Strict Rezk completions of models of HoTT and homotopy canonicity

Rafaël Bocquet HoTTEST, February 29, 2024

- Metatheory up to equality:
 - Canonicity: the set of closed boolean terms is isomorphic to {true, false}.
 - Normalization: related to decidability of equality.
- Metatheory up to homotopy:
 - Homotopy canonicity: the ∞-groupoid of closed boolean terms is equivalent to {true, false}.
 - Homotopy normalization (?): related to 0-truncatedness.

In HoTT, univalence is an axiom blocking computation.

Homotopy canonicity: conjectured by Voevodsky in 2010.

Statement (for booleans): for every closed boolean term b, we can find either an identification in $Id_{Bool}(b, true)$, or in $Id_{Bool}(b, false)$.

Models (simplicial sets), and especially constructive models (cubical sets) provide a computational explanation of univalence.

Is the syntax HoTT "complete" with respect to this computational explanation?

Models: categories with families + additional structure. Generalized algebraic structure.

A model \mathcal{M} has:

- an underlying 1-category \mathcal{M} .
- sets of types \mathcal{M} .Ty(Γ) for $\Gamma \in \mathcal{M}$.
- sets of terms $\mathcal{M}.\mathsf{Tm}(\Gamma, A)$ for $A \in \mathcal{M}.\mathsf{Ty}(\Gamma)$.
- operations: type and terms formers.
- strict equalities: substitution laws and computation rules.

Category of models Alg_{HoTT} . Syntax = initial model 0_{HoTT} .

Strict canonicity: logical relations and sconing

Model \mathcal{G} constructed by gluing over the global sections functor:

 $\mathsf{Hom}(1,-): \mathbf{0}_{\mathsf{MLTT}} \to \mathbf{Set}.$

Initiality of $\mathbf{0}_{\mathsf{MLTT}} \rightsquigarrow$ interpretation $\llbracket - \rrbracket : \mathbf{0}_{\mathsf{MLTT}} \to \mathcal{G}$.

- Logical predicates: $\llbracket A \rrbracket : \mathsf{Tm}(1, A) \to \operatorname{Set}$ for $A : \mathsf{Ty}(1)$.
- [x] : [A](x) for x : Tm(1, A).
- $\llbracket Bool \rrbracket = \lambda b \mapsto (b = true) + (b = false).$

 ∞ -groupoidal global sections functor

 $\mathsf{Hom}_{\infty}(1,-):\mathbf{0}_{\mathsf{MLTT}}\to\infty\text{-}\mathbf{Grp}.$

 ∞ -groupoid-valued logical predicates.

 $\llbracket A \rrbracket : \mathsf{Tm}_{\infty}(1, A) \to \infty\text{-}\mathrm{Grp}.$

[Shulman]: 1-truncated homotopy canonicity:Use a global sections functor valued in 1-groupoids.[Kapulkin, Sattler]: present the global sections functor by a span.

 $\boldsymbol{0}_{\mathsf{HoTT}} \stackrel{\sim}{\twoheadleftarrow} [\Delta^{\mathsf{op}}_+, \boldsymbol{0}_{\mathsf{HoTT}}] \to \widehat{\Delta_+} \to \widehat{\Delta} \to \widehat{\Box}.$

[Kraus]: ∞ -categories with families (in two-level type theory). [Nguyen,Uemura]: ∞ -type theories (∞ -categories of models).

Untruncated judgemental "equalities" (- \sim -).

• 1-HoTT is 0-truncated.

 $\frac{p,q:x\sim y}{p\sim q}$

• ∞ -HoTT has completeness / higher extensionality.

 $\frac{\mathsf{Id}_A(x,y)}{x \sim y}$

Likely: ∞ -HoTT satisfies homotopy canonicity. (Using a ∞ -categorical sconing construction)

```
But \infty-HoTT \neq 1-HoTT!
```

The 1-category Alg_{1-HoTT} has a homotopy theory (left semi-model structure).

Hard coherence conjecture: this presents the ∞ -category Alg_{∞ -HoTT}.

Problem: ∞ -HoTT and higher models lose the strictness of 1-HoTT.

The homotopy theory of type theories: classes of maps

[Kapulkin, Lumsdaine]: Left semi-model structures on categories of models.

