Internalizing Representation Independence with Univalence

Carlo Angiuli ${ }^{1}$ Evan Cavallo ${ }^{1,2}$ Anders Mörtberg ${ }^{2}$ Max Zeuner ${ }^{2}$
February 25, 2021 - Homotopy Type Theory Electronic Seminar Talk
${ }^{1}$ Carnegie Mellon University
${ }^{2}$ Stockholm University

Today

Recently appeared at POPL 2021 (dl. acm. org/doi/10.1145/3434293).

- Two motivations, both related to formalization
- Background on cubical type theory + SIP
- Our relational spin on the SIP, formalized in Cubical Agda
(PL-minded folk: see youtu.be/ZiZGuOqaq9s)

Representation independence

"Type structure is a syntactic discipline for enforcing levels of abstraction." -John C. Reynolds [1983]
"One purpose of type checking in programming languages is to guarantee a degree of 'representation independence:' programs should not depend on the way stacks are represented, only on the behavior of stacks with respect to push and pop operations."
-John C. Mitchell [1986]

A tale of two queues

```
record Queue : Type where
    constructor queue
    field
    Q:Type
empty:Q
enqueue : \mathbb{N}->\textrm{Q}->\textrm{Q}
dequeue: Q }->\mathrm{ Maybe (Q }\times\mathbb{N}
```


A tale of two queues

```
record Queue : Type where
    constructor queue
    field
Q:Type
empty:Q
enqueue : \mathbb{N}->\textrm{Q}->\textrm{Q}
dequeue: Q }->\mathrm{ Maybe (Q }\times\mathbb{N}\mathrm{ )
```

$$
\begin{aligned}
& \text { data List }(A \text { : Type }): \text { Type where } \\
& \text { [] : List } A \\
& \quad \therefore::_{-}:(x: A)(x s: \text { List } A) \rightarrow \text { List } A
\end{aligned}
$$

ListQueue $=$ queue $($ List $\mathbb{N})[]_{2}:$ _ last $^{\text {l }}$

A tale of two queues

BatchedQueue .dequeue is amortized constant time! [Okasaki 1999]

These are not isomorphic!

Representation independence

Theorem: Two implementations of an abstract type are observationally equivalent whenever they are related by a structure-preserving correspondence. [Mitchell 1986]

record Queue : Type where

field
Q:Type
empty : Q

$$
\text { enqueue : } \mathbb{N} \rightarrow \mathrm{Q} \rightarrow \mathrm{Q}
$$

$$
\text { dequeue : } \mathrm{Q} \rightarrow \text { Maybe }(\mathrm{Q} \times \mathbb{N})
$$

A, B: Queue
$R \subseteq(A . Q) \times(B . Q)$
(A .empty) R (B .empty)
$q \mathrm{R} q^{\prime} \Longrightarrow$ (A .enqueue $x q$) $\mathrm{R}\left(\mathrm{B}\right.$.enqueue $\left.x q^{\prime}\right)$
$q \mathrm{R} q^{\prime} \Longrightarrow$ A . dequeue $q=$ nothing, \ldots
\Longleftarrow parametricity metatheorem, e.g., for System F (STLC +). [Reynolds 1983] Lets us reason about ListQueues but actually use BatchedQueues.

Internalizing parametricity

In dependent type theory, can we obtain consequences of parametricity internally?

- Parametricity translations [Bernardy, Lasson 2011; Bernardy, Jansson, Paterson 2012; Keller, Lasson 2012; Anand, Morrisett 2017]
- Add consequences as axioms [Krishnaswami, Dreyer 2013]
- Internal parametricity [Bernardy, Moulin 2012; Bernardy, Coquand, Moulin 2015] (See also [Bezem, Coquand, Huber 2014].)
- ... in cubical type theory [Cavallo, Harper 2020]

Proof reuse and transfer

Motivated by mechanization of mathematics!
Proof that $\zeta(3)$ is irrational requires bounding elements of a sequence using "computations with integers with about 4160 decimal digits." [Chyzak et al 2014]

Proof-oriented	Computation-oriented
\mathbb{N}	binary numbers machine integers
matrices	sparse matrices
lists of coefficients	sparse Horner normal form
matrix multiplication	Strassen's algorithm
polynomial multiplication	Karatsuba's algorithm
\vdots	\vdots

Proof reuse and transfer

CoqEAL [Cohen, Dénès, Mörtberg 2013]

- Parametricity translation, doesn't handle dependently-typed goals. (Technical issues modeling large elimination w/Prop-valued relations.)
- Handles the aforementioned examples and more!

