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Initiality

Some features of the initiality theorem we proved.
• Initiality for Martin-Löf type theory with Π, Σ, Id, N, +, ⊥,
>, Ui , El.
• Syntax is fully annotated, with Tarski-style universes, and
substitution is a defined meta-operation.
• Models are contextual categories with extra structure (seen as
an essentially algebraic theory).
• Formalized1 in Agda 2.6.1 with Prop (+ function

extensionality, propositional extensionality, and quotients).

1https://github.com/guillaumebrunerie/initiality/tree/v2.0

https://github.com/guillaumebrunerie/initiality/tree/v2.0
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Prop

For convenience, we use the type Prop of strict propositions1:
If A : Prop and u, v : A, then u and v are judgmentally equal.

• The identity type is Prop-valued,
• a partial element of a type A is a pair (P, f ) with P : Prop

and f : P → A,
• an equivalence relation on a type A is ∼ : A→ A→ Prop

which is reflexive, symmetric and transitive,
• derivability of judgments is an inductive family in Prop.

Inductive types in Prop cannot be eliminated into arbitrary types,
but this hasn’t been an issue for this project.

1Definitional Proof-Irrelevance without K
G. Gilbert, J. Cockx, M. Sozeau, N. Tabareau
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Essentially algebraic theories
An essentially algebraic theory consists of
• a collection of sorts,
• a collection of function symbols, each of them having a type

(x1 : s1) . . . (xn : sn) e1 · · · em → s

where s1, . . . , sn, s are sorts, and e1, . . . , em are equations
involving variables and previously declared function symbols,
• a collection of equations.

Given an essentially algebraic theory, it has a category of models
• A model is given by a set for each sort, a partial function for

each function symbol, satisfying all the equations.
• A morphism between models is given by maps between the

corresponding sets, which commute with the partial functions.
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Categories

The essentially algebraic theory of categories consists of
• two sorts Ob and Mor
• domain, codomain, identity, composition:

∂0 : Mor→ Ob, ∂1 : Mor→ Ob, id : Ob→ Mor,

comp : (g : Mor)(f : Mor)(p : ∂1(f ) = ∂0(g))→ Mor
• seven equations

id0 : ∂0(id(X )) = X (for X : Ob),

and id1, comp0, comp1, id-left, id-right, assoc.
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Contextual categories for type theory

Given a type theory, we can define a category where
• The objects are the derivable contexts, up to judgmental

equality,
• The morphisms are the derivable context morphisms / total
substitutions, up to judgmental equality,
• Objects are graded by their length,
• There is a father operation sending ` (Γ,A) to ` Γ,
• And operations corresponding to substitution, variables, etc.

A type A in context Γ is seen as the object (Γ,A) whose father is Γ.

A term u of type A in context Γ is seen as the context morphism
(idΓ, u) : Γ→ (Γ,A), which is such that the composition
Γ→ (Γ,A)→ Γ is the identity.
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Contextual categories1

Contextual categories are categories where objects are graded by
natural numbers, and together with:
• N t N2 sorts: Obn and Morn,m
• seven new operations

ft : Obn+1 → Obn pp : Obn+1 → Morn+1,n

star : (f : Morm,n)(X : Obn+1)(p : ∂1(f ) = ft(X ))→ Obm+1

qq : (f : Morm,n)(X : Obn+1)(p : ∂1(f ) = ft(X ))→ Morm+1,n+1

ss : Morm,n+1 → Morm,m+1

pt : Ob0 pt-mor : Obn → Morn,0
• nineteen new equations

1contextualcat.agda#CCat

contextualcat.agda#CCat
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Structured contextual categories1: type formers

For every type former we add one new operation and one new
equation. For instance for Π-formation:

PiStr : (Γ : Obn)(A : Obn+1)(Aft : ft(A) = Γ)
(B : Obn+2)(Bft : ft(B) = A)→ Obn+1

PiStrft : (Γ A Aft B Bft : [· · · ])→ ft(PiStr(Γ,A,Aft,B,Bft)) = Γ

corresponding to

` Γ Γ ` A Γ, x : A ` B
Γ ` Πx :AB

1contextualcat.agda#StructuredCCat

contextualcat.agda#StructuredCCat


Introduction Structured contextual categories Quotients and the term model Partial interpretation and totality Initiality