Definition

A morphism $F : \mathcal{M} \to \mathcal{N}$ in Alg_{HoTT} is a weak equivalence if:

• (weak term lifting): given $a : \mathcal{N}.\mathsf{Tm}(F(\Gamma), F(A))$, there is $a_0 : \mathcal{M}.\mathsf{Tm}(\Gamma, A)$ and $p : \mathcal{N}.\mathsf{Tm}(F(\Gamma), \mathsf{Id}(F(a_0), a))$.

Fibrations satisfy path lifting. Trivial fibrations satisfy strict term lifting.

Constructively: use split weak equivalences.

Universes Set of sets, with strict equality (- = -). Models extensional type theory.

Universes $\operatorname{Set}_{\operatorname{fib}}$ of fibrant sets, with paths $(-\sim -)$. Models homotopy type theory.

Fibrant sets can be seen as ∞ -groupoids.

Idea: use logical relations valued in fibrant sets.

Models of two-level type theory: $\widehat{\Delta}$, $\widehat{\Box}$, $\widehat{C \times \Box}$, etc.

Let's use cubical sets (**cSet** = $\widehat{\Box}$).

Consider models of HoTT in the internal language of **cSet**. Equivalently: cubical models (cubical set of contexts, etc.). Equivalently: cubical presheaves of models $[\Box^{op}, Alg_{HoTT}]$.

Main idea: Cubical models can be seen as higher models. (With fibrant components)

Initial cubical model $\mathbf{0}_{HoTT}$ (coincides with the external syntax).

The components of $\mathbf{0}_{HoTT}$ are fibrant.

Wrong higher dimensional structure (discrete cubical sets).

The correct homotopical structure is available:

use $\mathsf{Tm}(\Gamma, \mathsf{Id}_A(x, y))$ instead of $(x \sim y)$, etc.

→ reconstruct fibrant sets with the correct higher dimensional structure?
The Rezk completion in HoTT does the same for categories!

Category, functors in HoTT: laws up to identifications.

Definition

A Rezk completion of a category C is a category \overline{C} with a functor $i: C \to \overline{C}$ such that:

- the functor $i: \mathcal{C} \to \overline{\mathcal{C}}$ is a weak equivalence.
- $\overline{\mathcal{C}}$ is complete/univalent:

 $(x:\overline{\mathcal{C}}.\mathsf{Ob}) \to \mathsf{is-contr}((y:\overline{\mathcal{C}}.\mathsf{Ob}) \times (x \cong y)).$

Rezk completions of categories are known to exist (construction using presheaves).

In $\overline{\mathcal{C}}$, the objects have the correct higher dimensional structure.

Cannot consider untruncated models of type theory in pure HoTT. Choose one:

- Infinitely many components (e.g. a semi-simplicial type of contexts).
- 0-truncated components.
- Strict equalities. This requires 2LTT.

Let's work in 2LTT, and specify a stricter Rezk completion.

Categories, functors in 2LTT: strict laws.

Definition

A strict Rezk completion of a category C is a category \overline{C} with a functor $i: C \to \overline{C}$ such that:

- the functor $1^*_{\Box}(i): 1^*_{\Box}(\mathcal{C}) \to 1^*_{\Box}(\overline{\mathcal{C}})$ is a split weak equivalence.
- the components of $\overline{\mathcal{C}}$ are fibrant.
- $\overline{\mathcal{C}}$ is complete/univalent:

 $(x:\overline{\mathcal{C}}.\mathsf{Ob}) \to \mathsf{is-contr}((y:\overline{\mathcal{C}}.\mathsf{Ob}) \times (x \cong y)).$

Definition

A strict Rezk completion of a model \mathcal{M} is a model $\overline{\mathcal{M}}$ with a morphism $i: \mathcal{C} \to \overline{\mathcal{M}}$ such that:

- the morphism $1^*_{\Box}(i): 1^*_{\Box}(\mathcal{M}) \to 1^*_{\Box}(\overline{\mathcal{M}})$ is a split weak equivalence.
- the components of $\overline{\mathcal{M}}$ are fibrant.
- $\overline{\mathcal{M}}$ is complete/univalent:

