Strict Rezk completions of models of HoTT and homotopy canonicity

Rafaël Bocquet

HoTTEST, February 29, 2024

Motivation: metatheory up to homotopy

- Metatheory up to equality:
- Canonicity: the set of closed boolean terms is isomorphic to \{true, false\}.
- Normalization: related to decidability of equality.
- Metatheory up to homotopy:
- Homotopy canonicity: the ∞-groupoid of closed boolean terms is equivalent to $\{$ true, false $\}$.
- Homotopy normalization (?): related to 0-truncatedness.

Homotopy canonicity

In HoTT, univalence is an axiom blocking computation.
Homotopy canonicity: conjectured by Voevodsky in 2010.
Statement (for booleans): for every closed boolean term b, we can find either an identification in $\operatorname{ld}_{\text {Bool }}(b$, true $)$, or in $\operatorname{ld}_{\text {Bool }}(b$, false $)$.

Models (simplicial sets), and especially constructive models (cubical sets) provide a computational explanation of univalence.

Is the syntax HoTT "complete" with respect to this computational explanation?

Semantics of type theory

Models: categories with families + additional structure.
Generalized algebraic structure.
A model \mathcal{M} has:

- an underlying 1 -category \mathcal{M}.
- sets of types $\mathcal{M} . \operatorname{Ty}(\Gamma)$ for $\Gamma \in \mathcal{M}$.
- sets of terms $\mathcal{M} . \operatorname{Tm}(\Gamma, A)$ for $A \in \mathcal{M}$. $\operatorname{Ty}(\Gamma)$.
- operations: type and terms formers.
- strict equalities: substitution laws and computation rules.

Category of models Alg $_{\text {Hotт }}$.
Syntax $=$ initial model $\mathbf{0}_{\text {Hotт }}$.

Strict canonicity: logical relations and sconing

Model \mathcal{G} constructed by gluing over the global sections functor:

$$
\operatorname{Hom}(1,-): \mathbf{0}_{\text {MLTT }} \rightarrow \text { Set. }
$$

Initiality of $\mathbf{0}_{\mathrm{MLTT}} \rightsquigarrow$ interpretation $\llbracket-\rrbracket: \mathbf{0}_{\mathrm{MLTT}} \rightarrow \mathcal{G}$.

- Logical predicates: $\llbracket A \rrbracket: \operatorname{Tm}(1, A) \rightarrow$ Set for $A: \operatorname{Ty}(1)$.
- $\llbracket x \rrbracket: \llbracket A \rrbracket(x)$ for $x: \operatorname{Tm}(1, A)$.
- $\llbracket \mathrm{Bool} \rrbracket=\lambda b \mapsto(b=$ true $)+(b=$ false $)$.
∞-groupoidal global sections functor

$$
\operatorname{Hom}_{\infty}(1,-): \mathbf{0}_{\text {MLTT }} \rightarrow \infty \text {-Grp. }
$$

∞-groupoid-valued logical predicates.

$$
\llbracket A \rrbracket: \operatorname{Tm}_{\infty}(1, A) \rightarrow \infty \text {-Grp. }
$$

Previous approaches

[Shulman]: 1-truncated homotopy canonicity:
Use a global sections functor valued in 1-groupoids.
[Kapulkin, Sattler]: present the global sections functor by a span.

$$
\mathbf{0}_{\mathrm{HoTT}} \tilde{\approx}\left[\Delta_{+}^{\mathrm{op}}, \mathbf{0}_{\mathrm{HoTT}}\right] \rightarrow \widehat{\Delta_{+}} \rightarrow \widehat{\Delta} \rightarrow \widehat{\square} .
$$

For intuition: Higher models and \propto-type theories

[Kraus]: ∞-categories with families (in two-level type theory).
[Nguyen,Uemura]: ∞-type theories (∞-categories of models).
Untruncated judgemental "equalities" ($-\sim-$).

- 1 - HoTT is 0 -truncated.

$$
\frac{p, q: x \sim y}{p \sim q}
$$

- ∞-HoTT has completeness / higher extensionality.

$$
\xlongequal[x \sim y]{\operatorname{ld}_{A}(x, y)}
$$

For intuition: Higher models and o-type theories

Likely: ∞-HoTT satisfies homotopy canonicity.
(Using a ∞-categorical sconing construction)
But ∞-HoTT $\neq 1$-HoTT!
The 1-category $\mathbf{A l g}_{1 \text {-HoTT }}$ has a homotopy theory (left semi-model structure).
Hard coherence conjecture: this presents the ∞-category $\mathbf{A l g}_{\infty \text {-HoTT }}$.
Problem: ∞-HoTT and higher models lose the strictness of 1 -HoTT.

