
Computer-generated proofs for the monoidal
structure of the smash product

Guillaume Brunerie

November 8, 2018
HoTTEST

The smash product as a higher inductive type
Definition
Given two pointed types (A, ?A) and (B, ?B), their smash product
A ∧ B is defined as the higher inductive type with constructors:

proj : A× B → A ∧ B,
basel : A ∧ B,
baser : A ∧ B,
pushl : (a : A)→ proj(a, ?B) = basel,

pushr : (b : B)→ proj(?A, b) = baser.

A

B

basel

baser

1-coherent monoidality

Goal
We want to prove (in book HoTT) that the smash product is a
1-coherent symmetric monoidal product on pointed types.1

This means that:
• The smash product is functorial (on pointed maps).
• There is a natural involution σA,B : A ∧ B → B ∧ A.
• There is a natural equivalence
αA,B,C : (A ∧ B) ∧ C → A ∧ (B ∧ C).
• It satisfies the hexagon and pentagon coherences.
• It has a unit with a triangular coherence.

This is used in particular to prove that the cup product on
cohomology is associative.

1see pages 88 and 89 of my PhD thesis

Basic idea

All we have to do is to define various functions:

(x : A ∧ B)→ P(x) (6 of them)
(x : (A ∧ B) ∧ C)→ P(x) (4 of them)
(x : A ∧ (B ∧ C))→ P(x) (2 of them)

(x : ((A ∧ B) ∧ C) ∧ D)→ P(x) (1 of them)

where P(x) is either constant or an equality f (x) = g(x).

We define them by (iterated) induction on the smash product.
• In the (iterated) proj case, we know what to do.
• In the other cases, we “just” need to do some complicated
path algebra.

Recursion rule
Given a type C , in order to define a map f : A ∧ B → C , we need
to define five terms/functions fproj, fbasel, fbaser, fpushl and fpushr
such that:

f : A ∧ B → C
f (proj(a, b)) := fproj(a, b) (fproj : A× B → C)

f (basel) := fbasel (fbasel : C)
f (baser) := fbaser (fbaser : C)

apf (pushl(a)) := fpushl(a) (fpushl : (a : A)→ fproj(a, ?B) =C fbasel)
apf (pushr(b)) := fpushr(b) (fpushr : (b :B)→ fproj(?A, b) =C fbaser)

A

B

Example 1: commutativity

σA,B : A ∧ B → B ∧ A
σA,B(proj(a, b)) := proj(b, a)

σA,B(basel) := �0

σA,B(baser) := �0

apσA,B (pushl(a)) := �1

apσA,B (pushr(b)) := �1

Example 1: commutativity

σA,B : A ∧ B → B ∧ A
σA,B(proj(a, b)) := proj(b, a)

σA,B(basel) := baser

σA,B(baser) := basel

apσA,B (pushl(a)) := pushr(a)
apσA,B (pushr(b)) := pushl(b)

Pointed maps

Definition
Given two pointed types (A, ?A) and (A′, ?A′), a pointed map from
A to A′ is a pair (f , ?f) where

f : A→ A′

?f : f (?A) = ?A′

Example 2: functoriality

We have two pointed maps f : A→ A′ and g : B → B′.

(f ∧ g) : A ∧ B → A′ ∧ B′

(f ∧ g)(proj(a, b)) := proj(f (a), g(b))
(f ∧ g)(basel) := basel

(f ∧ g)(baser) := baser

apf ∧g(pushl(a)) := �1

apf ∧g(pushr(b)) := �1

The two holes have type

proj(f (a), g(?B)) = basel proj(f (?A), g(b)) = baser

Example 2: functoriality

We have two pointed maps f : A→ A′ and g : B → B′.

