(Co)cartesian families in simplicial type theory

Ulrik Buchholtz & Jonathan Weinberger

TU Darmstadt

HoTTEST, April 22, 2021 (Earth day)

Draft article: https://www2.mathematik.tu-darmstadt.de/~buchholtz/fib-syn.pdf

1 Simplicial Type Theory

2 (Co)-Cartesian Families

3 A 2-Yoneda Lemma

Why simplicial type theory?

Open problem: Can we define & develop the theory of $(\infty, 1)$ -categories in (book) HoTT? Can we define the type of semi-simplicial types?

- If we can, it'll likely be a rather complicated construction, and it will be useful to have a DSL (domain specific language) in order to reason practically with $(\infty, 1)$ -categories.
- If we can't, it'll still be nice to have a synthetic type theory (DSL) to use until we settle on the proper extension of HoTT. (Maybe *Two-level type theory*?)

A DSL: Simplicial type theory (Riehl–Shulman: A type theory for synthetic ∞-categories)

Related work: Harper–Licata, Warren, Nuyts, Licata–Weaver, Cavallo–Riehl–Sattler, Riehl–Verity, Cisinski, North, ...

Why (co)cartesian families?

RS defined covariant and contravariant families, representing copresheaves and presheaves over a base category B, *i.e.*, co-/contravariant functors $P : B \rightarrow \text{Space}$.

Here, we study (co)cartesian families, representing co-/contravariant functors $P: B \to Cat$.

These can model the higher-categorical versions of $Mod : Ring \rightarrow Cat$ and $Vect : Mfld \rightarrow Cat$, for example.

Another use: symmetric monoidal $(\infty, 1)$ -categories are cocartesian families over the category of finite pointed sets, Fin_* .

They are also a crucial stepping stone toward *defining* the universe Cat itself.

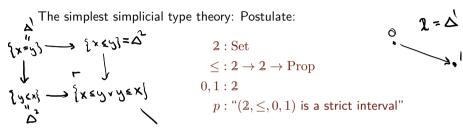
Outline

1 Simplicial Type Theory

(Co)-Cartesian Families

3 A 2-Yoneda Lemma

Simplicial Type Theory



A strict interval is a totally ordered set with distinct top and bottom elements.

Indeed, the 1-topos of simplicial sets is the classifying 1-topos for the theory of strict intervals.

In particular, the square 2×2 is obtained by gluing together two 2-simplices $\Delta^2 := \{(x, y) : 2 \times 2 \mid y \leq x\}.$

As a consequence, we can define connection maps $\land, \lor : 2 \times 2 \rightarrow 2$.

More shapes; hom-types

We can (uniformly) define the simplices $\Delta^n = \{(x_1, \ldots, x_n) : 2^n \mid 0 \le x_n \le \cdots \le x_1 \le 1\}$, the horns Λ^n_k and the boundaries $\partial \Delta^n$, along with the embeddings $\Lambda^n_k \hookrightarrow \partial \Delta^n \hookrightarrow \Delta^n$.

Given a type B with elements b, b' : B, we define the type of arrows from b to b' by

$$(b \rightarrow_B b') :\equiv \hom_B(b, b') :\equiv \sum_{u: 2 \rightarrow B} (u \ 0 = b) \times (u \ 1 = b').$$

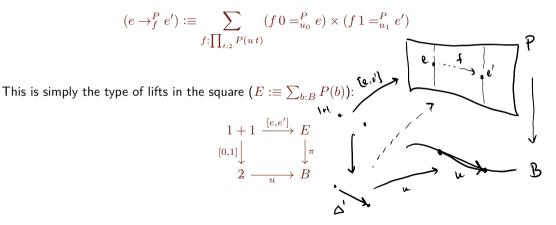
More generally, we can introduce the *extension type* as an abbreviation for extensions, given $i: \Phi \hookrightarrow \Psi, A: \Psi \to \mathcal{U}, a: \prod_{x:\Phi} A(ix):$

$$\left\langle \prod_{x:\Psi} A(x) \Big|_{a}^{\Phi} \right\rangle :\equiv \sum_{f:\prod_{x:\Psi} A(x)} (a = f \circ i)$$

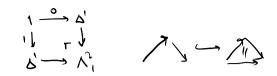
(This is a primitive type former in RS, using the shape+tope machinery.)

Dependent arrows

Given a type family $P: B \to U$ and an arrow $u: \hom_B(b, b')$ in the base, and elements e: P(b) and e': P(b'), the type of arrows from e to e' over f is defined by:



Segal types



The Segal types are the local types wrt the horn inclusion $\Lambda_1^2 \hookrightarrow \Delta^2$. That is, B is Segal if the restriction map

$$(\Delta^2 \to B) \to (\Lambda_1^2 \to B)$$

is an equivalence. The Segal types form a reflective subuniverse.