Univalent Parametricity [Tabareau, Tanter, Sozeau 2018]

- Univalence, only handles equivalences.

We bridge the gap using univalence and HITs in Cubical Agda.

Cubical Agda

Cubical Agda

Cubical Agda (agda --cubical) since Agda 2.6.0. [Vezzosi, Mörtberg, Abel 2019]
\approx De Morgan / CCHM cubical type theory. [Coquand, Huber, Mörtberg 2019]

Formalization and library at github.com/agda/cubical.

Cubical type theory

Define propositional equality in terms of a primitive interval I with i0, i1: I. (And _^_, $\vee_{-}: I \rightarrow I \rightarrow I$ and $\left.\sim_{-}: I \rightarrow I.\right)$

Path types

Given A: Type, a_{0}, a_{1} : A,

$$
\left(a_{0} \equiv a_{1}\right)=\left\{\mathrm{I} \rightarrow A \mid f(\mathrm{i} 0)=a_{0} \wedge f(\mathrm{i} 1)=a_{1}\right\}
$$

refl : $(x: A) \rightarrow x \equiv x$
refl $x=\lambda_{-} \rightarrow x$
funExt : $\{f g: A \rightarrow B\} \rightarrow((x: A) \rightarrow f x \equiv g x) \rightarrow f \equiv g$
funExt $p i x=p x i$

Dependent path types

Given $A: I \rightarrow$ Type, $a_{0}: A(\mathrm{i} 0), a_{1}: A(\mathrm{i} 1)$,

$$
\left(\text { PathP } A a_{0} a_{1}\right)=\left\{(i: \mathrm{I}) \rightarrow A(i) \mid f(\mathrm{i} 0)=a_{0} \wedge f(\mathrm{i} 1)=a_{1}\right\}
$$

Expresses $(x: X) \equiv(y: Y)$ "over" $X \equiv_{\text {Type }} Y$.
pairExt: $(x y: \Sigma A B)$

$$
\rightarrow(\Sigma[p \in(\mathrm{fst} x \equiv \mathrm{fst} y)](\operatorname{PathP}(\lambda i \rightarrow B(p i))(\operatorname{snd} x)(\text { snd } y))) \simeq(x \equiv y)
$$

pairExt $x y=$ isoToEquiv (iso $(\lambda\{(p, q) i \rightarrow(p i, q i)\})$

$$
\begin{aligned}
& (\lambda p \rightarrow((\lambda i \rightarrow \text { fst }(p i)),(\lambda i \rightarrow \operatorname{snd}(p i)))) \\
& \left.\left(\lambda_{-} \rightarrow \operatorname{refl}\right)\left(\lambda_{-} \rightarrow \text { refl }\right)\right)
\end{aligned}
$$

Univalence

Kan operations + Glue types give us a computational justification for:

- transport : $A \equiv B \rightarrow A \simeq B$
- ua : $A \simeq B \rightarrow A \equiv B$
- ua β : transport $($ ua $f) \equiv f$

Higher inductive types

Eliminators compute on path constructors!

$$
\begin{aligned}
& \text { data }\left\|_\right\|(A: \text { Type }): \text { Type where } \\
& \quad I_{-} \mid: A \rightarrow\|A\| \\
& \text { squash }:(x y:\|A\|) \rightarrow x \equiv y
\end{aligned}
$$

squash: $(x y:\|A\|) \rightarrow \mathbf{I} \rightarrow\|A\|$ squash x y i0 $=x$ squash x y i1 $=y$
$\operatorname{map}:(A \rightarrow B) \rightarrow\|A\| \rightarrow\|B\|$
$\operatorname{map} f|x|=|f x|$
map $f($ squash $x y i)=\operatorname{squash}(\operatorname{map} f x)(\operatorname{map} f y) i$

Set quotients

$$
\begin{aligned}
& \text { data _/_(} A: \text { Type })(R: A \rightarrow A \rightarrow \text { Type }): \text { Type where } \\
& {\left[_\right]:(a: A) \rightarrow A / R} \\
& \text { eq/ }:(a b: A) \rightarrow R a b \rightarrow[a] \equiv[b] \\
& \text { squash } /: \text { isSet }(A / R)
\end{aligned}
$$

If R is an (h-prop-valued) equivalence relation, $[a] \equiv_{A / R}[b] \rightarrow R a b$.