(f ∧ g) : A ∧ B → A′ ∧ B′

(f ∧ g)(proj(a, b)) := proj(f (a), g(b))
(f ∧ g)(basel) := basel

(f ∧ g)(baser) := baser

apf ∧g(pushl(a)) := �1

apf ∧g(pushr(b)) := �1

The two holes have type

proj(f (a), g(?B)) = basel proj(f (?A), g(b)) = baser

. . . with rewriting
We have

proj(f (a), g(?B))
 proj(f (a), ?B′) via ?g in the second argument of proj

 basel via pushl(f (a))

Therefore we can fill the first hole with

approj(f (a),−)(?g) • pushl(f (a))

Similarly for the second hole:

proj(f (?A), g(b))
 proj(?A′ , g(b)) via ?f in the first argument of proj

 baser via pushr(g(b))

. . . with rewriting
We have

proj(f (a), g(?B))
 proj(f (a), ?B′) via ?g in the second argument of proj

 basel via pushl(f (a))

Therefore we can fill the first hole with

approj(f (a),−)(?g) • pushl(f (a))

Similarly for the second hole:

proj(f (?A), g(b))
 proj(?A′ , g(b)) via ?f in the first argument of proj

 baser via pushr(g(b))

Proof-relevant rewriting

f (?A) ?A′ via ?f

proj(a, ?B) basel via pushl(a)
proj(?A, b) baser via pushr(b)

basel proj(?A, ?B) via pushl(?A)
baser proj(?A, ?B) via pushr(?B)

proj(?A, ?B) 6

f (u) f (u′) via apf (p)
(if u u′ via p)

u u′′ via p • p′

(if u u′ via p and u′ u′′ via p′)

Squares

We use squares and cubes in the sense of [LB15]2 .

Definition
The type

Square : {A : Type}{a, b, c, d : A}
(p : a = b)(q : c = d)(r : a = c)(s : b = d)→ Type

is defined as the inductive family with one constructor

ids : Square(idp, idp, idp, idp)

2D. Licata, G. Brunerie, A Cubical Approach to Synthetic Homotopy
Theory, LICS 2015

Application of a homotopy to a path
Given a dependent function (where g , h : A→ B)

f : (x : A)→ g(x) =B h(x)

and a path
p : a =A a′

we have

ap+
f (p) : Square(apg(p), aph(p), f (a), f (a′))

g(a) h(a)

g(a′) h(a′)

apg (p)

f (a)

aph(p)

f (a′)

Induction rule (into an identity type)
Given a type C and two functions g , h : A ∧ B → C , in order to
define a map

f : (x : A ∧ B)→ g(x) =C h(x),

we need

f (proj(a, b)) : g(proj(a, b)) =C h(proj(a, b))
f (basel) : g(basel) =C h(basel)
f (baser) : g(baser) =C h(baser)

ap+
f (pushl(a)) : Square(apg(pushl(a)), aph(pushl(a)),

f (proj(a, ?B)), f (basel))
ap+

f (pushr(b)) : Square(apg(pushr(b)), aph(pushr(b)),
f (proj(?A, b)), f (baser))

Example 2: naturality of commutativity
We have two pointed maps f : A→ A′ and g : B → B′.

σ-natf ,g : (x : A ∧ B)→ σA′,B′((f ∧ g)(x)) = (g ∧ f)(σA,B(x))

σ-natf ,g(proj(a, b)) := idpproj(g(b),f (a))

σ-natf ,g(basel) := idpbaser

σ-natf ,g(baser) := idpbasel

ap+
σ-natf ,g (pushl(a)) := �2 : Square(apσA′,B′◦(f ∧g)(pushl(a)),

ap(g∧f)◦σA,B (pushl(a)),
idpproj(g(?B),f (a)),

idpbaser)
ap+
σ-natf ,g (pushr(b)) := �2 : [. . .]

More rewriting!

apσA′,B′◦(f ∧g)(pushl(a))

 apσA′,B′ (apf ∧g(pushl(a)))

 apσA′,B′ (approj(f (a),−)(?g) • pushl(f (a)))

 apσA′,B′ (approj(f (a),−)(?g)) • apσA′,B′ (pushl(f (a)))

 approj(−,f (a))(?g) • pushr(f (a))

ap(g∧f)◦σA,B (pushl(a))
 apg∧f (apσA,B (pushl(a)))
 apg∧f (pushr(a))
 approj(−,f (a))(?g) • pushr(f (a))

More rewriting!