The homotopy theory of type theories: classes of maps

[Kapulkin, Lumsdaine]: Left semi-model structures on categories of models.

Definition

A morphism $F: \mathcal{M} \rightarrow \mathcal{N}$ in $\mathbf{A l g}_{\text {HoTT }}$ is a weak equivalence if:

- (weak term lifting): given a: $\mathcal{N} \cdot \operatorname{Tm}(F(\Gamma), F(A))$, there is $a_{0}: \mathcal{M} . \operatorname{Tm}(\Gamma, A)$ and $p: \mathcal{N} \cdot \operatorname{Tm}\left(F(\Gamma), \operatorname{Id}\left(F\left(a_{0}\right), a\right)\right)$.

Fibrations satisfy path lifting.
Trivial fibrations satisfy strict term lifting.
Constructively: use split weak equivalences.

Two-level type theory (2LTT)

Universes Set of sets, with strict equality ($-=-$).
Models extensional type theory.
Universes Set fib of fibrant sets, with paths ($-\sim-$).
Models homotopy type theory.
Fibrant sets can be seen as \propto-groupoids.
Idea: use logical relations valued in fibrant sets.
Models of two-level type theory: $\widehat{\Delta}, \widehat{\square}, \widehat{\mathcal{C} \times \square}$, etc.
Let's use cubical sets (cSet $=\hat{\square})$.

Internal/cubical models

Consider models of HoTT in the internal language of cSet. Equivalently: cubical models (cubical set of contexts, etc.). Equivalently: cubical presheaves of models $\left[\square^{\mathrm{op}}, \mathbf{A l g}_{\text {HoTT }}\right]$.

Main idea: Cubical models can be seen as higher models. (With fibrant components)
Initial cubical model $\mathbf{0}_{\text {Hott }}$ (coincides with the external syntax).

Internal/cubical models

The components of $\mathbf{0}_{\mathrm{HoTT}}$ are fibrant.
Wrong higher dimensional structure (discrete cubical sets).
The correct homotopical structure is available:
use $\operatorname{Tm}\left(\Gamma, \operatorname{ld}_{A}(x, y)\right)$ instead of $(x \sim y)$, etc.
\rightsquigarrow reconstruct fibrant sets with the correct higher dimensional structure?
The Rezk completion in HoTT does the same for categories!

Rezk completion of categories in HoTT

Category, functors in HoTT: laws up to identifications.

Definition

A Rezk completion of a category \mathcal{C} is a category $\overline{\mathcal{C}}$ with a functor $i: \mathcal{C} \rightarrow \overline{\mathcal{C}}$ such that:

- the functor $i: \mathcal{C} \rightarrow \overline{\mathcal{C}}$ is a weak equivalence.
- $\overline{\mathcal{C}}$ is complete/univalent:

$$
(x: \overline{\mathcal{C}} . \mathrm{Ob}) \rightarrow \text { is-contr}((y: \overline{\mathcal{C}} . \mathrm{Ob}) \times(x \cong y)) .
$$

Rezk completions of categories are known to exist (construction using presheaves).
In $\overline{\mathcal{C}}$, the objects have the correct higher dimensional structure.

Rezk completions of models of HoTT in HoTT?

Cannot consider untruncated models of type theory in pure HoTT.
Choose one:

- Infinitely many components (e.g. a semi-simplicial type of contexts).
- 0-truncated components.
- Strict equalities. This requires 2LTT.

Let's work in 2LTT, and specify a stricter Rezk completion.

Strict Rezk completion of categories in 2LTT/cubical sets

Categories, functors in 2LTT: strict laws.

Definition

A strict Rezk completion of a category \mathcal{C} is a category $\overline{\mathcal{C}}$ with a functor $i: \mathcal{C} \rightarrow \overline{\mathcal{C}}$ such that:

- the functor $1_{\square}^{*}(i): 1_{\square}^{*}(\mathcal{C}) \rightarrow 1_{\square}^{*}(\overline{\mathcal{C}})$ is a split weak equivalence.
- the components of $\overline{\mathcal{C}}$ are fibrant.
- $\overline{\mathcal{C}}$ is complete/univalent:

$$
(x: \overline{\mathcal{C}} . \mathrm{Ob}) \rightarrow \text { is-contr }((y: \overline{\mathcal{C}} . \mathrm{Ob}) \times(x \cong y)) .
$$

Strict Rezk completion of models of HoTT

Definition

A strict Rezk completion of a model \mathcal{M} is a model $\overline{\mathcal{M}}$ with a morphism $i: \mathcal{C} \rightarrow \overline{\mathcal{M}}$ such that:

- the morphism $1_{\square}^{*}(i): 1_{\square}^{*}(\mathcal{M}) \rightarrow 1_{\square}^{*}(\overline{\mathcal{M}})$ is a split weak equivalence.
- the components of $\overline{\mathcal{M}}$ are fibrant.
- $\overline{\mathcal{M}}$ is complete/univalent:
$(x: \overline{\mathcal{M}} \cdot \operatorname{Tm}(\Gamma, A)) \rightarrow$ is-contr$\left((y: \overline{\mathcal{M}} \cdot \operatorname{Tm}(\Gamma, A)) \times \overline{\mathcal{M}} \cdot \operatorname{Tm}\left(\Gamma, \operatorname{Id}_{A}(x, y)\right)\right)$. Equivalently:

$$
\text { is-equiv }\left((x \sim y) \xrightarrow{\text { path-to-id }} \overline{\mathcal{M}} \cdot \operatorname{Tm}\left(\Gamma, \operatorname{Id}_{A}(x, y)\right)\right)
$$

Existence of strict Rezk completion

Theorem (Strict Rezk completions of categories)

In cartesian cubical sets, any global, algebraically cofibrant category with fibrant components admits a strict Rezk completion.

Theorem (Strict Rezk completions of models of HoTT)

In cartesian cubical sets, any global, algebraically cofibrant model of HoTT with fibrant components admits a strict Rezk completion.

Main ideas of the construction at the end of the talk!

Generalizations?

The constructions should generalize to generalized algebraic theories with a left semi-model category of algebras satisfying some assumptions.

Christian Sattler has some notes with constructions for "generalized algebraic homotopy theories" : generalized algebraic theories equipped with a notion of trivially fibrant sorts.

Proof of homotopy canonicity

Theorem (Homotopy canonicity for HoTT)

The syntax of HoTT with ω univalent universes, Id, П, $\Sigma, \mathbf{0}, \mathbf{1}$, Bool, W-types and axiomatic homotopy pushouts satisfies homotopy canonicity.

Consider the strict Rezk completion $i: \mathbf{0}_{\text {Hoтт }} \rightarrow \overline{\mathbf{0}_{\text {HoтT }}}$.
Construct \mathcal{G} by gluing over the functor

$$
\overline{\mathbf{0}_{\mathrm{HoTT}}}(1,-): \overline{\mathbf{0}_{\mathrm{HoTT}}} \rightarrow \mathbf{S e t}_{\text {fib }} .
$$

Proof of homotopy canonicity

- $\llbracket A \rrbracket: \overline{\mathbf{0}_{\text {HoTT }}} \cdot \operatorname{Tm}(1, i(A)) \rightarrow\left(\text { Set }_{\text {fib }}\right)_{i}$ for $A: \mathbf{0}_{\text {Hoтт }} \cdot$ Ty $_{i}(1)$.
- $\llbracket x \rrbracket: \llbracket A \rrbracket(i(x))$ for $x: \mathbf{0}_{\text {Нотт }} . \operatorname{Tm}(1, A)$.
- \llbracket Bool $\rrbracket(b)=(b \sim$ true $)+(b \sim$ false $)$.
- $\llbracket \mathcal{U}_{i} \rrbracket(A)=\overline{0_{\text {HoTT }}} . \operatorname{Tm}(1, A) \rightarrow\left(\text { Set }_{\text {fib }}\right)_{i}$.

Completeness of $\overline{\mathbf{0}_{\mathrm{HoTT}}}$ is used to interpret the univalence axiom. (together with univalence for Set fib .)

Fibrancy of the components is used for some type formers.

Proof of homotopy canonicity

Now take any global $b: \mathbf{0}_{\text {Hoтт }}$.Tm(1, Bool).
We have $\llbracket b \rrbracket:(i(b) \sim$ true $)+(i(b) \sim$ false $)$.
By transport, we have:
$\overline{\mathbf{0}_{\text {HoTт }}} \cdot \operatorname{Tm}(1, \operatorname{ld}(i(b)$, true $))+\overline{\mathbf{0}_{\text {Hoтт }}} \cdot \operatorname{Tm}(1, \operatorname{Id}(i(b)$, false $))$.
But $1_{\square}^{*}(i)$ is a split weak equivalence, i.e. i satisfies a weak lifting property for global elements.
So we have $\mathbf{0}_{\mathrm{HoTT}} . \operatorname{Tm}(1, \operatorname{Id}(b$, true $))+\mathbf{0}_{\mathrm{HoTT}} . \operatorname{Tm}(1, \operatorname{Id}(b$, false $))$.

