \mathbb{S}^n$ with the appropriate elimination rule.

Freudenthal's suspension theorem implies that

$$\sigma: \mathbb{S}^n \to \Omega(\mathbb{S}^{n+1}), \quad x \mapsto \operatorname{mrd}(N_n)^{-1}\operatorname{mrd}(x)$$

is 2(n-1)-connected.

Hence, $\Omega^n(\sigma) : \Omega^n(\mathbb{S}^n) \to \Omega^{n+1}(\mathbb{S}^{n+1})$ is (n-2)-connected.

Then $\Sigma(-)$: $(\mathbb{S}^n \longrightarrow_* \mathbb{S}^n) \longrightarrow (\mathbb{S}^{n+1} \longrightarrow_* \mathbb{S}^{n+1})$ is (n-2)-connected, hence 0-connected.

Then $\Sigma(-)$: $(\mathbb{S}^n \to_* \mathbb{S}^n) \to (\mathbb{S}^{n+1} \to_* \mathbb{S}^{n+1})$ is (n-2)-connected, hence 0-connected.

Because \mathbb{S}^n and \mathbb{S}^{n+1} are 1-connected, the forgetful maps

 $(\mathbb{S}^n \to_* \mathbb{S}^n) \to (\mathbb{S}^n \to \mathbb{S}^n), \quad (\mathbb{S}^{n+1} \to_* \mathbb{S}^{n+1}) \to (\mathbb{S}^{n+1} \to \mathbb{S}^{n+1})$

are 0-connected.

There is an isomorphism of monoids

$$\left\|\mathbb{S}^n \to \mathbb{S}^n\right\|_0 \to \left\|\mathbb{S}^{n+1} \to \mathbb{S}^{n+1}\right\|_0$$

for all $n \ge 2$, and the type of invertible elements of $\|\mathbb{S}^n \to \mathbb{S}^n\|_0$ is equivalent to $\|\mathbb{S}^n = \mathbb{S}^n\|_0$.

There is an isomorphism of monoids

$$\left\|\mathbb{S}^n \to \mathbb{S}^n\right\|_0 \to \left\|\mathbb{S}^{n+1} \to \mathbb{S}^{n+1}\right\|_0$$

for all $n \ge 2$, and the type of invertible elements of $\|\mathbb{S}^n \longrightarrow \mathbb{S}^n\|_0$ is equivalent to $\|\mathbb{S}^n = \mathbb{S}^n\|_0$.

As
$$\|\mathbb{S}^2 = \mathbb{S}^2\|_0 \approx 2$$
, by induction $\|\mathbb{S}^n = \mathbb{S}^n\|_0 \approx 2$ for all $n \ge 2$.

On the shape of $(\$^n = \$^n)_{(id_{\$^n})}$

$$(\mathbb{S}^n \simeq_* \mathbb{S}^n) \longrightarrow (\mathbb{S}^n \simeq \mathbb{S}^n) \longrightarrow \mathbb{S}^n$$

is a fiber sequence.

On the shape of $(\$^n = \$^n)_{(id_{\$^n})}$

$$(\mathbb{S}^n \simeq_* \mathbb{S}^n) \longrightarrow (\mathbb{S}^n \simeq \mathbb{S}^n) \longrightarrow \mathbb{S}^n$$

is a fiber sequence.

Hence a long exact sequence:

$$\ldots \to \pi_2(\mathbb{S}^n) \to \pi_1(\mathbb{S}^n \simeq_* \mathbb{S}^n) \to \pi_1(\mathbb{S}^n \simeq \mathbb{S}^n) \to \pi_1(\mathbb{S}^n) \to \ldots$$

On the shape of $(\$^n = \$^n)_{(id_{\$^n})}$

$$(\mathbb{S}^n \simeq_* \mathbb{S}^n) \longrightarrow (\mathbb{S}^n \simeq \mathbb{S}^n) \longrightarrow \mathbb{S}^n$$

is a fiber sequence.

Hence a long exact sequence:

$$\ldots \to \pi_2(\mathbb{S}^n) \to \pi_1(\mathbb{S}^n \simeq_* \mathbb{S}^n) \to \pi_1(\mathbb{S}^n \simeq \mathbb{S}^n) \to \pi_1(\mathbb{S}^n) \to \ldots$$

So for $n \ge 3$,

 $\pi_1(\mathbb{S}^n = \mathbb{S}^n)$

$$(\mathbb{S}^n \simeq_* \mathbb{S}^n) \longrightarrow (\mathbb{S}^n \simeq \mathbb{S}^n) \longrightarrow \mathbb{S}^n$$

is a fiber sequence.

Hence a long exact sequence:

$$\ldots \to \pi_2(\mathbb{S}^n) \to \pi_1(\mathbb{S}^n \simeq_* \mathbb{S}^n) \to \pi_1(\mathbb{S}^n \simeq \mathbb{S}^n) \to \pi_1(\mathbb{S}^n) \to \ldots$$

$$\pi_1(\mathbb{S}^n = \mathbb{S}^n) \simeq \pi_1(\mathbb{S}^n \simeq_* \mathbb{S}^n)$$

$$(\mathbb{S}^n \simeq_* \mathbb{S}^n) \longrightarrow (\mathbb{S}^n \simeq \mathbb{S}^n) \longrightarrow \mathbb{S}^n$$

is a fiber sequence.