The Structure Identity Principle

Structure Identity Principle

Theorem?: Equalities of structured types \simeq structure-preserving equivalences.

But what is a structure-preserving equivalence? What is a structure?

- Isomorphism is equality [Coquand and Danielsson 2013]
- HoTT Book [2013]
- Displayed categories [Ahrens and Lumsdaine 2017]
- Introduction to Univalent Foundations of Mathematics with Agda [Escardó 2019]
- The univalence principle [Ahrens et al 2020/2021]

We closely follow Escardó, with cubical modifications.

Structure Identity Principle

$$
\text { Monoid }=\Sigma[\underbrace{X \in \text { Type }}_{\text {carrier }}](\underbrace{X \times(X \rightarrow X \rightarrow X) \times \cdots)}_{\text {structure }}
$$

Definitions:

- A structure is a function S : Type \rightarrow Type.
- An S-structured type is $A: \Sigma[X \in$ Type $](S X)$.
- Given $A, B: \Sigma[X \in$ Type $](S X)$ and $f:$ fst $A \simeq$ fst B, define a notion of S-structured equivalence $\iota A B f$.
- ι is univalent if $(\iota A B f) \simeq(\operatorname{PathP}(\lambda i \rightarrow S($ ua $f i))($ snd $A)($ snd $B))$.

Pointed types

The pointed structure $S=\lambda X \rightarrow X$, with pointed types $\left(A, a_{0}\right),\left(B, b_{0}\right): \Sigma[X \in$ Type $] X$.

Definition: $\iota\left(A, a_{0}\right)\left(B, b_{0}\right) f=\left(f\left(a_{0}\right) \equiv_{B} b_{0}\right)$.
Lemma: ι is univalent.
Proof. That is, $\left(\iota\left(A, a_{0}\right)\left(B, b_{0}\right) f\right) \simeq\left(\operatorname{PathP}(\right.$ ua $\left.f) a_{0} b_{0}\right)$. But

$$
\begin{aligned}
& \text { PathP }(\text { ua } f) a_{0} b_{0} \\
\simeq & \operatorname{transport}(\text { ua } f) a_{0} \equiv_{B} b_{0} \\
\simeq & f\left(a_{0}\right) \equiv_{B} b_{0} .
\end{aligned}
$$

Structure Identity Principle

Theorem: The natural notion of S-structured equivalence is univalent for:

$$
S X, T X:=X|\alpha| S X \times T X|S X \rightarrow T X| \text { Maybe }(S X)
$$

We use reflection to automatically match this grammar:

- AutoEquivStr $(\lambda X \rightarrow X \times \ldots) \Longrightarrow$ notion of structured equivalence
- autoUnivalentStr $(\lambda X \rightarrow X \times \ldots) \Longrightarrow$ univalence

Structure Identity Principle

Corollary (SIP): For these (S, ι), we have

$$
\left.\left(A \equiv_{\Sigma[X \in \mathrm{Type}]}\right] x B\right) \simeq(\Sigma[f \in \mathrm{fst} A \simeq \mathrm{fst} B] \iota A B f)
$$

Proof. By univalence of t :

$$
\begin{aligned}
& A \equiv_{\Sigma[X \in \text { Type }] S \times} B \\
\simeq & \Sigma\left[p \in \mathrm{fst} A \equiv_{\text {Type }} \text { fst } B\right](\operatorname{PathP}(\lambda i \rightarrow S(p i))(\text { snd } A)(\text { snd } B)) \\
\simeq & \Sigma[f \in \mathrm{fst} A \simeq \mathrm{fst} B](\operatorname{PathP}(\lambda i \rightarrow S(\text { ua } f i))(\text { snd } A)(\text { snd } B)) \\
\simeq & \Sigma[f \in \mathrm{fst} A \simeq \mathrm{fst} B](\iota A B f) .
\end{aligned}
$$

Axioms

Given a univalent (S, l) and ax : $(\Sigma[X \in$ Type $] S X) \rightarrow$ Type, define " S-structured types satisfying ax" in the evident way; this is univalent if ax is h-prop-valued.

