Coherence of definitional equality in type theory

Rafaël Bocquet HoTTEST, September 23, 2021

Problem

In type theory we have typal equalities,

$$0 + n \simeq n$$
 $n + m \simeq m + n$ refl $\cdot p \simeq p$

some of them are *definitional equalities*

$$n+0=n$$
 $p\cdot refl=p$

Can we add new definitional equalities?

- Constructing (higher-dimensional) paths and fillers becomes easier. (We avoid *coherence hell*.)
- The new definitional equalities may not hold in known models.

We need conservativity/strictification/coherence theorems.

We can replace the computation rules of Id-, Σ -, Π -types by weak computation rules.

 $\frac{a:A \quad b:B(a)}{\pi_1 - \beta:\pi_1(\mathsf{pair}(a,b)) \simeq_A a}$

The path types of cubical type theory satisfy the weak computation rule of Id-types.

Are the usual computation rules conservative over the weak computation rules?

Can identity types satisfy the groupoid laws definitionally?

$$p \cdot \operatorname{refl} = p \qquad \operatorname{refl} \cdot p = p \qquad p \cdot (q \cdot r) = (p \cdot q) \cdot r$$

$$p^{-1} \cdot p = \operatorname{refl} \qquad (p^{-1})^{-1} = p$$

$$\cdots$$

$$\operatorname{ap}(f, \operatorname{refl}) = \operatorname{refl} \qquad \operatorname{ap}(f, p \cdot q) = \operatorname{ap}(f, p) \cdot \operatorname{ap}(f, q)$$

$$\operatorname{ap}(f, p^{-1}) = \operatorname{ap}(f, p)^{-1}$$

. . .

Examples: universes of strict algebraic structures

Can we extend HoTT with a universe StrProp of "strict" propositions and an equivalence $StrProp \cong Prop?$

$$\frac{A: \mathsf{StrProp}}{x=y} \xrightarrow{x, y: A}$$

Can we also have a universe StrMonoid of strictly associative and unital monoids? What about "strict" rings, "strict" categories, etc.?

Can we also equip StrProp with operations?

 $\frac{[a:A] \ B(a): \mathsf{StrProp}}{\forall (A,B): \mathsf{StrProp}}$

Categorical semantics of type theories

A Category with Families (CwF) consists of:

- a category ${\mathcal C}$ with a terminal object;
- a presheaf of types $Ty_{\mathcal{C}}$: $Psh(\mathcal{C})$;
- a (locally representable) presheaf of terms $\mathsf{Tm}_{\mathcal{C}} : \mathsf{Ty}_{\mathcal{C}} \to \operatorname{RepPsh}(\mathcal{C})$;

A model of a type theory ${\mathbb T}$ is a CwF equipped with additional structure.

 $\frac{A \text{ type } [a:A] B(a) \text{ type}}{\Pi(A,B) \text{ type}} \qquad \qquad \Pi: (A:\text{Ty}_{\mathcal{C}})(B:\text{Tm}_{\mathcal{C}}(A) \to \text{Ty}_{\mathcal{C}}) \to \text{Ty}_{\mathcal{C}}$

Locally finitely presentable 1-category $Mod_{\mathbb{T}}$ of models of \mathbb{T} .

Syntax: initial object $\mathbf{0}_{\mathbb{T}}$: $\mathbf{Mod}_{\mathbb{T}}$.

Freely generated models $\mathbf{0}_{\mathbb{T}}[\cdots]$.

UNIQUENESS OF IDENTITY PROOFSEQUALITY REFLECTIONp: ld(x, x)p: ld(x, y)uip(p): ld(p, refl)x = y

Theorem (Hofmann, 1995)

Equality reflection is conservative over intensional type theory with UIP (and function extensionality).

If $(\Gamma \vdash_{ITT} A \text{ type})$ and $(|\Gamma| \vdash_{ETT} a : |A|)$, then there exists some $(\Gamma \vdash_{ITT} a_0 : A)$ such that $|a_0| = a$.

The map $|-|: \mathbf{0}_{\mathsf{ITT}} \to \mathbf{0}_{\mathsf{ETT}}$ is surjective on types and terms.