The Segal types in simplicial spaces model pre- $(\infty,1)$ -categories, or equivalently, flagged $(\infty,1)$ -categories.

(!) Associativity follows. *Question:* In this setting, can we derive the uniform Segal condition, *i.e.*, locality wrt to the spine inclusions $\operatorname{Sp}^n \hookrightarrow \Delta^n$, for all $n : \mathbb{N}$?

Isomorphisms

An arrow $f : a \to b$ in a Segal type B is a (categorical) *isomorphism* if the following proposition(!) holds:

$$\operatorname{isIso}(f) :\equiv \sum_{g:b \to a} \sum_{h:b \to a} (hf = \operatorname{id}_a) \times (fg = \operatorname{id}_b).$$

The type of isomorphisms $a \simeq_B b :\equiv \sum_{f:a \to B} isIso(f)$ is equivalent to the mapping type $\mathbb{E} \to B$, where \mathbb{E} is the colimit of the diagram:



Fix a Segal type B. Then B is a *Rezk* type iff it is \mathbb{E} -null, *i.e.*, the map $B \to (\mathbb{E} \to B)$ is an equivalence.

Equivalently, B is $(k : \mathbf{1} \to \mathbb{E})$ -local, for either k = 0, 1.

Rezk types are our internal $(\infty, 1)$ -categories. (Univalent pre- $(\infty, 1)$ -categories, flagged $(\infty, 1)$ -categories where the flag contracts away.)

A type is *discrete* if it is Δ^1 -null. Discrete types are Rezk, and model ∞ -groupoids.

The Yoneda Lemma

A family/map $\pi: E \to B$ is covariant (contravariant) if it is right orthogonal to $0: \mathbf{1} \hookrightarrow \Delta^1$ $(1: \mathbf{1} \hookrightarrow \Delta^1)$.

Yoneda Lemma (RS)

If B is Segal, b: B, and $P: \mathbf{B} \rightarrow \mathcal{U}$ is covariant, then evaluation gives an equivalence:

$$(\mathsf{hom}(\mathsf{v},\mathsf{r}) \rightarrow \mathsf{P}) = (\prod_{x:B} (b \to_B x) \to P(x)) \to P(b).$$

Dependent version: If *B* Segal, b : B, $P : b/B \rightarrow U$ covariant, then evaluation gives equivalence:

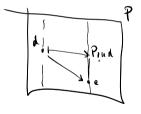
$$\left(\prod_{x:B}\prod_{f:b\to B^{x}}P(x,f)\right)\to P(b,\mathrm{id}_{b})$$
dir. path induction

Directed encode-decode

Remark We have the following analog of the fundamental theorem of identity types:

Observation

Let *B* be a Segal type, b : B, and let $P : B \to U$ be a covariant family with d : P(b). The fiberwise map $\prod_{x:B} ((b \to_B x) \to P(x))$ given by covariance, is a fiberwise equivalence if and only if $\langle b, d \rangle$ is initial in $\sum_{x:B} P(x)$.



Outline

1 Simplicial Type Theory

2 (Co)-Cartesian Families

3 A 2-Yoneda Lemma

We say that a map $\pi: E \to B$ is *inner* if it is right orthogonal to the horn inclusion $\Lambda_1^2 \hookrightarrow \Delta^2$.

Note that if B is Segal, then E is Segal iff π is inner.

We say that π is *isoinner* if it is in addition \mathbb{E} -null.

If B is Rezk, then E is Rezk iff π is isoinner.

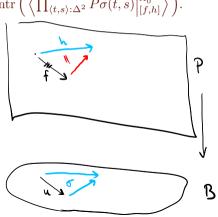
(Co)-Cartesian Arrows

Let *B* be a type and $P: B \to U$ be an inner family. Let b, b': B, $u: b \to_B b'$, and e: Pb, e': Pb'. An arrow $f: e \to_u^P e'$ is a *P*-cocartesian arrow if and only if the following proposition holds:

$$isCocartArr_{P}f :\equiv \prod_{\sigma: \left\langle \Delta^{2} \to B \middle|_{u}^{\Delta_{0}^{1}} \right\rangle} \prod_{h: \prod_{t:\Delta^{1}} P \sigma(t,t)} isContr\left(\left\langle \left\langle \prod_{\langle t,s \rangle:\Delta^{2}} P \sigma(t,s) \middle|_{[f,h]}^{\Delta_{0}^{2}} \right\rangle \right).$$

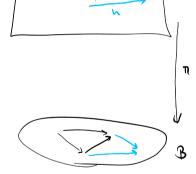
We say that f is a *P*-cocartesian lift if u starting at e.

Lemma If B is Rezk and P is isoinner, then P-cocartesian lifts are unique. (The type of them is a proposition.)



