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Definitions

Recall the basic setup:
• pointed connected types B may be viewed as presenting higher

groups, with carrier ΩB := (pt =B pt), and group structure induced
from the identity types.

∞-Group := (G : Type)× (BG : Type>0
pt )× (G ' ΩBG)

' (G : Typept)× (BG : Type>0
pt )× (G 'pt ΩBG)

' Type>0
pt

n-Group := (G : Type<n
pt )× (BG : Type>0

pt )× (G 'pt ΩBG)

' Type>0,≤n
pt



Stability

The more deloopings the merrier! (Recall that Eckmann-Hilton implies
that double loop spaces are homotopy commutative.)

(n, k)GType := (G : Type≤npt )× (BkG : Type≥kpt )× (G 'pt ΩkBkG)

' Type≥k,≤n+k
pt

(n, ω)GType := limk (n, k)GType

'
(
B−G : (k : N)→ Type≥k,≤n+k

pt

)
×
(
(k : N)→ BkG 'pt ΩBk+1G

)
.

Infinite loop types in this way are precisely connective spectra (n =∞).



Periodic table

Periodic table of k-tuply groupal n-groupoids.
k \ n 0 1 2 · · · ∞

0 pointed set pointed groupoid pointed 2-groupoid · · · pointed∞-groupoid
1 group 2-group 3-group · · · ∞-group
2 abelian group braided 2-group braided 3-group · · · braided∞-group
3 — ” — symmetric 2-group sylleptic 3-group · · · sylleptic∞-group
4 — ” — — ” — symmetric 3-group · · · ??∞-group
...

...
...

...
. . .

...
ω — ” — — ” — — ” — · · · connective spectrum



Lean formalization: Truncatedness

Many aspects have now been formalized in Lean (jww van Doorn, Rijke):

Theorem
Let X : Type≥kpt be a (k − 1)-connected, pointed type for some k ≥ 0,
and let Y : X → Type≤n+k

pt be a fibration of (n+ k)-truncated, pointed
types for some n ≥ −1. Then the type of pointed sections,
(x : X)→pt Y x, is n-truncated.

Corollary

Let k ≥ 0 and n ≥ −1. If X is (k − 1)-connected, and Y is
(n+ k)-truncated, then the type of pointed maps X →pt Y is
n-truncated. In particular, hom(n,k)(G,H) is an n-type for
G,H : (n, k)GType.

Corollary

The type (n, k)GType is (n+ 1)-truncated.



Lean Formalization: Categorical equivalences

Theorem
We have the following equivalences of 1-categories (for k ≥ 2):

(0, 0)GType ' Setpt;

(0, 1)GType ' Group;

(0, k)GType ' AbGroup.



Lean Formalization: Operations

decategorification Decat : (n, k)GType→ (n− 1, k)GType
〈G,BkG〉 7→ 〈‖G‖n−1, ‖B

kG‖n+k−1〉
discrete categorification Disc : (n, k)GType→ (n+ 1, k)GType

〈G,BkG〉 7→ 〈G,BkG〉
looping Ω : (n, k)GType→ (n− 1, k + 1)GType

〈G,BkG〉 7→ 〈ΩG,BkG〈k〉〉
delooping B : (n, k)GType→ (n+ 1, k − 1)GType

〈G,BkG〉 7→ 〈Ωk−1BkG,BkG〉
forgetting F : (n, k)GType→ (n, k − 1)GType

〈G,BkG〉 7→ 〈G,ΩBkG〉
stabilization S : (n, k)GType→ (n, k + 1)GType

〈G,BkG〉 7→ 〈SG, ‖ΣBkG‖n+k+1〉,
where SG = ‖Ωk+1ΣBkG‖n



Lean Formalization: (de)categorification

Decat a Disc with Decat ◦Disc = id:

k \ n 0 1 2 · · · ∞

0 pointed set pointed groupoid pointed 2-groupoid · · · pointed∞-groupoid
1 group 2-group 3-group · · · ∞-group
2 abelian group braided 2-group braided 3-group · · · braided∞-group
3 — ” — symmetric 2-group sylleptic 3-group · · · sylleptic∞-group
4 — ” — — ” — symmetric 3-group · · · ??∞-group
...