Equivalence relations (\sim) on types and terms of ITT:

$$\begin{array}{ll} (A \sim B) & \Longleftrightarrow \exists p : \mathsf{Tm}_{\mathsf{ITT}}(\mathsf{Id}(\mathcal{U}, A, B)) \\ ((a:A) \sim (b:B)) & \Longleftrightarrow \exists p : \mathsf{Tm}_{\mathsf{ITT}}(\mathsf{Id}((X:\mathcal{U}) \times X, (A, a), (B, b))) \end{array}$$

By UIP, if $(a : A) \sim (b : A)$, then there exists $p : \mathsf{Tm}_{\mathsf{ITT}}(\mathsf{Id}(A, a, b))$.

Furthermore, $(Tm_{ITT}, \sim) \twoheadrightarrow (Ty_{ITT}, \sim)$ is a setoid fibration: If $(A \sim B)$, then for $a : Tm_{ITT}(A)$, there exists $b : Tm_{ITT}(B)$ such that $(a \sim b)$.

All type- and term- formers respect (\sim). For $\lambda(-)$ (and other binders) this requires function extensionality.

Quotients (Ty_{ITT}/ \sim) and (Tm_{ITT}/ \sim).

We can construct a quotient model ($\mathbf{0}_{\mathsf{ITT}}/\sim$).

Since |-| is a retract of **q**, |-| is surjective on types and terms.

(Alternative: Use the relative induction principle for $\mathcal{R}en(\mathbf{0}_{\mathsf{ITT}}) \rightarrow \mathbf{0}_{\mathsf{ETT}}$)

Mac Lane's coherence theorem for monoidal categories

In MonCat:

In StrMonCat:

(strictification) For every monoidal category C, the unit $\eta : C \to R(L(C))$ is an equivalence. (coherence) Every formal composition of associators and unitors commutes.

Formal compositions of associators and unitors form a groupoid.

Let \mathbb{T}_s be an extension of \mathbb{T}_w in which a collection E of type equivalences and typal equalities are replaced by definitional equalities.

Theorem

Assume that the following two conditions hold:

- 1. The type theory \mathbb{T}_w satisfies external univalence;
- 2. Any formal composition of equalities in E is trivial.

Then \mathbb{T}_s is conservative over \mathbb{T}_w .

Equivalences between models of type theory

Kapulkin and Lumsdaine, The homotopy theory of type theories (2016).

Isaev, Model Structures on Categories of Models of Type Theories (2016).

Definition

A morphism $F : C \to D$ in CwF_{Id} is a weak equivalence if it is essentially surjective on types and terms:

(weak type lifting) for every $A : Ty_{\mathcal{D}}(F(\Gamma))$, there exists $A_0 : Ty_{\mathcal{C}}(\Gamma)$ and a type equivalence $\alpha : F(A_0) \cong A$;

(weak term lifting) for every $a : \operatorname{Tm}_{\mathcal{D}}(F(\Gamma), F(A))$, there exists $a_0 : \operatorname{Tm}_{\mathcal{C}}(\Gamma, A)$ and a typal equality $p : F(a_0) \simeq a$.

We also have (Cofibrations, Trivial fibrations) and (Trivial cofibration, Fibrations) weak factorization systems.

Hofmann's conservativity theorem: $\boldsymbol{0}_{\mathsf{ITT}} \to \boldsymbol{0}_{\mathsf{ETT}}$ is a trivial fibration.

Isaev, Morita equivalences between algebraic dependent type theories (2018).

Definition

The extension $\mathbb{T}_w \to \mathbb{T}_s$ is a **Morita equivalence** if for every cofibrant $\mathcal{C} : \mathbf{Mod}_{\mathbb{T}_w}^{cxl}$, the unit $\eta : \mathcal{C} \to R(L(\mathcal{C}))$ is a weak equivalence.

In particular $\mathbf{0}_{\mathbb{T}_w} \to \mathbf{0}_{\mathbb{T}_s}$ is a weak equivalence.