A cancellation property

Let $\pi: E \to B$ be a map of Rezk types. If f, g are composable arrows in E, and f is cocartesian, then g is cocartesian iff $g \circ f$ is.



F

9.0

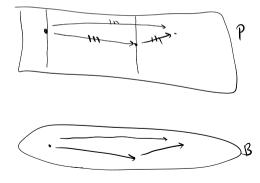
(Co)-Cartesian Families

Let B be Rezk. We say that the isoinner family $P: B \to U$ is *cocartesian* if all cocartesian lifts exists. (This is a proposition.)

Taking the right endpoint of the lifts gives functoriality maps

$$P_!: (b \to_B b') \to P(b) \to P(b')$$

compatible with composition.

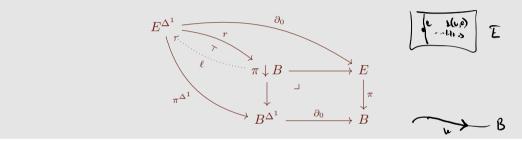


The Chevalley criterion

left adjoint right inverse

Theorem

A map $\pi: E \to B$ of Rezk types is cocartesian iff we have a LARI adjunction in:



Similarly, we give a fibered adjunction criterion.

Corollary (Co)cartesian maps are closed under dependent product (hence exponentiation), composition and pullback. The domain map $\partial_0: B^{\Delta^1} \to B$ is cartesian and is cocartesian if B has pushouts; dually, the codomain map $\partial_1: B^{\Delta^1} \to B$ is cocartesian and is cartesian if B has pullbacks.

Outline

1 Simplicial Type Theory

2 (Co)-Cartesian Families

3 A 2-Yoneda Lemma

A 2-Yoneda Lemma

Yoneda Lemma (Dependent version)

Let *B* be a Rezk type with initial object *b*, and let $P : B \to U$ be cocartesian. Then evaluation at *b* induces an equivalence

	1	ocari	′ \	
ev_h :	(П	P(x)	$\rightarrow P(b)$
		\mathbf{II} x:B	· · · / /	(-)
		x.D		

Here we take the subtype of *cocartesian sections*, *i.e.*, those mapping arrows to cocartesian arrows.

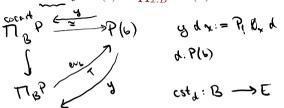
Corollary

Let B be a Rezk type, b : B any element, and $Q : B \to U$ cocartesian. Then evaluation at id_b gives an equivalence:

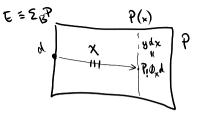
$$\left\{ \begin{array}{c} b \mid \mathfrak{g} & \stackrel{(auth)}{\longrightarrow} & \mathfrak{g} \\ & \searrow & \mathfrak{g} \end{array} \right\} = (b \mid B \rightarrow_B^{\operatorname{cocart}} Q) \simeq \left(\prod_{u:b \mid B}^{\operatorname{cocart}} Q(u \, 1) \right) \rightarrow Q(b) \qquad \begin{array}{c} b \mid \mathfrak{g} & \stackrel{\mathfrak{d}_i}{\longrightarrow} & \mathfrak{g} \rightarrow \mathfrak{g} \\ & & \stackrel{(b \mid g \mid auth)}{\longrightarrow} & \mathfrak{g} \rightarrow \mathfrak{g} \\ & & \stackrel{(b \mid g \mid auth)}{\longrightarrow} & \mathfrak{g} \rightarrow \mathfrak{g} \end{array} \right\}$$

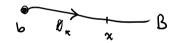
A 2-Yoneda Lemma, Proof

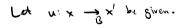
Define LARI $\mathbf{y}: P(b) \to \prod_{x:B}^{\text{cocart}} P(x)$ as follows:



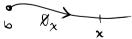
$$\chi: \operatorname{cst}_{d} \Rightarrow \operatorname{yd}$$







A 2-Yoneda Lemma, Proof continued weat Recap: have en T= TBP 7(b) s y 9(2) ent, " J= idp(b) E_{5,x} $(y \circ w_b = id_T) \simeq \Pi \Pi (y(\sigma b) = \sigma x)$ $\sigma : T x : B$ 90 6 Ц $\varepsilon_{\sigma,x}$ is the filler from χ to $\sigma(\theta_{\chi})$ this is a vertical coecat-arrow 1:10 . it.



Outline

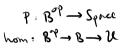
1 Simplicial Type Theory

- 2 (Co)-Cartesian Families
- 3 A 2-Yoneda Lemma

6.19 ...

111 5

- Bring in cohesion: Free co-/contravariant families, flat (Conduché) maps, descent?
- ullet Bring in cubical exolayer: Universes Space and Cat, univalent?
- Bring in more modalities, op and tw. The naïve Yoneda lemmas.



• What structure/axioms would be sufficient to get a foundational system, not just a DSL?