...
...

...
. . .

...
ω — ” — — ” — — ” — · · · connective spectrum



Lean Formalization: (de)looping

B a Ω with Ω ◦ B = id:

k \ n 0 1 2 · · · ∞

0 pointed set pointed groupoid pointed 2-groupoid · · · pointed∞-groupoid
1 group 2-group 3-group · · · ∞-group
2 abelian group braided 2-group braided 3-group · · · braided∞-group
3 — ” — symmetric 2-group sylleptic 3-group · · · sylleptic∞-group
4 — ” — — ” — symmetric 3-group · · · ??∞-group
...

...
...

...
. . .

...
ω — ” — — ” — — ” — · · · connective spectrum



Lean Formalization: Stabilization

We also have:
• S a F

Lemma (Wedge connectivity)

If A : Typept is n-connected and B : Typept is m-connected, then the
map A ∨B → A×B is (n+m)-connected.

Theorem (Freudenthal)

If A : Type>n
pt with n ≥ 0, then the map A→ ΩΣA is 2n-connected.

Theorem (Stabilization)

If k ≥ n+ 2, then S : (n, k)GType→ (n, k + 1)GType is an
equivalence, and any G : (n, k)GType is an infinite loop space.



Examples

• BZ = S1, other free groups on pointed sets, free abelian groups.
• Automorphism groups Aut a := (a = a) for a : A with

BAut a := im(a : 1→ A) = (x : A)× ‖a = x‖−1.
• Fundamental n-group of (A, a), Πn(A, a), with corresponding

delooping BΠn(A, a) = ‖BAut a‖n.
• Symmetric groups Sn := Aut([n]), where BSn = BAut([n]) is the

type of all (small) n-element sets. Colimit S∞.
• Generally, if G : Group, we can take BG to be the type of G-torsors.
• S1 = BZ has delooping B2 Z, which we can take to be the type of

oriented circles.
• Gn := Aut(Sn−1) and Fn := Aut(Snpt). Colimits G ' F . Orientation

preserving versions too.

•
...

• With cohesion, we should get BO(n), BU(n), etc.



Actions
A G-action on a : A is simply a homomorphism G→ Aut a.
A G-type is a function X : BG→ Type. Here we can form the

invariants XhG := (z : BG)→ X(z), also known as the homotopy
fixed points, and the

coinvariants XhG := (z : BG)×X(z), which is also known as
homotopy orbit space or the homotopy quotient X // G.

Right and left adjoints to A 7→ Atriv for A : Type.

Proposition

Let f : H → G be a homomorphism of higher groups with delooping
Bf : BH →pt BG, and let α : hom(X,Y ) be a map of G-types. By
composing with f we can also view X and Y as H-types, in which case
we get a homotopy pullback square:

XhH YhH

XhG YhG.



Canonical actions

Every group G carries two canonical actions on itself:

the right action G : BG→ Type, G(x) = (pt = x), and the

the adjoint action Gad : BG→ Type, Gad(x) = (x = x) (by
conjugation).

We have 1 // G = BG, G // G = 1 and Gad // G = LBG := (S1 → BG),
the free loop space of BG.

Corollary

If f : H → G is a homomorphism of higher groups, then G // H is
equivalent to the homotopy fiber of the delooping Bf : BH →pt BG,
where H acts on G via the f -induced right action.



Projective spaces

Consider the sequence of actions GMn : BG→ Type of G given by

GM−1(x) := 0

GMn+1(x) := (pt = x) ∗GMn(x) = G(x) ∗GMn(x)

i.e., the iterated joins of the right action with itself (M is for Milnor). The
types GMn(pt) are at least (n+ 1)(k + 2)− 2-connected if G is
k-connected. Then the colimit GM∞(pt) = lim−→GMn(pt) is contractible,
so GM∞ // G = 1 // G = BG.
We define the projective spaces for G to be GPn := GMn // G. Thus,
GP−1 = 0, GP 0 = 1, GP 1 = ΣG, etc. (in general, GPn+1 is the
mapping cone on the inclusion GMn(pt)→ GPn).
The real and complex projective spaces are RPn := G1Pn and
CPn := SG2Pn.