We have biequivalences:

 $\mathsf{CwF}_{\Sigma,\mathsf{Eq}}^{\mathsf{dem}} \cong \{ \mathsf{finitely \ complete \ 1-categories} \} \cong \{ \mathsf{essentially \ algebraic \ theories} \}$

 $\mathsf{CwF}_{\Sigma,\Pi,\mathsf{Eq}}^{\mathsf{dem}} \cong \{ \mathsf{locally cartesian closed 1-categories} \}$

 $\mathsf{CwF}_{\Sigma}^{\mathsf{dem}} \cong \{ \mathsf{display map 1-categories} \} \cong \{ \mathsf{generalized algebraic theories} \}$

Taichi Uemura, A General Framework for the Semantics of Type Theory (2019) introduces representable map categories.

$$\mathsf{CwF}^{\mathsf{dem}}_{\Sigma,\overline{\Pi},\mathsf{Eq}} \stackrel{?}{\cong} \{ \mathsf{representable map 1-categories} \} \cong \{ (\mathsf{essentially algebraic}) \text{ type theories} \}$$

Where $\overline{\Pi}$ -types are Π -types with arities in a subfamily of *representable types*.

A rep type	A rep type	[<i>a</i> : <i>A</i>] <i>B</i> (<i>a</i>) type
A type	$\overline{\Pi}(A,B)$ type	

Internal models

Take $\mathcal{C} : CwF_{\Sigma,\overline{\Pi}}$. It is a CwF (\mathcal{C} , Sort, Elem) with 1-, Σ - and $\overline{\Pi}$ - type structures. Elements of Sort are called **sorts** (or outer types).

Elements of RepSort are called representable sorts (or outer representable types).

Definition

An internal model of $\mathbb T$ in $\mathcal C$ consists of:

- a sort ty : Sort of (inner) types;
 Ty ≜ Elem(ty);
- a representable sort family tm : Ty → RepSort of (inner) terms; Tm(A) ≜ Elem(tm(A));
- the structure of a model of \mathbb{T} over the CwF (\mathcal{C} , Ty, Tm).

 $\mathsf{Id}: (A:\mathsf{Ty})(x,y:\mathsf{Tm}(A)) \to \mathsf{Ty} \qquad \Pi: (A:\mathsf{Tm})(B:\mathsf{Elem}(\overline{\Pi}(\mathsf{tm}(A),\mathsf{ty}))) \to \mathsf{Ty}$

The walking model

Definition

The walking model $\mathbf{0}_{\Sigma,\overline{\Pi}}[\mathbb{T}]$ is the initial type-theoretic representable map category equipped with an internal model of \mathbb{T} .

Some contexts of $\boldsymbol{0}_{\Sigma,\overline{\Pi}}[\mathbb{T}]:$

()
$$(A : ty)$$
 $(A : ty, x : tm(A))$
 $(A : ty, B : tm(A) \rightarrow ty, b : (a : tm(A)) \rightarrow tm(B(a)))$
 $\partial Id = (A : ty, x : tm(A), y : tm(A))$ $\partial \Pi = (A : ty, B : tm(A) \rightarrow ty)$

Proposition

The category $(\mathbf{0}_{\Sigma,\overline{\Pi}}[\mathbb{T}])^{op}$ is equivalent to the category of finitely generated models of \mathbb{T} .

A context (or closed sort) $\Gamma : \mathbf{0}_{\Sigma,\overline{\Pi}}[\mathbb{T}]$ generates a model $\mathbf{0}_{\mathbb{T}}[\Gamma] : \mathbf{Mod}_{\mathbb{T}}$.

Recall that $\mathbb{T}_w \to \mathbb{T}_s$ is a Morita equivalence if for every cofibrant $\mathcal{C} : \mathbf{Mod}_{\mathbb{T}_w}^{cxl}$, the unit $\eta : \mathcal{C} \to R(\mathcal{L}(\mathcal{C}))$ is a weak equivalence.