 $(x : \overline{\mathcal{M}}.\mathsf{Tm}(\Gamma, A)) \to \mathsf{is-contr}((y : \overline{\mathcal{M}}.\mathsf{Tm}(\Gamma, A)) \times \overline{\mathcal{M}}.\mathsf{Tm}(\Gamma, \mathsf{Id}_A(x, y))).$ Equivalently:

is-equiv $((x \sim y) \xrightarrow{\text{path-to-id}} \overline{\mathcal{M}}.\mathsf{Tm}(\Gamma,\mathsf{Id}_A(x,y)))$

Theorem (Strict Rezk completions of categories)

In cartesian cubical sets, any global, algebraically cofibrant category with fibrant components admits a strict Rezk completion.

Theorem (Strict Rezk completions of models of HoTT)

In cartesian cubical sets, any global, algebraically cofibrant model of HoTT with fibrant components admits a strict Rezk completion.

Main ideas of the construction at the end of the talk!

The constructions should generalize to generalized algebraic theories with a left semi-model category of algebras satisfying some assumptions.

Christian Sattler has some notes with constructions for "generalized algebraic homotopy theories": generalized algebraic theories equipped with a notion of trivially fibrant sorts.

Proof of homotopy canonicity

Theorem (Homotopy canonicity for HoTT)

The syntax of HoTT with ω univalent universes, Id, Π , Σ , **0**, **1**, Bool, W -types and axiomatic homotopy pushouts satisfies homotopy canonicity.

Consider the strict Rezk completion $i: \mathbf{0}_{HoTT} \rightarrow \overline{\mathbf{0}_{HoTT}}$.

Construct \mathcal{G} by gluing over the functor

 $\overline{\mathbf{0}_{\mathsf{HoTT}}}(1,-):\overline{\mathbf{0}_{\mathsf{HoTT}}}\to \mathbf{Set}_{\mathsf{fib}}.$

- $\llbracket A \rrbracket : \overline{\mathbf{0}_{\mathsf{HoTT}}}.\mathsf{Tm}(1, i(A)) \to (\mathsf{Set}_{\mathsf{fib}})_i \text{ for } A : \mathbf{0}_{\mathsf{HoTT}}.\mathsf{Ty}_i(1).$
- [x] : [A](i(x)) for $x : \mathbf{0}_{HoTT}.Tm(1, A)$.
- $\llbracket Bool \rrbracket(b) = (b \sim true) + (b \sim false).$
- $\llbracket \mathcal{U}_i \rrbracket (A) = \overline{\mathbf{0}_{\mathsf{HoTT}}} . \mathsf{Tm}(1, A) \to (\mathsf{Set}_{\mathsf{fib}})_i.$

Completeness of $\overline{\mathbf{0}_{HoTT}}$ is used to interpret the univalence axiom. (together with univalence for Set_{fib} .)

Fibrancy of the components is used for some type formers.

Now take any global $b : \mathbf{0}_{HoTT}.Tm(1, Bool)$. We have $\llbracket b \rrbracket : (i(b) \sim true) + (i(b) \sim false)$. By transport, we have: $\overline{\mathbf{0}_{HoTT}}.Tm(1, Id(i(b), true)) + \overline{\mathbf{0}_{HoTT}}.Tm(1, Id(i(b), false))$.

But $1^*_{\Box}(i)$ is a **split weak equivalence**, i.e. *i* satisfies a weak lifting property for global elements.

So we have $\mathbf{0}_{HoTT}$.Tm $(1, Id(b, true)) + \mathbf{0}_{HoTT}$.Tm(1, Id(b, false)).

Cubical definition of contractibility (trivial fibration):

```
\mathsf{has}\mathsf{-ext}(X) = \forall (\alpha : \mathsf{Cof}), (x : [\alpha] \to X) \to \{X \mid \alpha \mapsto x\}.
```

[Cherubini, Coquand, Hutzler]: description of the propositional truncation of a set X as freely generated by:

 $i: X \to ||X||,$ ext : $||X|| \to \mathsf{has-ext}(||X||)$

This can be seen as a strict Rezk completion for propositions. (Propositions = categories with trivial hom-sets).

