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Motivation: metatheory up to homotopy

• Metatheory up to equality:

• Canonicity: the set of closed boolean terms is isomorphic to

{true, false}.
• Normalization: related to decidability of equality.

• Metatheory up to homotopy:

• Homotopy canonicity: the ∞-groupoid of closed boolean terms is

equivalent to {true, false}.
• Homotopy normalization (?): related to 0-truncatedness.
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Homotopy canonicity

In HoTT, univalence is an axiom blocking computation.

Homotopy canonicity: conjectured by Voevodsky in 2010.

Statement (for booleans): for every closed boolean term b, we can find

either an identification in IdBool(b, true), or in IdBool(b, false).

Models (simplicial sets), and especially constructive models (cubical sets)

provide a computational explanation of univalence.

Is the syntax HoTT “complete” with respect to this computational

explanation?
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Semantics of type theory

Models: categories with families + additional structure.

Generalized algebraic structure.

A model M has:

• an underlying 1-category M.

• sets of types M.Ty(Γ) for Γ ∈ M.

• sets of terms M.Tm(Γ,A) for A ∈ M.Ty(Γ).

• operations: type and terms formers.

• strict equalities: substitution laws and computation rules.

Category of models AlgHoTT.

Syntax = initial model 0HoTT.
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Strict canonicity: logical relations and sconing

Model G constructed by gluing over the global sections functor:

Hom(1,−) : 0MLTT → Set.

Initiality of 0MLTT ⇝ interpretation J−K : 0MLTT → G.

• Logical predicates: JAK : Tm(1,A) → Set for A : Ty(1).

• JxK : JAK(x) for x : Tm(1,A).

• JBoolK = λb 7→ (b = true) + (b = false).
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∞-groupoid-valued logical relations

∞-groupoidal global sections functor

Hom∞(1,−) : 0MLTT → ∞-Grp.

∞-groupoid-valued logical predicates.

JAK : Tm∞(1,A) → ∞-Grp.
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Previous approaches

[Shulman]: 1-truncated homotopy canonicity:

Use a global sections functor valued in 1-groupoids.

[Kapulkin, Sattler]: present the global sections functor by a span.

0HoTT
∼
↞ [∆op

+ , 0HoTT] → ∆̂+ → ∆̂ → □̂.
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For intuition: Higher models and ∞-type theories

[Kraus]: ∞-categories with families (in two-level type theory).

[Nguyen,Uemura]: ∞-type theories (∞-categories of models).

Untruncated judgemental “equalities” (− ∼ −).

• 1-HoTT is 0-truncated.
p, q : x ∼ y

p ∼ q

• ∞-HoTT has completeness / higher extensionality.

IdA(x , y)

x ∼ y
========
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For intuition: Higher models and ∞-type theories

Likely: ∞-HoTT satisfies homotopy canonicity.

(Using a ∞-categorical sconing construction)

But ∞-HoTT ̸= 1-HoTT!

The 1-category Alg1-HoTT has a homotopy theory (left semi-model

structure).

Hard coherence conjecture: this presents the ∞-category Alg∞-HoTT.

Problem: ∞-HoTT and higher models lose the strictness of 1-HoTT.
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The homotopy theory of type theories: classes of maps

[Kapulkin, Lumsdaine]: Left semi-model structures on categories of

models.

Definition

A morphism F : M → N in AlgHoTT is a weak equivalence if:

• (weak term lifting): given a : N .Tm(F (Γ),F (A)), there is

a0 : M.Tm(Γ,A) and p : N .Tm(F (Γ), Id(F (a0), a)).

Fibrations satisfy path lifting.

Trivial fibrations satisfy strict term lifting.

Constructively: use split weak equivalences.

9



Two-level type theory (2LTT)

Universes Set of sets, with strict equality (− = −).

Models extensional type theory.

Universes Setfib of fibrant sets, with paths (− ∼ −).

Models homotopy type theory.

Fibrant sets can be seen as ∞-groupoids.