Proposition

An extension $\mathbb{T}_w \to \mathbb{T}_s$ is a Morita equivalence if and only if

$$\mathbf{0}_{\Sigma,\overline{\Pi}}[\mathbb{T}_w] o \mathbf{0}_{\Sigma,\overline{\Pi}}[\mathbb{T}_s]$$

is a weak equivalence (in $\mathbf{Mod}_{\mathbb{T}_w}$).

We also have $\mathbf{0}_{\Sigma,\Pi}[\mathbb{T}]$, $\mathbf{0}_{\Sigma,\overline{\Pi},\mathsf{Eq}}[\mathbb{T}]$, $\mathbf{0}_{\Sigma,\Pi,\mathsf{Eq}}[\mathbb{T}]$. Some contexts of $\mathbf{0}_{\Sigma,\Pi}[\mathbb{T}]$:

 $(P: \mathsf{ty} \to \mathsf{ty}, A: \mathsf{ty}, a: P(P(A))) \qquad (P: \mathsf{ty} \to \mathsf{ty}, A: \mathsf{ty}, B: \mathsf{ty}, \alpha: A \cong B)$

Proposition

The category $(\mathbf{0}_{\Sigma,\overline{\Pi},\mathsf{Eq}}[\mathbb{T}])^{\mathsf{op}}$ is equivalent to the category of finitely presented models of \mathbb{T} .

$$\begin{split} & \textbf{CwF}_{\Sigma,\text{Id}}^{\text{cxl}} \cong \{ \text{finitely complete } \infty\text{-categories} \} \\ & \textbf{CwF}_{\Sigma,\Pi,\text{Id}}^{\text{cxl}} \stackrel{?}{\cong} \{ \text{locally cartesian closed } \infty\text{-categories} \} \\ & \textbf{CwF}_{\Sigma,\overline{\Pi},\text{Id}}^{\text{cxl}} \stackrel{?}{\cong} \{ \text{representable map } \infty\text{-categories} \} \end{split}$$

We have $\boldsymbol{0}_{\Sigma,\overline{\Pi},\mathsf{Id}}[\mathbb{T}]$ and $\boldsymbol{0}_{\Sigma,\Pi,\mathsf{Id}}[\mathbb{T}].$

We will construct $\mathcal{D} : \mathbf{CwF}_{\Sigma,\overline{\Pi},\mathsf{Id}}$ equipped with an internal model of \mathbb{T}_w .

Elements of $\text{Elem}_{\mathcal{D}}(x \simeq y)$ will be the formal compositions of equalities in *E*.

Take $\mathcal{C}:\boldsymbol{\mathsf{CwF}}_{\Sigma,\overline{\Pi},\mathsf{Id}}$ with an internal model of $\mathbb{T}.$

We have comparison maps:

$$coe_{ty} : (A \simeq_{ty} B) \to (A \cong B)$$
$$coe_{tm} : (x \simeq_{tm(A)} y) \to Tm(x \simeq_A y)$$

Definition

The internal model of \mathbb{T} is **univalent** if coe_{ty} and coe_{tm} have homotopy sections (equivalently if they are homotopy equivalences).

We also say that C is **saturated**, or that the outer identity types of C satisfy **saturation**. We have $\mathbf{0}_{\Sigma,\overline{\Pi},\text{Id}}[\mathbb{T},\text{univ}]$, etc. In $\mathbf{0}_{\Sigma,\overline{\Pi},\mathrm{Id}}[\mathbb{T},\mathrm{univ}]$ we can transport structures over type equivalences: If $P: \mathbf{Ty} \to \mathbf{Ty}$ and $\alpha: A \cong B$, then

 $\begin{aligned} & \operatorname{coe}_{\mathsf{ty}}^{-1}(\alpha) & : A \simeq_{\mathsf{ty}} B, \\ & \operatorname{ap}(P, \operatorname{coe}_{\mathsf{ty}}^{-1}(\alpha)) & : P(A) \simeq_{\mathsf{ty}} P(B), \\ & \operatorname{coe}_{\mathsf{ty}}(\operatorname{ap}(P, \operatorname{coe}_{\mathsf{ty}}^{-1}(\alpha))) : P(A) \cong P(B). \end{aligned}$

Theorem

The following conditions are equivalent:

- 1. The map $\mathbf{0}_{\Sigma,\overline{\Pi}}[\mathbb{T}] \to \mathbf{0}_{\Sigma,\overline{\Pi},\mathsf{Id}}[\mathbb{T},\mathsf{univ}]$ is essentially surjective on elements (outer terms).
- 2. The category $Mod_{\mathbb{T}}^{cxl}$ satisfies the axioms of a left semi-model category.