apσA′,B′◦(f ∧g)(pushl(a))

 apσA′,B′ (apf ∧g(pushl(a)))

 apσA′,B′ (approj(f (a),−)(?g) • pushl(f (a)))

 apσA′,B′ (approj(f (a),−)(?g)) • apσA′,B′ (pushl(f (a)))

 approj(−,f (a))(?g) • pushr(f (a))

ap(g∧f)◦σA,B (pushl(a))
 apg∧f (apσA,B (pushl(a)))
 apg∧f (pushr(a))
 approj(−,f (a))(?g) • pushr(f (a))

More rewriting!

apσA′,B′◦(f ∧g)(pushl(a))

 apσA′,B′ (apf ∧g(pushl(a)))

 apσA′,B′ (approj(f (a),−)(?g) • pushl(f (a)))

 apσA′,B′ (approj(f (a),−)(?g)) • apσA′,B′ (pushl(f (a)))

 approj(−,f (a))(?g) • pushr(f (a))

ap(g∧f)◦σA,B (pushl(a))
 apg∧f (apσA,B (pushl(a)))
 apg∧f (pushr(a))
 approj(−,f (a))(?g) • pushr(f (a))

More rewriting!

apσA′,B′◦(f ∧g)(pushl(a))

 apσA′,B′ (apf ∧g(pushl(a)))

 apσA′,B′ (approj(f (a),−)(?g) • pushl(f (a)))

 apσA′,B′ (approj(f (a),−)(?g)) • apσA′,B′ (pushl(f (a)))

 approj(−,f (a))(?g) • pushr(f (a))

ap(g∧f)◦σA,B (pushl(a))
 apg∧f (apσA,B (pushl(a)))
 apg∧f (pushr(a))
 approj(−,f (a))(?g) • pushr(f (a))

More rewriting!

apσA′,B′◦(f ∧g)(pushl(a))

 apσA′,B′ (apf ∧g(pushl(a)))

 apσA′,B′ (approj(f (a),−)(?g) • pushl(f (a)))

 apσA′,B′ (approj(f (a),−)(?g)) • apσA′,B′ (pushl(f (a)))

 approj(−,f (a))(?g) • pushr(f (a))

ap(g∧f)◦σA,B (pushl(a))
 apg∧f (apσA,B (pushl(a)))
 apg∧f (pushr(a))
 approj(−,f (a))(?g) • pushr(f (a))

More rewriting!

apσA′,B′◦(f ∧g)(pushl(a))

 apσA′,B′ (apf ∧g(pushl(a)))

 apσA′,B′ (approj(f (a),−)(?g) • pushl(f (a)))

 apσA′,B′ (approj(f (a),−)(?g)) • apσA′,B′ (pushl(f (a)))

 approj(−,f (a))(?g) • pushr(f (a))

ap(g∧f)◦σA,B (pushl(a))
 apg∧f (apσA,B (pushl(a)))
 apg∧f (pushr(a))
 approj(−,f (a))(?g) • pushr(f (a))

More rewriting rules

apσA,B (pushl(a)) pushr(a) and other β-reduction rules for HITs
apλx .x (p) p

apg(apf (p)) apg◦f (p)
apg◦f (p) apg(p′) (if apf (p) p′)
apf (u • v) apf (u) • apf (v)

u • v u′ • v ′ (if u u′ and v v ′,
via horizontal composition)

Example 4: associativity
αA,B,C : (A ∧ B) ∧ C → A ∧ (B ∧ C),

αA,B,C (proj(x , c)) := α
proj
A,B,C (x , c),

αA,B,C (basel) := �0,

αA,B,C (baser) := �0,

apαA,B,C (pushl(x)) := α
pushl
A,B,C (x),

apαA,B,C (pushr(c)) := �1.

α
proj
A,B,C : A ∧ B → C → A ∧ (B ∧ C),

α
proj
A,B,C (proj(a, b), c) := proj(a, proj(b, c)),

[�0. . .�0. . .�1. . .�1]

α
pushl
A,B,C : (x : A ∧ B)→ α

proj
A,B,C (x , ?C) = αA,B,C (basel),

[�1. . .�1. . .�1. . .�2. . .�2]

Example 4: associativity
αA,B,C : (A ∧ B) ∧ C → A ∧ (B ∧ C),

αA,B,C (proj(x , c)) := α
proj
A,B,C (x , c),

αA,B,C (basel) := �0,

αA,B,C (baser) := �0,

apαA,B,C (pushl(x)) := α
pushl
A,B,C (x),

apαA,B,C (pushr(c)) := �1.

