Quotients and the term mod

Partial interpretation and totality

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Initiality for Martin-Löf type theory (in Agda)

Guillaume Brunerie joint work with Menno de Boer (and Peter Lumsdaine and Anders Mörtberg)

> HoTTEST seminar 10 September 2020

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Initiality

Some features of the initiality theorem we proved.

- Initiality for Martin-Löf type theory with Π , Σ , Id, \mathbb{N} , +, \perp , \top , U_i, El.
- Syntax is fully annotated, with Tarski-style universes, and substitution is a defined meta-operation.
- Models are contextual categories with extra structure (seen as an essentially algebraic theory).
- Formalized¹ in Agda 2.6.1 with Prop (+ function extensionality, propositional extensionality, and quotients).

¹https://github.com/guillaumebrunerie/initiality/tree/v2.0

Prop

For convenience, we use the type Prop of strict propositions¹:

If A: Prop and u, v : A, then u and v are judgmentally equal.

- The identity type is Prop-valued,
- a *partial element* of a type A is a pair (P, f) with P : Prop and $f : P \rightarrow A$,
- an equivalence relation on a type A is ~ : A → A → Prop which is reflexive, symmetric and transitive,
- derivability of judgments is an inductive family in Prop.

Inductive types in Prop cannot be eliminated into arbitrary types, but this hasn't been an issue for this project.

¹Definitional Proof-Irrelevance without K

G. Gilbert, J. Cockx, M. Sozeau, N. Tabareau

Essentially algebraic theories

An essentially algebraic theory consists of

- a collection of *sorts*,
- a collection of *function symbols*, each of them having a type

$$(x_1:s_1)\ldots(x_n:s_n)\ e_1\ \cdots\ e_m\rightarrow s$$

where s_1, \ldots, s_n, s are sorts, and e_1, \ldots, e_m are equations involving variables and previously declared function symbols,

• a collection of *equations*.

Given an essentially algebraic theory, it has a category of models

- A *model* is given by a set for each sort, a partial function for each function symbol, satisfying all the equations.
- A *morphism* between models is given by maps between the corresponding sets, which commute with the partial functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Categories

The essentially algebraic theory of *categories* consists of

- two sorts Ob and Mor
- domain, codomain, identity, composition:

 $\partial_0:\mathsf{Mor}\to\mathsf{Ob},\quad\partial_1:\mathsf{Mor}\to\mathsf{Ob},\quad\mathsf{id}:\mathsf{Ob}\to\mathsf{Mor},$

 $\operatorname{comp}: (g:\operatorname{\mathsf{Mor}})(f:\operatorname{\mathsf{Mor}})(p:\partial_1(f)=\partial_0(g)) o \operatorname{\mathsf{Mor}}$

seven equations

$$id_0: \partial_0(id(X)) = X$$
 (for $X: Ob$),

and id₁, comp₀, comp₁, id-left, id-right, assoc.

Contextual categories for type theory

Given a type theory, we can define a category where

- The *objects* are the derivable contexts, up to judgmental equality,
- The *morphisms* are the derivable context morphisms / total substitutions, up to judgmental equality,
- Objects are graded by their length,
- There is a *father* operation sending $\vdash (\Gamma, A)$ to $\vdash \Gamma$,
- And operations corresponding to substitution, variables, etc.

A type A in context Γ is seen as the object (Γ, A) whose father is Γ .

A term u of type A in context Γ is seen as the context morphism $(\mathrm{id}_{\Gamma}, u) : \Gamma \to (\Gamma, A)$, which is such that the composition $\Gamma \to (\Gamma, A) \to \Gamma$ is the identity.

Contextual categories¹

Contextual categories are categories where objects are graded by natural numbers, and together with:

- $\mathbb{N} \sqcup \mathbb{N}^2$ sorts: Ob_n and $Mor_{n,m}$
- seven new operations

$$\begin{split} & \operatorname{ft}:\operatorname{Ob}_{n+1}\to\operatorname{Ob}_n \quad \operatorname{pp}:\operatorname{Ob}_{n+1}\to\operatorname{Mor}_{n+1,n} \\ & \operatorname{star}:(f:\operatorname{Mor}_{m,n})(X:\operatorname{Ob}_{n+1})(p:\partial_1(f)=\operatorname{ft}(X))\to\operatorname{Ob}_{m+1} \\ & \operatorname{qq}:(f:\operatorname{Mor}_{m,n})(X:\operatorname{Ob}_{n+1})(p:\partial_1(f)=\operatorname{ft}(X))\to\operatorname{Mor}_{m+1,n+1} \\ & \operatorname{ss}:\operatorname{Mor}_{m,n+1}\to\operatorname{Mor}_{m,m+1} \\ & \operatorname{pt}:\operatorname{Ob}_0 \quad \operatorname{pt-mor}:\operatorname{Ob}_n\to\operatorname{Mor}_{n,0} \end{split}$$