Orbit Stabilizer Theorem

Let X be a G-type.

Definition
Given x : X, the stabilizer of x is the group Hx with delooping
BHx := im(1→ X → X // G).
The orbit of x is the type G · x := (y : X)× ‖〈pt, x〉 = 〈pt, y〉‖−1.

Theorem (Orbit Stabilizer Theorem)

Given x : X, G // Hx ' G · x.

Proof.
The map BHx →pt BG is the projection from
(z : BG)× (y : X z)× ‖〈pt, x〉 = 〈z, y〉‖−1 to BG, so the fiber over pt is
G · x.



Central extensions

The cohomology of a higher group G is simply the cohomology of its
delooping BG. Indeed, for any spectrum A, we define

Hk
Grp(G,A) := ‖BG→pt B

kA‖0.

Of course, to define the k’th cohomology group, we only need the k-fold
delooping BkA.
If A : (∞, 2)GType is a braided∞-group, then we have the second
cohomology group H2

Grp(G,A), and an element c : BG→pt B
2A gives

rise to a central extension

BA→ BH → BG
c−→ B2A,

Example

The central extension 1→ Z ·n−→ Z→ Z/nZ→ 1 is classified by the map
BCn → B2Z that sends an n-element set with a cyclic ordering to the
canonical oriented circle obtained by gluing.
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Motivation

From “Open Problems” on the HoTT Wiki

‘Similarly to the torus, consider the projective plane, Klein bottle, . . . as
discussed in the book (sec 6.6). Show that the Klein bottle is not
orientable. (This requires defining “orientable”.)’

Attempted solution

We can define the tangent bundle τ : KB→ BG2. Looking at
cohomology with Z/2Z-coefficients, we see that τ doesn’t lift to BSG2.

This is not satisfactory!
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A real solution

Desiderata:
• Define the type of surfaces, Surf.
• Define the type of oriented surfaces, OredSurf with a forgetful map

OredSurf → Surf.
• Then the type of orientable surfaces, ObleSurf, is the image.
• Prove that OredSurf → ObleSurf is a principal Z/2Z-bundle.

•
...

• Prove the classification of surfaces theorem. (Constructively?).



Some surfaces



Poincaré Duality Surfaces

Definition
A n-dimensional Poincaré duality type is a type X : FinType (i.e., merely
equivalent to a finite complex) together with an orientation class
w : X → BG1, and a class [X] : Hn(X;Zw) called the fundamental
class such that the cap product map

− ∩ [X] : Hi(X;Zπ1X)→ Hn−i(X;Zπ1Xw)

is an isomorphism.

Theorem
For any X, the type of pairs (w, [X]) making X an n-dimensional
Poincaré duality type is contractible.

Theorem (Eckmann-Müller-Linnell)

Every 2-dimensional Poincaré duality type in classical homotopy theory is
equivalent to a closed surface.



Haves and needs
Luckily, we have most of the components already:

• We have the type FinCell of finite cell complexes with realization
map FinCell→ Type with image FinType.

• We know that (so far: unparametrized) cohomology of a finite
complex can be computed via cellular cohomology (jww Favonia).

• We have the cup product and thus also cap product maps for
integral coefficients, and hence with a little more work for free
abelian coefficients over a family of finite sets.

We still need:
• Extend the work on cellular cohomology to parametrized versions

and to homology.
• Construct the usual surfaces. (Perhaps Hurewicz would be handy to

construct the fundamental classes.)
• Prove the classification theorem. In particular, we need to go from a

2-dim. PD type X to its Spivak stable normal bundle, and prove
Spivak’s theorem on spherical fibrations and get a tangent bundle.
Prove basic theorems establishing that orientations of the tangent
bundle correspond to orientation of X.



Outlook

• Proposal for another big formalization project.
• Is it better to define surfaces using spectrum-level PD?
• Generalize to surfaces with boundary in order to study braid groups

and mapping class groups, and . . . homological stability?
• In smooth/analytic cohesion, relate to smooth/analytic surfaces.
• Brown’s theorem on computability of homotopy groups of finite

complexes?
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