We obtain the usual algebraic structures thusly:
RawMonoidStructure $=\lambda X \rightarrow X \times(X \rightarrow X \rightarrow X)$
MonoidAxioms $\left(X, \varepsilon, __{-}\right)=($isSet $X)$

$$
\begin{aligned}
& \times(\forall x y z \rightarrow x \cdot(y \cdot z) \equiv(x \cdot y) \cdot z) \\
& \times(\forall x \rightarrow(x \cdot \varepsilon \equiv x) \times(\varepsilon \cdot x \equiv x))
\end{aligned}
$$

Proof transfer for equivalences

Consider the binary numbers Bin (lists of 0,1 without trailing 0).
We have $f: \mathbb{N} \simeq \operatorname{Bin}$ and in fact $p:\left(\mathbb{N}, \mathbf{z}_{-}{ }_{+}, \ldots\right) \equiv_{\text {Monoid }}\left(\operatorname{Bin},[],{ }_{+}{ }_{\text {Bin_}}, \ldots\right)$.

Given $P:$ Monoid \rightarrow Type, we have transport $(\lambda i \rightarrow P(p i)): P(\mathbb{N}, \ldots) \simeq P(\operatorname{Bin}, \ldots)$.

In fact, for $P: \mathbb{N} \rightarrow$ Type, we have $P^{\prime}=\operatorname{transport}(\lambda i \rightarrow$ ua $f i \rightarrow$ Type) $P:$ Bin \rightarrow Type and $P(n) \simeq P^{\prime}(f(n))$, but this implements Bin-addition as $\lambda x y \rightarrow f\left(f^{-1}(x)+f^{-1}(y)\right)$. (So you actually want the SIP here, not just univalence!)

Proof transfer for queues?

- Not an equivalence of carriers; SIP doesn't apply.
- In fact, BatchedQueues don't even satisfy Queue axioms, e.g., enqueue,dequeue commute on non-empty Queues.

Quotienting BatchedQueues

ListQueue BatchedQueue

$$
\begin{aligned}
& \text { [] } \longrightarrow \text { ([],[]) } \\
& \left.[1,0] \xlongequal{([1,0],[])} \begin{array}{l}
([1],[0]) \\
([],[0,1])
\end{array}\right) \\
& x s \quad-x s \equiv y s++\left(\text { reverse } y s^{\prime}\right)-\quad\left(y s, y s^{\prime}\right)
\end{aligned}
$$

A Relational SIP

Generalizing queues

Because R : ListQueue \rightarrow BatchedQueue \rightarrow Type is one-to-many, we can improve it to a (structured) equivalence by quotienting only BatchedQueue.

In general, R is many-to-many. In fact, there may be no (non-HIT) "normal form" representation at all, e.g., finite multisets over a type with no ordering.

Plan: Improve R to a structured equivalence by quotienting both sides. (When possible?)

Quasi-equivalence relations

A relation $R: A \rightarrow B \rightarrow$ Type is zigzag-complete if $R x y \rightarrow R x^{\prime} y \rightarrow R x^{\prime} y^{\prime} \rightarrow R x y^{\prime}$. [Tennent and Takeyama 1996; Hofmann 2008; Krishnaswami and Dreyer 2013]

- Graphs of functions are always zigzag-complete.
- Analogue of "symmetry" and "transitivity" for a heterogeneous relation.

Quasi-equivalence relations

Definition: A relation $R: A \rightarrow B \rightarrow$ Type is a QER if it's

- zigzag-complete,
- h-prop-valued,
- $(x: A) \rightarrow\|\Sigma[y \in B] R x y\|$,
- $(y: B) \rightarrow\|\Sigma[x \in A] R x y\|$.

Lemma: Define $R^{\leftarrow}: A \rightarrow A \rightarrow$ Type by $R^{\leftarrow} x x^{\prime}=\left\|\Sigma[y \in B] R x y \times R x^{\prime} y\right\|$. Then $R^{\leftarrow}, R^{\rightarrow}$ are h-prop-valued equivalence relations $\Longleftrightarrow R$ is a QER.

Quasi-equivalence relations

Lemma: Given a QER $R: A \rightarrow B \rightarrow$ Type, $f: A / R^{\leftarrow} \simeq B / R^{\rightarrow}$ where $(f[x] \equiv[y]) \simeq R x y$. (Proof uses effectivity of quotients.)