nineteen new equations

¹contextualcat.agda#CCat

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Initiality 0000

Structured contextual categories¹: type formers

For every type former we add one new operation and one new equation. For instance for $\Pi\mbox{-}formation:$

$$\begin{split} \mathsf{PiStr} : (\Gamma : \mathsf{Ob}_n)(A : \mathsf{Ob}_{n+1})(A_{\mathsf{ft}} : \mathsf{ft}(A) = \Gamma) \\ (B : \mathsf{Ob}_{n+2})(B_{\mathsf{ft}} : \mathsf{ft}(B) = A) \to \mathsf{Ob}_{n+1} \\ \mathsf{PiStr}_{\mathsf{ft}} : (\Gamma \; A \; A_{\mathsf{ft}} \; B \; B_{\mathsf{ft}} : [\cdots]) \to \mathsf{ft}(\mathsf{PiStr}(\Gamma, A, A_{\mathsf{ft}}, B, B_{\mathsf{ft}})) = \Gamma \end{split}$$

corresponding to

$$\frac{\vdash \Gamma \qquad \Gamma \vdash A \qquad \Gamma, x : A \vdash B}{\Gamma \vdash \Pi_{x:A}B}$$

¹contextualcat.agda#StructuredCCat

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Structured contextual categories¹: term formers

For every term former we add one new operation and two new equations. For instance for the successor on natural numbers:

sucStr :
$$(\Gamma : Ob_n)(u : Mor_{n,n+1})(u_s : is-term(u))(u_1 : \partial_1(u) = NatStr(\Gamma))$$

 $\rightarrow Mor_{n,n+1}$
sucStr_s : $(\Gamma \ u \ u_s \ u_1 : [\cdots]) \rightarrow is-term(sucStr(\Gamma, u, u_s, u_1))$
sucStr₁ : $(\Gamma \ u \ u_s \ u_1 : [\cdots]) \rightarrow \partial_1(sucStr(\Gamma, u, u_s, u_1)) = NatStr(\Gamma)$

corresponding to

$$\frac{\vdash \Gamma \qquad \Gamma \vdash u : \mathbb{N}}{\Gamma \vdash \mathsf{suc}(u) : \mathbb{N}}$$

(where is-term(u) is $comp(pp(\partial_1(u)), u) = id(\partial_0(u)))$

 $^{^{1} \}verb"contextualcat.agda \# \verb"StructuredCCat"$

Structured contextual categories¹: naturality

Substitution commutes with type/term-formers. We add one new such equation for every type/term-former. For instance:

$$\begin{aligned} \mathsf{PiStrNat} &: \mathsf{star}(\delta, \mathsf{PiStr}(\Delta, A, A_{ft}, B, B_{ft})) \\ &= \mathsf{PiStr}(\Gamma, \mathsf{star}(\delta, A), _, \mathsf{star}^+(\delta, B), _) \\ \mathsf{sucStrNat} &: \mathsf{starTm}(\delta, \mathsf{sucStr}(\Delta, u, u_s, u_1)) \\ &= \mathsf{sucStr}(\Gamma, \mathsf{starTm}(\delta, u), _, _) \end{aligned}$$

corresponding to

$$(\Pi_{x:A}B)[\delta] = \Pi_{x:A[\delta]}B[\delta^+]$$
$$suc(u)[\delta] = suc(u[\delta])$$

¹contextualcat.agda#StructuredCCat

Initiality 0000

Structured contextual categories¹: equalities

Finally, we add the appropriate equalities corresponding to judgmental equality rules (e.g., β/η).

We now have an essentially algebraic theory corresponding to models of our type theory, and hence a 1-category of models.

¹contextualcat.agda#StructuredCCat

```
        Introduction
        Structured contextual categories

        00
        00000000
```

Quotients and the term model • 0 0 Partial interpretation and totality Initiality

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

```
Quotients<sup>1</sup>
```

Quotients are postulated like a higher inductive type.

Given a type A and a Prop-valued equivalence relation \sim on A, the quotient A/ \sim has two constructors

• proj :
$$A \to A/\sim$$

• eq : $\{a \ b : A\}(r : a \sim b) \rightarrow \operatorname{proj}(a) = \operatorname{proj}(b)$

together with a dependent elimination rule and a judgmental reduction rule for proj.