Construction of strict Rezk completions

Cubical definition of contractibility (trivial fibration):

$$
\text { has-ext }(X)=\forall(\alpha: \text { Cof }),(x:[\alpha] \rightarrow X) \rightarrow\{X \mid \alpha \mapsto x\} .
$$

[Cherubini, Coquand, Hutzler]: description of the propositional truncation of a set X as freely generated by:

$$
\begin{aligned}
& i: X \rightarrow\|X\| \\
& \text { ext }:\|X\| \rightarrow \text { has-ext }(\|X\|)
\end{aligned}
$$

This can be seen as a strict Rezk completion for propositions. (Propositions $=$ categories with trivial hom-sets).

Construction of strict Rezk completions

Strict Rezk completion of a category \mathcal{C} generated by:

$$
\begin{aligned}
& i: \mathcal{C} \rightarrow \overline{\mathcal{C}} \\
& \text { ext }:(x: \overline{\mathcal{C}} . \mathrm{Ob}) \rightarrow \text { has-ext }\left(\Sigma_{y}(x \cong y)\right)
\end{aligned}
$$

- Holds by definition: completeness of $\overline{\mathcal{C}}$.
- To be proven: $1_{\square}^{*}(i)$ is a weak equivalence.
- To be proven: Fibrancy of the components of $\overline{\mathcal{C}}$.

Construction of strict Rezk completions

Cofibrations are levelwise decidable, $1_{\square}^{*}(\mathrm{Cof}) \cong\{\top, \perp\}$.
\rightsquigarrow the category $1_{\square}^{*}(\overline{\mathcal{C}})$ is generated by:

$$
\begin{aligned}
& 1_{\square}^{*}(i): 1_{\square}^{*}(\mathcal{C}) \rightarrow 1_{\square}^{*}(\overline{C C}), \\
& \operatorname{ext}:(x: \overline{\mathcal{C}} . \mathrm{Ob}) \rightarrow \Sigma_{y}(x \cong y)
\end{aligned}
$$

\rightsquigarrow the category $1_{\square}^{*}(\overline{C C})$ is the algebraic fibrant replacement of $1_{\square}^{*}(\mathcal{C})$.
$\rightsquigarrow 1_{\square}^{*}(i)$ is an algebraic trivial cofibration (with a cofibrant source).
$\rightsquigarrow 1_{\square}^{*}(i)$ is a weak equivalence.

Construction of strict Rezk completions

The operation

$$
\text { ext }:(x: \overline{\mathcal{C}} . O b) \rightarrow \text { has-ext }\left(\Sigma_{y}(x \cong y)\right)
$$

can be seen as an "isomorphism extension structure".
Similar to the equivalence extension structure

$$
\langle\text { Glue, glue }\rangle:\left(A: \operatorname{Set}_{\text {fib }}\right) \rightarrow \text { has-ext }\left(\Sigma_{B}(A \simeq B)\right)
$$

which is used to prove the fibrancy of Set $_{\text {fib }}$.

Fibrancy from pseudo-reflexive graphs

A pseudo-reflexive graph consists of:

$$
\begin{aligned}
& V_{A}: \text { Set, } \\
& E_{A}: V_{A} \rightarrow V_{A} \rightarrow \text { Set, } \\
& R_{A}:\left(x: V_{A}\right) \rightarrow E_{A}(x, x) \rightarrow \text { Set. }
\end{aligned}
$$

(vertices) (edges)
(reflexive loops)

A weak coercion operation consists, for $a: \mathbb{I} \rightarrow V_{A}$, of:

$$
\begin{aligned}
& \operatorname{wcoe}^{r \rightarrow s}(a): E_{A}(a(r), a(s)), \\
& \operatorname{wcoh}^{r}(a): R_{A}(a(r), a(s)),
\end{aligned}
$$

Fibrancy from pseudo-reflexive graphs

Lemma

- $\left(R_{B}, E_{B}, V_{B}\right)$ is homotopical: $R_{B} \rightarrow R_{A} \times V_{A} V_{B}$ and $\pi_{1}, \pi_{2}: E_{B} \rightarrow E_{A} \times V_{A} V_{B}$ are trivial fibrations.
- $\left(R_{A}, E_{A}, V_{A}\right)$ and $\left(R_{B}, E_{B}, V_{B}\right)$ have compatible weak coercion operations.

Then $V_{B} \rightarrow V_{A}$ is a fibration.

Fibrancy from pseudo-reflexive graphs

Pseudo-reflexive graph object in Cat.

$$
\operatorname{ReflLoop}(\overline{\mathcal{C}}) \rightarrow \operatorname{Path}(\overline{\mathcal{C}}) \rightrightarrows \overline{\mathcal{C}} .
$$

Every sort (equivalently generating cofibration) induces a dependent pseudo-reflexive graph.