α
proj
A,B,C : A ∧ B → C → A ∧ (B ∧ C),

α
proj
A,B,C (proj(a, b), c) := proj(a, proj(b, c)),

[�0. . .�0. . .�1. . .�1]

α
pushl
A,B,C : (x : A ∧ B)→ α

proj
A,B,C (x , ?C) = αA,B,C (basel),

[�1. . .�1. . .�1. . .�2. . .�2]

Example 4: associativity
αA,B,C : (A ∧ B) ∧ C → A ∧ (B ∧ C),

αA,B,C (proj(x , c)) := α
proj
A,B,C (x , c),

αA,B,C (basel) := �0,

αA,B,C (baser) := �0,

apαA,B,C (pushl(x)) := α
pushl
A,B,C (x),

apαA,B,C (pushr(c)) := �1.

α
proj
A,B,C : A ∧ B → C → A ∧ (B ∧ C),

α
proj
A,B,C (proj(a, b), c) := proj(a, proj(b, c)),

[�0. . .�0. . .�1. . .�1]

α
pushl
A,B,C : (x : A ∧ B)→ α

proj
A,B,C (x , ?C) = αA,B,C (basel),

[�1. . .�1. . .�1. . .�2. . .�2]

Hexagon

(B ∧ C) ∧ A

A ∧ (B ∧ C)(A ∧ B) ∧ C

(B ∧ A) ∧ C

B ∧ (A ∧ C) B ∧ (C ∧ A)

αA,B,C

σA,B∧C

αB,C,A

σA,B∧idC

αB,A,C

idB∧σA,C

Example 5: hexagon

hexagonA,B,C : (x : (A ∧ B) ∧ C)→ Id(. . . , . . .)
[hexagonproj

A,B,C . . .�
1. . .�1. . . hexagonpushl

A,B,C . . .�
2]

hexagonproj
A,B,C : (x : A ∧ B)→ C → Id(. . . , . . .)

[idp. . .�1. . .�1. . .�2. . .�2]

hexagonpushl
A,B,C : (x : A ∧ B)→ C → Square(. . . , . . . , . . . , . . .)

[�2. . .�2. . .�2. . .�3. . .�3]

Example 5: hexagon

hexagonA,B,C : (x : (A ∧ B) ∧ C)→ Id(. . . , . . .)
[hexagonproj

A,B,C . . .�
1. . .�1. . . hexagonpushl

A,B,C . . .�
2]

hexagonproj
A,B,C : (x : A ∧ B)→ C → Id(. . . , . . .)

[idp. . .�1. . .�1. . .�2. . .�2]

hexagonpushl
A,B,C : (x : A ∧ B)→ C → Square(. . . , . . . , . . . , . . .)

[�2. . .�2. . .�2. . .�3. . .�3]

Example 5: hexagon

hexagonA,B,C : (x : (A ∧ B) ∧ C)→ Id(. . . , . . .)
[hexagonproj

A,B,C . . .�
1. . .�1. . . hexagonpushl

A,B,C . . .�
2]

hexagonproj
A,B,C : (x : A ∧ B)→ C → Id(. . . , . . .)

[idp. . .�1. . .�1. . .�2. . .�2]

hexagonpushl
A,B,C : (x : A ∧ B)→ C → Square(. . . , . . . , . . . , . . .)

[�2. . .�2. . .�2. . .�3. . .�3]

Example 6: pentagon

pent : (x : ((A ∧ B) ∧ C) ∧ D)→ Id(. . . , . . .)

pent : [pentproj. . .�1. . .�1. . . pentpushl. . .�2]
pentproj : [pentproj,proj. . .�1. . .�1. . . pentproj,pushl. . .�2]

pentproj,proj : [idp. . .�1. . .�1. . .�2. . .�2]
pentproj,pushl : [�2. . .�2. . .�2. . .�3. . .�3]

pentpushl : [pentpushl,proj. . .�2. . .�2. . . pentpushl,pushl. . .�3]
pentpushl,proj : [�2. . .�2. . .�2. . .�3. . .�3]

pentpushl,pushl : [�3. . .�3. . .�3. . .�4. . .�4]