¹quotients.agda

Effectiveness of quotients¹

Lemma

Given a, b : A, if proj(a) = proj(b), then there exists $r : a \sim b$.

Proof (encode-decode).

Given a: A, we define $P: A/{\sim} \rightarrow$ Prop by

$$P(\operatorname{proj}(b)) = a \sim b$$

 $\operatorname{ap}_P(\operatorname{eq}(r)) = [\dots] : (a \sim b) = (a \sim c) \quad (\text{where } r : b \sim c)$

(requires propositional extensionality)

Now we prove that given p : proj(a) = x, then P(x) holds (by path induction on p).

Finally, we can apply it to x = proj(b).

¹quotients.agda#reflect

Quotients and the term model

Partial interpretation and totality Initialit 0000 0000

The term model¹

Quotienting contexts and context morphisms by judgmental equality gives us the term model.

For instance for composition of morphisms:

- Assume we have two morphisms d and t, satisfying $\partial_1(d) = \partial_0(t)$
- Take representatives of the equivalence classes, Γ ⊢ δ : Δ for d and Δ' ⊢ θ : Θ for t. We have that proj(Δ) = proj(Δ').
- By effectiveness, we get that $\vdash \Delta = \Delta'$
- Therefore the composition of δ and θ is well-typed and we can project it back to the quotient to get $t \circ d$.

Quotients and the term mode 000 Partial interpretation and totality •000

Partial interpretation function¹

Partial functions from A to B are seen as element of the type

 $A \rightarrow \mathsf{Partial}(B)$

where

$$\mathsf{Partial}(X) = \Sigma_{P:\mathsf{Prop}}(P o X)$$

Given a type-expression A, a term-expression u, and $X : Ob_n$, we define the partial interpretation function (by structural induction)

 $\llbracket A \rrbracket_X : \mathsf{Partial}(\mathsf{Ob}_{n+1})$

 $\llbracket u \rrbracket_X : \mathsf{Partial}(\mathsf{Mor}_{n,n+1})$

satisfying

$$\operatorname{ft}(\llbracket A \rrbracket_X) = X$$
 is-term $(\llbracket u \rrbracket_X)$ $\partial_0(\llbracket u \rrbracket_X) = X$

¹partialinterpretation.agda

・ロト ・ ロ・ ・ ヨ・ ・ ヨ・ ・ ロ・

Quotients and the term model Partial interpretation and totality 0000

Example¹

- $\|$ _ $Ty_$: TyExpr n \rightarrow Ob n \rightarrow Partial (Ob (suc n))
- \llbracket Tm : TmExpr n \rightarrow Ob n \rightarrow Partial (Mor n (suc n))

$$\begin{bmatrix} pi & A & B \end{bmatrix} Ty & X = do \\ [A] & \leftarrow & [A \end{bmatrix} Ty & X \\ [A] = & \leftarrow assume (ft & [A] = X) \\ [B] & \leftarrow & [B \end{bmatrix} Ty & [A] \\ [B] = & \leftarrow assume (ft & [B] = & [A]) \\ return (PiStr & X & [A] & [A] = & [B] & [B] =) \end{bmatrix}$$

$$\begin{bmatrix} \text{ suc } u \] \text{Tm } X = \text{do} \\ \begin{bmatrix} u \end{bmatrix} \leftarrow \begin{bmatrix} u \] \text{Tm } X \\ \begin{bmatrix} u \end{bmatrix}_s \leftarrow \text{ assume (is-term [u])} \\ \begin{bmatrix} u \end{bmatrix}_1 \leftarrow \text{ assume } (\partial_1 \[u \end{bmatrix} \equiv \text{ NatStr } X) \\ \text{ return (sucStr [u] } \begin{bmatrix} u \end{bmatrix}_s \[u \end{bmatrix}_1) \end{bmatrix}$$

¹partialinterpretation.agda

Totality¹

(where relevant we assume that $\llbracket \Gamma \rrbracket$ and $\llbracket \Delta \rrbracket$ are defined, and we write X and Y for their interpretation)