Structured contextual categories1: term formers

For every term former we add one new operation and two new
equations. For instance for the successor on natural numbers:

sucStr : (Γ : Obn)(u : Morn,n+1)(us : is-term(u))(u1 : ∂1(u) = NatStr(Γ))
→ Morn,n+1

sucStrs : (Γ u us u1 : [· · · ])→ is-term(sucStr(Γ, u, us , u1))
sucStr1 : (Γ u us u1 : [· · · ])→ ∂1(sucStr(Γ, u, us , u1)) = NatStr(Γ)

corresponding to

` Γ Γ ` u : N
Γ ` suc(u) : N

(where is-term(u) is comp(pp(∂1(u)), u) = id(∂0(u)))

1contextualcat.agda#StructuredCCat

contextualcat.agda#StructuredCCat
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Structured contextual categories1: naturality

Substitution commutes with type/term-formers. We add one new
such equation for every type/term-former. For instance:

PiStrNat : star(δ,PiStr(∆,A,Aft ,B,Bft))
= PiStr(Γ, star(δ,A),_, star+(δ,B),_)

sucStrNat : starTm(δ, sucStr(∆, u, us , u1))
= sucStr(Γ, starTm(δ, u),_,_)

corresponding to

(Πx :AB)[δ] = Πx :A[δ]B[δ+]

suc(u)[δ] = suc(u[δ])

1contextualcat.agda#StructuredCCat

contextualcat.agda#StructuredCCat
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Structured contextual categories1: equalities

Finally, we add the appropriate equalities corresponding to
judgmental equality rules (e.g., β/η).

We now have an essentially algebraic theory corresponding to
models of our type theory, and hence a 1-category of models.

1contextualcat.agda#StructuredCCat

contextualcat.agda#StructuredCCat
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Quotients1

Quotients are postulated like a higher inductive type.

Given a type A and a Prop-valued equivalence relation ∼ on A, the
quotient A/∼ has two constructors
• proj : A→ A/∼
• eq : {a b : A}(r : a ∼ b)→ proj(a) = proj(b)

together with a dependent elimination rule and a judgmental
reduction rule for proj.

1quotients.agda

quotients.agda
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Effectiveness of quotients1

Lemma
Given a, b : A, if proj(a) = proj(b), then there exists r : a ∼ b.

Proof (encode-decode).
Given a : A, we define P : A/∼ → Prop by

P(proj(b)) = a ∼ b
apP(eq(r)) = [. . . ] : (a ∼ b) = (a ∼ c) (where r : b ∼ c)

(requires propositional extensionality)

Now we prove that given p : proj(a) = x , then P(x) holds (by path
induction on p).

Finally, we can apply it to x = proj(b).

1quotients.agda#reflect

quotients.agda#reflect
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The term model1

Quotienting contexts and context morphisms by judgmental
equality gives us the term model.

For instance for composition of morphisms:
• Assume we have two morphisms d and t, satisfying
∂1(d) = ∂0(t)
• Take representatives of the equivalence classes, Γ ` δ : ∆ for
d and ∆′ ` θ : Θ for t. We have that proj(∆) = proj(∆′).
• By effectiveness, we get that ` ∆ = ∆′

• Therefore the composition of δ and θ is well-typed and we can
project it back to the quotient to get t ◦ d .

1termmodel.agda

termmodel.agda
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Partial interpretation function1
Partial functions from A to B are seen as element of the type

A→ Partial(B)

where
Partial(X ) = ΣP:Prop(P → X )

Given a type-expression A, a term-expression u, and X : Obn, we
define the partial interpretation function (by structural induction)

JAKX : Partial(Obn+1)

JuKX : Partial(Morn,n+1)

satisfying

ft(JAKX ) = X is-term(JuKX ) ∂0(JuKX ) = X
1partialinterpretation.agda

partialinterpretation.agda
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Example1

J_KTy_ : TyExpr n → Ob n → Partial (Ob (suc n))
J_KTm_ : TmExpr n → Ob n → Partial (Mor n (suc n))