Example 6: pentagon

pent : (x : ((A ∧ B) ∧ C) ∧ D)→ Id(. . . , . . .)
pent : [pentproj. . .�1. . .�1. . . pentpushl. . .�2]

pentproj : [pentproj,proj. . .�1. . .�1. . . pentproj,pushl. . .�2]
pentproj,proj : [idp. . .�1. . .�1. . .�2. . .�2]

pentproj,pushl : [�2. . .�2. . .�2. . .�3. . .�3]
pentpushl : [pentpushl,proj. . .�2. . .�2. . . pentpushl,pushl. . .�3]

pentpushl,proj : [�2. . .�2. . .�2. . .�3. . .�3]
pentpushl,pushl : [�3. . .�3. . .�3. . .�4. . .�4]

Cubical proof-relevant rewriting
Definition
Given f : A→ B and sq : SquareA(p, q, r , s), we have

ap2
f (sq) : SquareB(apf (p), apf (q), apf (r), apf (s)).

We want a reduction rule

ap2
λx .x (sq) sq

. . . but the two sides don’t have the same type (!).

Cubical proof-relevant rewriting:
If s and s ′ are two squares, we say

s s ′ via c

if c is a cube with s and s ′ as two of its opposite faces.

Cubical proof-relevant rewriting
Definition
Given f : A→ B and sq : SquareA(p, q, r , s), we have

ap2
f (sq) : SquareB(apf (p), apf (q), apf (r), apf (s)).

We want a reduction rule

ap2
λx .x (sq) sq

. . . but the two sides don’t have the same type (!).

Cubical proof-relevant rewriting:
If s and s ′ are two squares, we say

s s ′ via c

if c is a cube with s and s ′ as two of its opposite faces.

Cubical proof-relevant rewriting
Definition
Given f : A→ B and sq : SquareA(p, q, r , s), we have

ap2
f (sq) : SquareB(apf (p), apf (q), apf (r), apf (s)).

We want a reduction rule

ap2
λx .x (sq) sq

. . . but the two sides don’t have the same type (!).

Cubical proof-relevant rewriting:
If s and s ′ are two squares, we say

s s ′ via c

if c is a cube with s and s ′ as two of its opposite faces.

Cubical proof-relevant rewriting
Definition
Given f : A→ B and sq : SquareA(p, q, r , s), we have

ap2
f (sq) : SquareB(apf (p), apf (q), apf (r), apf (s)).

We want a reduction rule

ap2
λx .x (sq) sq

. . . but the two sides don’t have the same type (!).

Cubical proof-relevant rewriting:
If s and s ′ are two squares, we say

s s ′ via c

if c is a cube with s and s ′ as two of its opposite faces.

More variants of ap

p : IdA p : SquareA p : CubeA
f : A→ B apf (p) ap2

f (p)

ap3
f (p)

f : A→ IdB ap+
f (p)

ap2,+
f (p) ap3,+

f (p)

f : A→ SquareB

ap++
f (p) ap2,++

f (p)

f : A→ CubeB

ap+++
f (p)

They interact in various ways, for instance

ap2
g(ap+

f (p)) ap+
apg◦f (p)

ap+
g (apf (p)) ap+

g◦f (p)
ap+

f (p • q) ap+
f (p) � ap+

f (q)
ap+
λx .p(x)•q(x)(r) ap+

λx .p(x)(r) � ap+
λx .q(x)(r)

More variants of ap

p : IdA p : SquareA p : CubeA
f : A→ B apf (p) ap2

f (p) ap3
f (p)

f : A→ IdB ap+
f (p) ap2,+

f (p) ap3,+
f (p)

f : A→ SquareB ap++
f (p) ap2,++

f (p)
f : A→ CubeB ap+++

f (p)

They interact in various ways, for instance

ap2
g(ap+

f (p)) ap+
apg◦f (p)

ap+
g (apf (p)) ap+

g◦f (p)
ap+

f (p • q) ap+
f (p) � ap+

f (q)
ap+
λx .p(x)•q(x)(r) ap+

λx .p(x)(r) � ap+
λx .q(x)(r)