Question to audience: Have you seen this somewhere else?

Structured relations

When does a structured relation turn into a structured equivalence?

Definitions:

- Given $A, B: \Sigma[X \in$ Type $](S X)$ and $R:$ fst $A \rightarrow \mathrm{fst} B \rightarrow$ Type, define a notion of S-structured relation $\rho A B R$.
- ρ is univalent if some technical conditions hold ("suitable") and it is univalent as a notion of structured equivalence on the graphs of equivalences.

A relational Structure Identity Principle

Theorem: The natural notion of S-structured relation is univalent for:

$$
\begin{aligned}
& S X, T X:=P X|S X \times T X| P X \rightarrow S X \mid \text { Maybe }(S X) \\
& P X, Q X:=X|\alpha| P X \times Q X \mid \text { Maybe }(P X)
\end{aligned}
$$

(Caveats: excludes $\lambda X \rightarrow(X \rightarrow X) \rightarrow X$, and α must be an h-set!)
As before, we use reflection to match this grammar.

Some technical conditions

Definition: A notion of S-structuredness ρ is suitable if the following hold:

- S sends h-sets to h-sets and ρ on h-prop-valued relations is an h-prop.
- If $\rho A B R$ then $\rho B A R^{-1}$.
- If $\rho A B R$ and $\rho B C R^{\prime}$ then $\rho A C\left(R \cdot R^{\prime}\right)$.
- If R is an S-structured h-prop-valued equivalence relation on (X, s), there is a unique S-structure \bar{s} on X / R for which the graph of [_] : $X \rightarrow X / R$ is an S-structured relation between (X, s) and $(X / R, \bar{s})$.

Some technical conditions

Given S-structures $(X, s),(Y, t)$ and a suitably S-structured QER $R: X \rightarrow Y \rightarrow$ Type,

$$
S \xlongequal[\text { is } S \text {-structured between }]{ } t
$$

$$
X / R^{\leftarrow} \underset{\underline{-}}{\rightarrow} Y / R^{\rightarrow}
$$

Some technical conditions

Given S-structures $(X, s),(Y, t)$ and a suitably S-structured QER $R: X \rightarrow Y \rightarrow$ Type,

is S-structured between	
[_]	[_]
X / R	$\underset{\sim}{\sim} \boldsymbol{\sim} / R^{\rightarrow}$

A relational Structure Identity Principle

Corollary (Relational SIP): S-structured QERs between A, B induce S-structures $A / R^{\leftarrow} \equiv_{\Sigma[X \in \operatorname{Type}](S X)} B / R^{\rightarrow}$.

Proof transfer for multisets

$$
\text { Multiset } X=X \times \underbrace{(\alpha \rightarrow X \rightarrow X)}_{\text {insert }} \times \underbrace{(X \rightarrow X \rightarrow X)}_{\text {union }} \times \underbrace{(\alpha \rightarrow X \rightarrow \mathbb{N})}_{\text {count }}
$$

Given A, B : $\Sigma[X \in$ Type $]$ (Multiset X) and a QER $\mathrm{R}:$ fst $\mathrm{A} \rightarrow$ fst $\mathrm{B} \rightarrow$ Type, if:

- R A.empty B.empty
- $\forall x$ xs ys $\rightarrow \mathrm{R} x s y s \rightarrow \mathrm{R}$ (A.insert x xs) (B.insert $x y s$)
- $\forall x s y s x s^{\prime} y s^{\prime} \rightarrow \mathrm{R} x s y s \rightarrow \mathrm{R} x s^{\prime} y s^{\prime} \rightarrow \mathrm{R}$ (A.union $x s x s^{\prime}$) (B.union ys ys')
- $\forall x x s y s \rightarrow \mathrm{R} x s y s \rightarrow$ A.count $x x s \equiv$ B.count $x y s$

Then we immediately obtain equal multiset structures on (fst A) / R^{\leftarrow} and (fst B) / R^{\rightarrow}.

Summary

- It's nice to transfer results between structures!
- By the SIP, structured equivalences are equalities of structures. (Currently used in the library's development of \mathbb{Z}-cohomology!)
- We establish conditions under which structured relations can be improved to structured equivalences.

All formalized in Cubical Agda: git.io/JL5x8.