Idea: use logical relations valued in fibrant sets.

Models of two-level type theory: ∆̂, □̂, Ĉ ×□, etc.

Let’s use cubical sets (cSet = □̂).
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Internal/cubical models

Consider models of HoTT in the internal language of cSet.

Equivalently: cubical models (cubical set of contexts, etc.).

Equivalently: cubical presheaves of models [□op,AlgHoTT].

Main idea: Cubical models can be seen as higher models.

(With fibrant components)

Initial cubical model 0HoTT (coincides with the external syntax).
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Internal/cubical models

The components of 0HoTT are fibrant.

Wrong higher dimensional structure (discrete cubical sets).

The correct homotopical structure is available:

use Tm(Γ, IdA(x , y)) instead of (x ∼ y), etc.

⇝ reconstruct fibrant sets with the correct higher dimensional structure?

The Rezk completion in HoTT does the same for categories!
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Rezk completion of categories in HoTT

Category, functors in HoTT: laws up to identifications.

Definition

A Rezk completion of a category C is a category C with a functor

i : C → C such that:

• the functor i : C → C is a weak equivalence.

• C is complete/univalent:

(x : C.Ob) → is-contr((y : C.Ob)× (x ∼= y)).

Rezk completions of categories are known to exist (construction using

presheaves).

In C, the objects have the correct higher dimensional structure.
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Rezk completions of models of HoTT in HoTT?

Cannot consider untruncated models of type theory in pure HoTT.

Choose one:

• Infinitely many components (e.g. a semi-simplicial type of contexts).

• 0-truncated components.

• Strict equalities. This requires 2LTT.

Let’s work in 2LTT, and specify a stricter Rezk completion.
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Strict Rezk completion of categories in 2LTT/cubical sets

Categories, functors in 2LTT: strict laws.

Definition

A strict Rezk completion of a category C is a category C with a functor

i : C → C such that:

• the functor 1∗□(i) : 1
∗
□(C) → 1∗□(C) is a split weak equivalence.

• the components of C are fibrant.

• C is complete/univalent:

(x : C.Ob) → is-contr((y : C.Ob)× (x ∼= y)).

15



Strict Rezk completion of models of HoTT

Definition

A strict Rezk completion of a model M is a model M with a morphism

i : C → M such that:

• the morphism 1∗□(i) : 1
∗
□(M) → 1∗□(M) is a split weak equivalence.

• the components of M are fibrant.

• M is complete/univalent:

(x : M.Tm(Γ,A)) → is-contr((y : M.Tm(Γ,A))× M.Tm(Γ, IdA(x , y))).

Equivalently:

is-equiv((x ∼ y)
path-to-id−−−−−→ M.Tm(Γ, IdA(x , y)))
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Existence of strict Rezk completion

Theorem (Strict Rezk completions of categories)

In cartesian cubical sets, any global, algebraically cofibrant category

with fibrant components admits a strict Rezk completion.

Theorem (Strict Rezk completions of models of HoTT)

In cartesian cubical sets, any global, algebraically cofibrant model of

HoTT with fibrant components admits a strict Rezk completion.

Main ideas of the construction at the end of the talk!
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Generalizations?

The constructions should generalize to generalized algebraic theories with

a left semi-model category of algebras satisfying some assumptions.

Christian Sattler has some notes with constructions for “generalized

algebraic homotopy theories”: generalized algebraic theories equipped

with a notion of trivially fibrant sorts.
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Proof of homotopy canonicity

Theorem (Homotopy canonicity for HoTT)

The syntax of HoTT with ω univalent universes, Id, Π, Σ, 0, 1, Bool,

W -types and axiomatic homotopy pushouts satisfies homotopy

canonicity.

Consider the strict Rezk completion i : 0HoTT → 0HoTT.

Construct G by gluing over the functor

0HoTT(1,−) : 0HoTT → Setfib.

G

0HoTT 0HoTT
i

J−K
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Proof of homotopy canonicity

• JAK : 0HoTT.Tm(1, i(A)) → (Setfib)i for A : 0HoTT.Tyi (1).