Theorem

- If $\vdash \Gamma$, then $\llbracket \Gamma \rrbracket$ is defined.
- If $\Gamma \vdash A$, then $\llbracket A \rrbracket_X$ is defined.
- If $\Gamma \vdash u : A$, then $\llbracket u \rrbracket_X$ is defined and $\partial_1(\llbracket u \rrbracket_X) = \llbracket A \rrbracket_X$.
- If $\Gamma \vdash \delta : \Delta$, then $\llbracket \delta \rrbracket_{X,Y}$ is defined and $\partial_{0/1}(\llbracket \delta \rrbracket_{X,Y}) = X/Y$.
- If $\vdash \Gamma = \Gamma'$, then $\llbracket \Gamma \rrbracket = \llbracket \Gamma' \rrbracket$ (if both are defined).
- If $\Gamma \vdash A = A'$, then $\llbracket A \rrbracket_X = \llbracket A' \rrbracket_X$ (if both are defined).
- If $\Gamma \vdash u = u' : A$, then $\llbracket u \rrbracket_X = \llbracket u' \rrbracket_X$ (if both are defined).
- If $\Gamma \vdash \delta = \delta' : \Delta$, then $\llbracket \delta \rrbracket_{X,Y} = \llbracket \delta' \rrbracket_{X,Y}$ (if both are defined).

¹totality.agda

Interpretation of substitutions¹

Theorem

If $\Delta \vdash A$ and $\Gamma \vdash \delta : \Delta$, then $[\![A[\delta]]\!]_X$ is defined and moreover

$$\llbracket A[\delta] \rrbracket_{X} = \mathsf{star}(\llbracket \delta \rrbracket_{X,Y}, \llbracket A \rrbracket_{Y})$$

If $\Delta \vdash u : A$ and $\Gamma \vdash \delta : \Delta$, then $\llbracket u[\delta] \rrbracket_X$ is defined and moreover

 $\llbracket u[\delta] \rrbracket_X = \mathsf{starTm}(\llbracket \delta \rrbracket_{X,Y}, \llbracket u \rrbracket_Y)$

¹interpretationsubstitution.agda

Initiality (existence)¹

Given an arbitrary structured contextual category $\mathcal{C},$ we want to construct a morphism from the term model to $\mathcal{C}.$

- $Ob_n \rightarrow Ob_n^{\mathcal{C}}$: use the partial interpretation of contexts, the fact that it is actually total, and that it respects judgmental equalities,
- $Mor_{n,m} \rightarrow Mor_{n,m}^{\mathcal{C}}$: same for context morphisms,
- contextual category structure: use the appropriate lemmas,
 e.g. the substitution lemma, [[id_Γ]]_{X,X} = id_X, and so on,
- additional operations corresponding to type/term formers: use the fact that the partial interpretation function is appropriately defined.

0000

Initiality (uniqueness)¹

Given two morphisms f, g from the term model to C, we want to prove that they are equal.

Lemma (uniqueness for types) Given a type A in a context Γ , if $f(\Gamma) = g(\Gamma)$, then $f(\Gamma, A) = g(\Gamma, A).$

Proved by structural induction on A, for instance

$$f(\Gamma, \Pi_A B) = f(\operatorname{PiStr}(\Gamma, (\Gamma, A), (\Gamma, A, B)))$$

= $\operatorname{PiStr}^{\mathcal{C}}(f(\Gamma), f(\Gamma, A), f(\Gamma, A, B))$
= $\operatorname{PiStr}^{\mathcal{C}}(g(\Gamma), g(\Gamma, A), g(\Gamma, A, B))$
= $g(\operatorname{PiStr}(\Gamma, (\Gamma, A), (\Gamma, A, B))) = g(\Gamma, \Pi_A B)$

troduction Structured contextual categ 0 0000000 Quotients and the term mode 000

Partial interpretation and totality

Initiality

Initiality (uniqueness)¹

Lemma (uniqueness for terms)

Given a term u in a context Γ , if $f(\Gamma) = g(\Gamma)$, then $f(id_{\Gamma}, u) = g(id_{\Gamma}, u)$ (proved by structural induction on u).

Theorem (for objects)

For any context Γ we have $f(\Gamma) = g(\Gamma)$ (follows from uniqueness for types).

Theorem (for morphisms)

For any context morphism δ we have $f(\delta) = g(\delta)$.

$$f(\delta, u) = f((\delta, x) \circ (\mathrm{id}, u))$$

= qq^C(f(\delta)) o^C f(id, u)
= qq^C(g(\delta)) o^C g(id, u) = g(\delta, u)

 troduction
 Structured contextual categories

 0
 00000000

Quotients and the term mode 000

Partial interpretation and totality 0000 0000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future directions

- Performance issues in memory usage and type-checking time, this has to be fixed.
- Add even more type formers? For instance we haven't implemented W-types.
- Prove initiality for an "arbitrary" type theory.