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Why simplicial type theory?

Open problem: Can we define & develop the theory of (∞, 1)-categories in (book) HoTT?
Can we define the type of semi-simplicial types?

• If we can, it’ll likely be a rather complicated construction, and it will be useful to have a
DSL (domain specific language) in order to reason practically with (∞, 1)-categories.

• If we can’t, it’ll still be nice to have a synthetic type theory (DSL) to use until we settle
on the proper extension of HoTT. (Maybe Two-level type theory?)

A DSL: Simplicial type theory (Riehl–Shulman: A type theory for synthetic ∞-categories)

Related work: Harper–Licata, Warren, Nuyts, Licata–Weaver, Cavallo–Riehl–Sattler,
Riehl–Verity, Cisinski, North, . . .



Why (co)cartesian families?

RS defined covariant and contravariant families, representing copresheaves and presheaves over
a base category B, i.e., co-/contravariant functors P : B → Space.

Here, we study (co)cartesian families, representing co-/contravariant functors P : B → Cat.

These can model the higher-categorical versions of Mod : Ring → Cat and
Vect : Mfld → Cat, for example.

Another use: symmetric monoidal (∞, 1)-categories are cocartesian families over the category
of finite pointed sets, Fin∗.

They are also a crucial stepping stone toward defining the universe Cat itself.
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Simplicial Type Theory

The simplest simplicial type theory: Postulate:

2 : Set
≤ : 2 → 2 → Prop

0, 1 : 2
p : “(2, ≤, 0, 1) is a strict interval”

A strict interval is a totally ordered set with distinct top and bottom elements.

Indeed, the 1-topos of simplicial sets is the classifying 1-topos for the theory of strict intervals.

In particular, the square 2 × 2 is obtained by gluing together two 2-simplices
Δ2 :≡ {(x, y) : 2 × 2 | y ≤ x}.

As a consequence, we can define connection maps ∧, ∨ : 2 × 2 → 2.



More shapes; hom-types

We can (uniformly) define the simplices Δn = {(x1, . . . , xn) : 2n | 0 ≤ xn ≤ · · · ≤ x1 ≤ 1},
the horns Λn

k and the boundaries ∂Δn, along with the embeddings Λn
k �→ ∂Δn �→ Δn.

Given a type B with elements b, b� : B, we define the type of arrows from b to b� by

(b →B b�) :≡ homB(b, b�) :≡
�

u:2→B

(u 0 = b) × (u 1 = b�).

More generally, we can introduce the extension type as an abbreviation for extensions, given
i : Φ �→ Ψ, A : Ψ → U , a :

�
x:Φ A(i x):

��
x:Ψ A(x)

��Φ
a

�
:≡

�

f :
�

x:Ψ
A(x)

(a = f ◦ i)

(This is a primitive type former in RS, using the shape+tope machinery.)



Dependent arrows

Given a type family P : B → U and an arrow u : homB(b, b�) in the base, and elements
e : P (b) and e� : P (b�), the type of arrows from e to e� over f is defined by:

(e →P
f e�) :≡

�

f :
�

t:2
P (u t)

(f 0 =P
u0 e) × (f 1 =P

u1 e�)

This is simply the type of lifts in the square (E :≡ �
b:B P (b)):

1 + 1 E

2 B

[e,e�]

[0,1] π

u



Segal types

The Segal types are the local types wrt the horn inclusion Λ2
1 �→ Δ2. That is, B is Segal if the

restriction map
(Δ2 → B) → (Λ2

1 → B)

is an equivalence. The Segal types form a reflective subuniverse.

The Segal types in simplicial spaces model pre-(∞, 1)-categories, or equivalently, flagged
(∞, 1)-categories.

Associativity follows. Question: In this setting, can we derive the uniform Segal condition, i.e.,
locality wrt to the spine inclusions Spn �→ Δn, for all n : N?



Isomorphisms

An arrow f : a → b in a Segal type B is a (categorical) isomorphism if the following
proposition(!) holds:

isIso(f) :≡
�

g:b→a

�

h:b→a

(hf = ida) × (fg = idb).

The type of isomorphisms a �B b :≡ �
f :a→Bb isIso(f) is equivalent to the mapping type

E → B, where E is the colimit of the diagram:

Δ1 Δ1 Δ1

1 Δ2 Δ2 1

d1 d0 d2 d1



Rezk types

Fix a Segal type B. Then B is a Rezk type iff it is E-null, i.e., the map B → (E → B) is an
equivalence.