If they hold, we say that \mathbb{T} satisfies **external univalence**.

Take $C : \mathbf{CwF}_{\Sigma,\overline{\Pi},\mathsf{Id}}$ with an internal model of \mathbb{T} . A lift $(\widehat{p}, \widetilde{p}) : \mathsf{lift}(p)$ of $p : \mathsf{Tm}(x \simeq_A y)$ is a witness that p lies in the essential image of $\mathsf{coe_{tm}}$: $\widehat{p} : (x \simeq_{\mathsf{tm}(A)} y)$

 \widetilde{p} : (coetm(\widehat{p}) $\simeq p$)

Say that C is partially saturated with respect to E if we have lift of every type equivalence / typal equality in E.

Partial saturation

We have $\mathbf{0}_{\Sigma,\overline{\Pi},\text{Id}}[\mathbb{T},\text{lift}(E)]$. An element of $\mathbf{0}_{\Sigma,\overline{\Pi},\text{Id}}[\mathbb{T},\text{lift}(E)]$ is a formal composition of equalities from E.

Theorem

If \mathbb{T} satisfies external univalence, then

 $\boldsymbol{0}_{\Sigma,\overline{\Pi}}[\mathbb{T}] \to \boldsymbol{0}_{\Sigma,\overline{\Pi},\mathsf{Id}}[\mathbb{T},\mathsf{lift}(\mathcal{E})]$

is essentially surjective on elements (outer terms).

$$\begin{array}{c} \mathbf{0}_{\Sigma,\overline{\Pi}}[\mathbb{T}] \longrightarrow \mathbf{0}_{\Sigma,\overline{\Pi},\mathsf{Id}}[\mathbb{T},\mathsf{univ}] \\ \downarrow \\ \mathbf{0}_{\Sigma,\overline{\Pi},\mathsf{Id}}[\mathbb{T},\mathsf{lift}(E)] \end{array}$$

Acyclicity

Factorization:

Definition

We say that $\mathbf{0}_{\Sigma,\overline{\Pi},\text{Id}}[\mathbb{T}_w,\text{lift}(E)]$ is acyclic in the image of F if for every $p: \text{Tm}(F(\Gamma), x \simeq_A x)$, there exists some $p': \text{Tm}(F(\Gamma), p \simeq \text{refl})$.

Lemma

If $\mathbf{0}_{\Sigma,\overline{\Pi},\text{Id}}[\mathbb{T}_w,\text{lift}(E)]$ is acyclic in the image of F, then G is surjective on types and terms, when restricted to the image of F.

Theorem

Assume that the following two conditions hold:

- 1. The type theory \mathbb{T}_w satisfies external univalence;
- 2. The model $\mathbf{0}_{\Sigma,\overline{\Pi},\text{Id}}[\mathbb{T}_w,\text{lift}(E)]$ is acyclic in the image of F.

Then $\mathbf{0}_{\Sigma,\overline{\Pi}}[\mathbb{T}_w] \to \mathbf{0}_{\Sigma,\overline{\Pi}}[\mathbb{T}_s]$ is a weak equivalence.

- The two conditions of the theorem do not always hold.
- The fact that \mathbb{T}_w satisfies external univalence can usually be proven using homotopical diagram models.
- It remains to prove acyclicity.

I expect that acyclicity follows from a normalization argument: for every normal form of $\mathbf{0}_{\Sigma,\overline{\Pi}}[\mathbb{T}_s]$ there should be a contractible space of terms of $\mathbf{0}_{\Sigma,\overline{\Pi},\text{Id}}[\mathbb{T}_w,\text{lift}(E)]$ corresponding to that normal form.