Hence a long exact sequence:

$$\ldots \to \pi_2(\mathbb{S}^n) \to \pi_1(\mathbb{S}^n \simeq_* \mathbb{S}^n) \to \pi_1(\mathbb{S}^n \simeq \mathbb{S}^n) \to \pi_1(\mathbb{S}^n) \to \ldots$$

$$\pi_1(\mathbb{S}^n = \mathbb{S}^n) \simeq \pi_1(\mathbb{S}^n \simeq_* \mathbb{S}^n) \simeq \pi_1(\mathbb{S}^n \longrightarrow_* \mathbb{S}^n)$$

$$(\mathbb{S}^n \simeq_* \mathbb{S}^n) \longrightarrow (\mathbb{S}^n \simeq \mathbb{S}^n) \longrightarrow \mathbb{S}^n$$

is a fiber sequence.

Hence a long exact sequence:

$$\ldots \to \pi_2(\mathbb{S}^n) \to \pi_1(\mathbb{S}^n \simeq_* \mathbb{S}^n) \to \pi_1(\mathbb{S}^n \simeq \mathbb{S}^n) \to \pi_1(\mathbb{S}^n) \to \ldots$$

$$\pi_1(\mathbb{S}^n = \mathbb{S}^n) \simeq \pi_1(\mathbb{S}^n \simeq_* \mathbb{S}^n) \simeq \pi_1(\mathbb{S}^n \longrightarrow_* \mathbb{S}^n) = \pi_{n+1}(\mathbb{S}^n)$$

$$(\mathbb{S}^n \simeq_* \mathbb{S}^n) \longrightarrow (\mathbb{S}^n \simeq \mathbb{S}^n) \longrightarrow \mathbb{S}^n$$

is a fiber sequence.

Hence a long exact sequence:

$$\ldots \to \pi_2(\mathbb{S}^n) \to \pi_1(\mathbb{S}^n \simeq_* \mathbb{S}^n) \to \pi_1(\mathbb{S}^n \simeq \mathbb{S}^n) \to \pi_1(\mathbb{S}^n) \to \ldots$$

$$\pi_1(\mathbb{S}^n = \mathbb{S}^n) \simeq \pi_1(\mathbb{S}^n \simeq_* \mathbb{S}^n) \simeq \pi_1(\mathbb{S}^n \longrightarrow_* \mathbb{S}^n) = \pi_{n+1}(\mathbb{S}^n) = \mathbb{Z}_2$$

$$\blacktriangleright (\$^1 = \$^1) \simeq \$^1 + \1$

•
$$(\$^1 = \$^1) \simeq \$^1 + \1$

• $(\$^2 = \$^2) \simeq 2 \times (\$^2 = \$^2)_{(id_{\$^2})}$

•
$$(\$^1 = \$^1) \simeq \$^1 + \1$

• $(\$^2 = \$^2) \simeq 2 \times (\$^2 = \$^2)_{(id_{\$^2})}$
• $\|\$^n = \$^n\|_0 \simeq 2 \text{ for } n \ge 3$

•
$$(\$^1 = \$^1) \simeq \$^1 + \1$

• $(\$^2 = \$^2) \simeq 2 \times (\$^2 = \$^2)_{(\mathrm{id}_{\$^2})}$
• $\|\$^n = \$^n\|_0 \simeq 2 \text{ for } n \ge 3$
• $(\$^n = \$^n) \neq (\$^n + \$^n) \text{ for } n \ge 3$

What we have proved:

•
$$(\$^1 = \$^1) \simeq \$^1 + \1$

• $(\$^2 = \$^2) \simeq 2 \times (\$^2 = \$^2)_{(\mathrm{id}_{\$^2})}$
• $\|\$^n = \$^n\|_0 \simeq 2 \text{ for } n \ge 3$
• $(\$^n = \$^n) \neq (\$^n + \$^n) \text{ for } n \ge 3$

What about:

What we have proved:

•
$$(\$^1 = \$^1) \simeq \$^1 + \1$

• $(\$^2 = \$^2) \simeq 2 \times (\$^2 = \$^2)_{(\mathrm{id}_{\$^2})}$
• $\|\$^n = \$^n\|_0 \simeq 2 \text{ for } n \ge 3$
• $(\$^n = \$^n) \neq (\$^n + \$^n) \text{ for } n \ge 3$

What about:

•
$$(\$^2 = \$^2) \neq (\$^2 + \$^2)$$
?

What we have proved:

•
$$(\$^1 = \$^1) \simeq \$^1 + \1$

• $(\$^2 = \$^2) \simeq 2 \times (\$^2 = \$^2)_{(id_{\$^2})}$
• $\|\$^n = \$^n\|_0 \simeq 2 \text{ for } n \ge 3$
• $(\$^n = \$^n) \neq (\$^n + \$^n) \text{ for } n \ge 3$

What about:

▶
$$(\$^2 = \$^2) \neq (\$^2 + \$^2)$$
?
▶ $(\$^n = \$^n) \simeq (\$^n = \$^n)_{(id_{\$^n})} + (\$^n = \$^n)_{(-id_{\$^n})}$?
(In other words, is $id_{\$^n} \neq -id_{\n).
Then $(\$^n = \$^n) \simeq 2 \times (\$^n = \$^n)_{(id_{\$^n})}$

Thank you.