Equivalently, B is (k : 1 → E)-local, for either k = 0, 1.

Rezk types are our internal (∞, 1)-categories. (Univalent pre-(∞, 1)-categories, flagged
(∞, 1)-categories where the flag contracts away.)

A type is discrete if it is Δ1-null. Discrete types are Rezk, and model ∞-groupoids.



The Yoneda Lemma
A family/map π : E → B is covariant (contravariant) if it is right orthogonal to 0 : 1 �→ Δ1

(1 : 1 �→ Δ1).

Yoneda Lemma (RS)
If B is Segal, b : B, and P : A → U is covariant, then evaluation gives an equivalence:

��

x:B
(b →B x) → P (x)

�
→ P (b).

Dependent version: If B Segal, b : B, P : b/B → U covariant, then evaluation gives
equivalence: ��

x:B

�

f :b→Bx

P (x, f)
�

→ P (b, idb)



Directed encode-decode
Remark We have the following analog of the fundamental theorem of identity types:

Observation
Let B be a Segal type, b : B, and let P : B → U be a covariant family with d : P (b). The
fiberwise map

�
x:B((b →B x) → P (x)) given by covariance, is a fiberwise equivalence if and

only if �b, d� is initial in
�

x:B P (x).
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Inner and Isoinner Families

We say that a map π : E → B is inner if it is right orthogonal to the horn inclusion Λ2
1 �→ Δ2.

Note that if B is Segal, then E is Segal iff π is inner.

We say that π is isoinner if it is in addition E-null.

If B is Rezk, then E is Rezk iff π is isoinner.



(Co)-Cartesian Arrows
Let B be a type and P : B → U be an inner family. Let b, b� : B, u : b →B b�, and e : P b,
e� : P b�. An arrow f : e →P

u e� is a P -cocartesian arrow if and only if the following proposition
holds:

isCocartArrP f :≡
�

σ:
�

Δ2→B

���Δ1
0

u

�
�

h:
�

t:Δ1 P σ(t,t)

isContr
� ��

�t,s�:Δ2 Pσ(t, s)
���Λ2

0
[f,h]

� �
.

We say that f is a P -cocartesian lift if u starting at e.

Lemma If B is Rezk and P is isoinner,
then P -cocartesian lifts are unique.
(The type of them is a proposition.)



A cancellation property
Let π : E → B be a map of Rezk types.
If f, g are composable arrows in E, and f is cocartesian,
then g is cocartesian iff g ◦ f is.



(Co)-Cartesian Families
Let B be Rezk. We say that the isoinner family P : B → U is cocartesian if all cocartesian lifts
exists. (This is a proposition.)

Taking the right endpoint of the lifts gives functoriality maps

P! : (b →B b�) → P (b) → P (b�)

compatible with composition.



The Chevalley criterion
Theorem
A map π : E → B of Rezk types is cocartesian iff we have a LARI adjunction in:

EΔ1

π ↓ B E

BΔ1
B

r

∂0

πΔ1

�

�

�

π

∂0

Similarly, we give a fibered adjunction criterion.

Corollary (Co)cartesian maps are closed under dependent product (hence exponentiation),
composition and pullback. The domain map ∂0 : BΔ1 → B is cartesian and is cocartesian if B
has pushouts; dually, the codomain map ∂1 : BΔ1 → B is cocartesian and is cartesian if B has
pullbacks.
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A 2-Yoneda Lemma
Yoneda Lemma (Dependent version)
Let B be a Rezk type with initial object b, and let P : B → U be cocartesian. Then evaluation
at b induces an equivalence

evb :
�cocart�

x:B
P (x)

�
→ P (b)

Here we take the subtype of cocartesian sections, i.e., those mapping arrows to cocartesian
arrows.

Corollary
Let B be a Rezk type, b : B any element, and Q : B → U cocartesian. Then evaluation at idb

gives an equivalence:

�
b/B →cocart

B Q
�

�
�cocart�

u:b/B

Q(u 1)
�

→ Q(b)



A 2-Yoneda Lemma, Proof
Define LARI y : P (b) → �cocart

x:B P (x) as follows:



A 2-Yoneda Lemma, Proof continued
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Outlook

• Bring in cohesion: Free co-/contravariant families, flat (Conduché) maps, descent?
• Bring in cubical exolayer: Universes Space and Cat, univalent?
• Bring in more modalities, op and tw. The naïve Yoneda lemmas.
• . . .
• What structure/axioms would be sufficient to get a foundational system, not just a DSL?
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