J pi A B KTy X = do
[A] ← J A KTy X
[A]= ← assume (ft [A] ≡ X)
[B] ← J B KTy [A]
[B]= ← assume (ft [B] ≡ [A])
return (PiStr X [A] [A]= [B] [B]=)

J suc u KTm X = do
[u] ← J u KTm X
[u]s ← assume (is-term [u])
[u]1 ← assume (∂1 [u] ≡ NatStr X)
return (sucStr [u] [u]s [u]1)
1partialinterpretation.agda

partialinterpretation.agda
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Totality1

(where relevant we assume that JΓK and J∆K are defined, and we
write X and Y for their interpretation)

Theorem
• If ` Γ, then JΓK is defined.
• If Γ ` A, then JAKX is defined.
• If Γ ` u : A, then JuKX is defined and ∂1(JuKX ) = JAKX .
• If Γ ` δ : ∆, then JδKX ,Y is defined and ∂0/1(JδKX ,Y ) = X/Y .
• If ` Γ = Γ′, then JΓK = JΓ′K (if both are defined).
• If Γ ` A = A′, then JAKX = JA′KX (if both are defined).
• If Γ ` u = u′ : A, then JuKX = Ju′KX (if both are defined).
• If Γ ` δ = δ′ : ∆, then JδKX ,Y = Jδ′KX ,Y (if both are defined).

1totality.agda

totality.agda
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Interpretation of substitutions1

Theorem
If ∆ ` A and Γ ` δ : ∆, then JA[δ]KX is defined and moreover

JA[δ]KX = star(JδKX ,Y , JAKY )

If ∆ ` u : A and Γ ` δ : ∆, then Ju[δ]KX is defined and moreover

Ju[δ]KX = starTm(JδKX ,Y , JuKY )

1interpretationsubstitution.agda

interpretationsubstitution.agda
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Initiality (existence)1

Given an arbitrary structured contextual category C, we want to
construct a morphism from the term model to C.
• Obn → ObC

n : use the partial interpretation of contexts, the
fact that it is actually total, and that it respects judgmental
equalities,
• Morn,m → MorCn,m: same for context morphisms,
• contextual category structure: use the appropriate lemmas,
e.g. the substitution lemma, JidΓKX ,X = idX , and so on,
• additional operations corresponding to type/term formers: use
the fact that the partial interpretation function is
appropriately defined.

1initiality-existence.agda

initiality-existence.agda
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Initiality (uniqueness)1

Given two morphisms f , g from the term model to C, we want to
prove that they are equal.

Lemma (uniqueness for types)
Given a type A in a context Γ, if f (Γ) = g(Γ), then
f (Γ,A) = g(Γ,A).
Proved by structural induction on A, for instance

f (Γ,ΠAB) = f (PiStr(Γ, (Γ,A), (Γ,A,B)))
= PiStrC(f (Γ), f (Γ,A), f (Γ,A,B))
= PiStrC(g(Γ), g(Γ,A), g(Γ,A,B))
= g(PiStr(Γ, (Γ,A), (Γ,A,B))) = g(Γ,ΠAB)

1initiality-uniqueness.agda

initiality-uniqueness.agda
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Initiality (uniqueness)1

Lemma (uniqueness for terms)
Given a term u in a context Γ, if f (Γ) = g(Γ), then
f (idΓ, u) = g(idΓ, u) (proved by structural induction on u).

Theorem (for objects)
For any context Γ we have f (Γ) = g(Γ) (follows from uniqueness
for types).

Theorem (for morphisms)
For any context morphism δ we have f (δ) = g(δ).

f (δ, u) = f ((δ, x) ◦ (id, u))
= qqC(f (δ)) ◦C f (id, u)
= qqC(g(δ)) ◦C g(id, u) = g(δ, u)

1initiality-uniqueness.agda

initiality-uniqueness.agda
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Future directions

• Performance issues in memory usage and type-checking time,
this has to be fixed.
• Add even more type formers? For instance we haven’t
implemented W-types.
• Prove initiality for an “arbitrary” type theory.
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