More variants of ap

p : IdA p : SquareA p : CubeA
f : A→ B apf (p) ap2

f (p) ap3
f (p)

f : A→ IdB ap+
f (p) ap2,+

f (p) ap3,+
f (p)

f : A→ SquareB ap++
f (p) ap2,++

f (p)
f : A→ CubeB ap+++

f (p)

They interact in various ways, for instance

ap2
g(ap+

f (p)) ap+
apg◦f (p)

ap+
g (apf (p)) ap+

g◦f (p)
ap+

f (p • q) ap+
f (p) � ap+

f (q)
ap+
λx .p(x)•q(x)(r) ap+

λx .p(x)(r) � ap+
λx .q(x)(r)

Globular coherences

We can construct any map of the form:

coh : (X : Type)(a : X)
[. . .]
(xn : Tn)(pn : xn = un)
[. . .]
→ T

where Tn, un and T are built only from previous variables and
other coherences, and T is an identity type.

Idea: path induction on all of the pn, then give idp.

Use: pn represents a rewriting rule, and xn the term being
rewritten.

Cubical coherences

We also need to allow pairs of arguments of the form

(xn : Tn)(pn : Square(xn, un, vn,wn))

(xn : Tn)(pn : Cube(xn, un, vn,wn, rn, sn))

We can still construct all such coherences, using a generalized
version of J where three sides of a square are fixed and one side is
free.

Algorithm for building the proof

In order to fill a hole (�1,�2,�3 or �4) we proceed as follows.
The variables are `1 a list of terms and `2 a list of pairs of terms.
• We start with `1 consisting of all the faces (in every

dimension) of the hole, and `2 is empty.
• Take the first element t of `1.
• If it is the base point, or is already present in `2, discard it.
• Otherwise, reduce it (it gives an n-cube s which has t as one

of its faces), add (t, s) to `2 and all the other faces of s to `1.
• Repeat until `1 is empty.
• Build a cubical coherence out of `2.
• Use that coherence to fill the hole.

Example

We want to prove proj(f (a), g(?B)) = basel.

`1 = [proj(f (a), g(?B)), basel]
`2 = []

proj(f (a), g(?B)) proj(f (a), ?B′) via approj(f (a),−)(?g)

`1 = [proj(f (a), ?B′), basel]
`2 = [(proj(f (a), g(?B)), approj(f (a),−)(?g))]

Example

`1 = [proj(f (a), ?B′), basel]
`2 = [(proj(f (a), g(?B)), approj(f (a),−)(?g))]

proj(f (a), ?B′) basel via pushl(f (a))

`1 = [basel, basel]
`2 = [(proj(f (a), g(?B)), approj(f (a),−)(?g)),

(proj(f (a), ?B′), pushl(f (a)))]

Example

`1 = [basel, basel]
`2 = [(proj(f (a), g(?B)), approj(f (a),−)(?g)),

(proj(f (a), ?B′), pushl(f (a)))]

basel proj(?A′ , ?B′) via pushl(?A′)

`1 = [proj(?A′ , ?B′), basel]
`2 = [(proj(f (a), g(?B)), approj(f (a),−)(?g)),

(proj(f (a), ?B′), pushl(f (a)))]
(basel, pushl(?A′))]

We’re done, as everything in `1 is either in `2 or the base point.

Example
`2 = [(proj(f (a), g(?B)), approj(f (a),−)(?g)),

(proj(f (a), ?B′), pushl(f (a)))]
(basel, pushl(?A′))]

coh : (X : Type) (A′ ∧ B′)
(a : X) (proj(?A′ , ?B′))
(x0 : X) (basel)
(p0 : a = x0) (pushl(?A′))
(x1 : X) (proj(f (a), ?B′))
(p1 : x1 = x0) (pushl(f (a)))
(x2 : X) (proj(f (a), g(?B)))
(p2 : x2 = x1) (approj(f (a),−)(?g))
→ x2 = x0

The result is the desired term of type proj(f (a), g(?B)) = basel.

Metaprogramming

It seems possible to do it in theory, but it is so technical that we
do not want to do it by hand.