Strict Rezk completion of a category $\mathcal C$ generated by:

 $i: \mathcal{C} \to \overline{\mathcal{C}},$ ext: $(x: \overline{\mathcal{C}}.\mathsf{Ob}) \to \mathsf{has-ext}(\Sigma_y(x \cong y)).$

- Holds by definition: completeness of $\overline{\mathcal{C}}$.
- To be proven: $1^*_{\Box}(i)$ is a weak equivalence.
- To be proven: Fibrancy of the components of $\overline{\mathcal{C}}$.

Construction of strict Rezk completions

Cofibrations are levelwise decidable, $1^*_{\Box}(Cof) \cong \{\top, \bot\}$. \rightsquigarrow the category $1^*_{\Box}(\overline{C})$ is generated by:

> $1^{*}_{\Box}(i): 1^{*}_{\Box}(\mathcal{C}) \to 1^{*}_{\Box}(\overline{\mathcal{CC}}),$ ext: $(x:\overline{\mathcal{C}}.Ob) \to \Sigma_{y}(x \cong y)$

→ the category $1^*_{\Box}(\overline{CC})$ is the algebraic fibrant replacement of $1^*_{\Box}(C)$. → $1^*_{\Box}(i)$ is an algebraic trivial cofibration (with a cofibrant source). → $1^*_{\Box}(i)$ is a weak equivalence. The operation

$$\mathsf{ext}: (x:\overline{\mathcal{C}}.\mathsf{Ob}) \to \mathsf{has}\mathsf{-}\mathsf{ext}(\Sigma_y(x\cong y))$$

can be seen as an "isomorphism extension structure". Similar to the equivalence extension structure

 $\langle \mathsf{Glue},\mathsf{glue} \rangle : (A:\operatorname{Set}_{\mathsf{fib}}) \to \mathsf{has}\text{-}\mathsf{ext}(\Sigma_B(A\simeq B))$

which is used to prove the fibrancy of $\underline{\operatorname{Set}}_{\operatorname{fib}}.$

A pseudo-reflexive graph consists of:

 $egin{aligned} &V_A:\operatorname{Set},&&(\operatorname{vertices})\ &E_A:V_A o V_A o \operatorname{Set},&&(\operatorname{edges})\ &R_A:(x:V_A) o E_A(x,x) o \operatorname{Set}.&&(\operatorname{reflexive loops}) \end{aligned}$

A weak coercion operation consists, for $a : \mathbb{I} \to V_A$, of:

wcoe^{$r \rightarrow s$}(a) : $E_A(a(r), a(s))$, wcoh^r(a) : $R_A(a(r), a(s))$,

$$\begin{array}{ccc} R_B \longrightarrow E_B \Longrightarrow V_B \\ \downarrow & \downarrow & \downarrow \\ R_A \longrightarrow E_A \Longrightarrow V_A \end{array}$$

- (R_B, E_B, V_B) is homotopical: $R_B \to R_A \times_{V_A} V_B$ and $\pi_1, \pi_2 : E_B \to E_A \times_{V_A} V_B$ are trivial fibrations.
- (*R_A*, *E_A*, *V_A*) and (*R_B*, *E_B*, *V_B*) have compatible weak coercion operations.

Then $V_B \rightarrow V_A$ is a fibration.

Pseudo-reflexive graph object in Cat.

```
\mathsf{ReflLoop}(\overline{\mathcal{C}}) \to \mathsf{Path}(\overline{\mathcal{C}}) \rightrightarrows \overline{\mathcal{C}}.
```

Every sort (equivalently generating cofibration) induces a dependent pseudo-reflexive graph.

 $\begin{array}{ccc} \mathsf{ReflLoop}(\overline{\mathcal{C}}).\mathsf{Hom} & \longrightarrow \mathsf{Path}(\overline{\mathcal{C}}).\mathsf{Hom} & \Longrightarrow \overline{\mathcal{C}}.\mathsf{Hom} \\ & & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ \mathsf{ReflLoop}(\overline{\mathcal{C}}).\mathsf{Ob}^2 & \longrightarrow \mathsf{Path}(\overline{\mathcal{C}}).\mathsf{Ob}^2 & \Longrightarrow \overline{\mathcal{C}}.\mathsf{Ob}^2. \end{array}$