• JxK : JAK(i(x)) for x : 0HoTT.Tm(1,A).

• JBoolK(b) = (b ∼ true) + (b ∼ false).

• JUiK(A) = 0HoTT.Tm(1,A) → (Setfib)i .

Completeness of 0HoTT is used to interpret the univalence axiom.

(together with univalence for Setfib.)

Fibrancy of the components is used for some type formers.
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Proof of homotopy canonicity

Now take any global b : 0HoTT.Tm(1,Bool).

We have JbK : (i(b) ∼ true) + (i(b) ∼ false).

By transport, we have:

0HoTT.Tm(1, Id(i(b), true)) + 0HoTT.Tm(1, Id(i(b), false)).

But 1∗□(i) is a split weak equivalence, i.e. i satisfies a weak lifting

property for global elements.

So we have 0HoTT.Tm(1, Id(b, true)) + 0HoTT.Tm(1, Id(b, false)).
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Construction of strict Rezk completions

Cubical definition of contractibility (trivial fibration):

has-ext(X ) = ∀(α : Cof), (x : [α] → X ) → {X | α 7→ x}.

[Cherubini, Coquand, Hutzler]: description of the propositional truncation

of a set X as freely generated by:

i : X → ∥ X ∥,
ext : ∥ X ∥ → has-ext(∥ X ∥)

This can be seen as a strict Rezk completion for propositions.

(Propositions = categories with trivial hom-sets).
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Construction of strict Rezk completions

Strict Rezk completion of a category C generated by:

i : C → C,

ext : (x : C.Ob) → has-ext(Σy (x ∼= y)).

• Holds by definition: completeness of C.

• To be proven: 1∗□(i) is a weak equivalence.

• To be proven: Fibrancy of the components of C.
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Construction of strict Rezk completions

Cofibrations are levelwise decidable, 1∗□(Cof)
∼= {⊤,⊥}.

⇝ the category 1∗□(C) is generated by:

1∗□(i) : 1
∗
□(C) → 1∗□(CC ),

ext : (x : C.Ob) → Σy (x ∼= y)

⇝ the category 1∗□(CC ) is the algebraic fibrant replacement of 1∗□(C).
⇝ 1∗□(i) is an algebraic trivial cofibration (with a cofibrant source).

⇝ 1∗□(i) is a weak equivalence.
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Construction of strict Rezk completions

The operation

ext : (x : C.Ob) → has-ext(Σy (x ∼= y))

can be seen as an “isomorphism extension structure”.

Similar to the equivalence extension structure

⟨Glue, glue⟩ : (A : Setfib) → has-ext(ΣB(A ≃ B))

which is used to prove the fibrancy of Setfib.
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Fibrancy from pseudo-reflexive graphs

A pseudo-reflexive graph consists of:

VA : Set, (vertices)

EA : VA → VA → Set, (edges)

RA : (x : VA) → EA(x , x) → Set. (reflexive loops)

A weak coercion operation consists, for a : I → VA, of:

wcoer→s(a) : EA(a(r), a(s)),

wcohr (a) : RA(a(r), a(s)),
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Fibrancy from pseudo-reflexive graphs

Lemma

RB EB VB

RA EA VA

• (RB ,EB ,VB) is homotopical: RB → RA ×VA
VB and

π1, π2 : EB → EA ×VA
VB are trivial fibrations.

• (RA,EA,VA) and (RB ,EB ,VB) have compatible weak coercion

operations.

Then VB → VA is a fibration.
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Fibrancy from pseudo-reflexive graphs

Pseudo-reflexive graph object in Cat.

ReflLoop(C) → Path(C)⇒ C.

Every sort (equivalently generating cofibration) induces a dependent

pseudo-reflexive graph.

ReflLoop(C).Hom Path(C).Hom C.Hom

ReflLoop(C).Ob2 Path(C).Ob2 C.Ob2.
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