Solution
Write a program which generates a formal proof for us!
The generated proof is written in the proof assistant Agda, and the
generating program is also written in Agda, used as a programming
language.

Workflow
$ agda --compile SmashGenerate.agda

generate the executable
$./SmashGenerate > Result.agda # generate the proof
$ agda Result.agda # check the proof

Metaprogramming

It seems possible to do it in theory, but it is so technical that we
do not want to do it by hand.

Solution
Write a program which generates a formal proof for us!

The generated proof is written in the proof assistant Agda, and the
generating program is also written in Agda, used as a programming
language.

Workflow
$ agda --compile SmashGenerate.agda

generate the executable
$./SmashGenerate > Result.agda # generate the proof
$ agda Result.agda # check the proof

Metaprogramming

It seems possible to do it in theory, but it is so technical that we
do not want to do it by hand.

Solution
Write a program which generates a formal proof for us!
The generated proof is written in the proof assistant Agda, and the
generating program is also written in Agda, used as a programming
language.

Workflow
$ agda --compile SmashGenerate.agda

generate the executable
$./SmashGenerate > Result.agda # generate the proof
$ agda Result.agda # check the proof

Metaprogramming

It seems possible to do it in theory, but it is so technical that we
do not want to do it by hand.

Solution
Write a program which generates a formal proof for us!
The generated proof is written in the proof assistant Agda, and the
generating program is also written in Agda, used as a programming
language.

Workflow
$ agda --compile SmashGenerate.agda

generate the executable
$./SmashGenerate > Result.agda # generate the proof
$ agda Result.agda # check the proof

Results

The current version can prove almost everything except for the
pentagon. In particular it can construct/prove
• f ∧ g , compatibility with identities
• σ, involutivity, naturality
• α, α−1, inverses to each other, naturality (takes 10 minutes
and 25 GB of memory)
• the hexagon (takes 7 minutes and 8 GB of memory)

Future directions

• Finish the pentagon and the few other things missing.
• Get a full meta-theoretic proof that it does work.
• Prove that the smash product is ∞-coherent (externally).
• Can this idea of higher dimensional rewriting be applied in
other situations?

In topology

In topology, A ∧ B is defined as a quotient.
• We identify points with each other, instead of adding paths
between them.
• It is easy to define, e.g., αA,B,C : (A ∧ B) ∧ C → A ∧ (B ∧ C).
• The pentagon is trivial.
• It is not easy to prove that αA,B,C is continuous!

The big picture

• There are some propositional equalities that we would like to
pretend are reduction rules.

• Cubical type theory does turn many of them into reduction
rules, but we can’t really hope for, e.g., f (?A) ?A′ or
proj(a, ?B) basel to ever be an actual reduction rule.
• Can we find an automated way to handle such propositional
reduction rules?
• To a user of the proof assistant, it would look like things
reduce, in reality the proof assistant is doing all the work
behind the scenes.

The big picture

• There are some propositional equalities that we would like to
pretend are reduction rules.
• Cubical type theory does turn many of them into reduction
rules, but we can’t really hope for, e.g., f (?A) ?A′ or
proj(a, ?B) basel to ever be an actual reduction rule.

• Can we find an automated way to handle such propositional
reduction rules?
• To a user of the proof assistant, it would look like things
reduce, in reality the proof assistant is doing all the work
behind the scenes.

The big picture

• There are some propositional equalities that we would like to
pretend are reduction rules.
• Cubical type theory does turn many of them into reduction
rules, but we can’t really hope for, e.g., f (?A) ?A′ or
proj(a, ?B) basel to ever be an actual reduction rule.
• Can we find an automated way to handle such propositional
reduction rules?

• To a user of the proof assistant, it would look like things
reduce, in reality the proof assistant is doing all the work
behind the scenes.

The big picture

• There are some propositional equalities that we would like to
pretend are reduction rules.
• Cubical type theory does turn many of them into reduction
rules, but we can’t really hope for, e.g., f (?A) ?A′ or
proj(a, ?B) basel to ever be an actual reduction rule.
• Can we find an automated way to handle such propositional
reduction rules?
• To a user of the proof assistant, it would look like things
reduce, in reality the proof assistant is doing all the work
behind the scenes.

