Internalizing Representation Independence with Univalence

Carlo Angiuli’ Evan Cavallo™® Anders Mortberg? Max Zeuner?

February 25, 2021 — Homotopy Type Theory Electronic Seminar Talk
TCarnegie Mellon University

2Stockholm University

Recently appeared at POPL 2021 (d1.acm.org/doi/10.1145/3434293).

- Two motivations, both related to formalization
« Background on cubical type theory + SIP

« Our relational spin on the SIP, formalized in Cubical Agda

(PL-minded folk: see youtu.be/ZiZGuOgaq9s)

https://dl.acm.org/doi/10.1145/3434293
https://youtu.be/ZiZGuOqaq9s

Representation independence

“Type structure is a syntactic discipline for enforcing levels of abstraction.”
—John C. Reynolds [1983]
“One purpose of type checking in programming languages is to guarantee a degree

of ‘representation independence:” programs should not depend on the way stacks are

represented, only on the behavior of stacks with respect to push and pop operations.”

—John C. Mitchell [1986]

A tale of two queues

record Queue : Type where
constructor queue
field
Q : Type
empty : Q
enqueue: N = Q—= Q
dequeue : Q — Maybe (Q x N)

A tale of two queues

record Queue : Type where data List (A : Type) : Type where
constructor queue []:List A
field i t(x: A)(xs: List A) — List A
Q : Type
empty : Q ListQueue = queue (List N) [] _::_ last

enqueue: N = Q—= Q
dequeue : Q — Maybe (Q x N)

\ o

A tale of two queues

\ 7

\ o

BatchedQueue .dequeue is amortized constant time! [Okasaki 1999]

These are not isomorphic!

\ B
ListQueue BatchedQueue
[l (LD
([10L.[D
[1,0] ([1L.[o])

([1.10.1])

Representation independence

Theorem: Two implementations of an abstract type are observationally equivalent

whenever they are related by a structure-preserving correspondence. [Mitchell 1986]

record Queue : Type where A, B : Queue
field RS (A.Q x(B.Q
Q: Type
empty : Q (A .empty) R (B .empty)
enqueue: N —- Q — Q gR¢q¢ = (A .enqueue x g) R (B .enqueue x ¢’)

dequeue : Q — Maybe (Q x N) gR ¢ = A .dequeue g = nothing, ...

...via parametricity

&= parametricity metatheorem, e.g., for System F (STLC + V). [Reynolds 1983]

Lets us reason about ListQueues but actually use BatchedQueues.

Internalizing parametricity

In dependent type theory, can we obtain consequences of parametricity internally?

« Parametricity translations [Bernardy, Lasson 2011; Bernardy, Jansson, Paterson 2012;
Keller, Lasson 2012; Anand, Morrisett 2017]

« Add consequences as axioms [Krishnaswami, Dreyer 2013]

Internal parametricity [Bernardy, Moulin 2012; Bernardy, Coquand, Moulin 2015]
(See also [Bezem, Coquand, Huber 2014].)

« ...in cubical type theory [Cavallo, Harper 2020]

Proof reuse and transfer

Motivated by mechanization of mathematics!

Proof that {(3) is irrational requires bounding elements of a sequence using
“computations with integers with about 4160 decimal digits” [Chyzak et al 2014]

Proof-oriented Computation-oriented

N binary-numbers machine integers
matrices sparse matrices

lists of coefficients sparse Horner normal form
matrix multiplication Strassen’s algorithm

polynomial multiplication | Karatsuba’s algorithm

Proof reuse and transfer

CoqEAL [Cohen, Dénés, Mortberg 2013]

« Parametricity translation, doesn’t handle dependently-typed goals.

(Technical issues modeling large elimination w/Prop-valued relations.)

« Handles the aforementioned examples and more!
Univalent Parametricity [Tabareau, Tanter, Sozeau 2018]
« Univalence, only handles equivalences.

We bridge the gap using univalence and HITs in Cubical Agda.

Cubical Agda

Cubical Agda

Cubical Agda (agda --cubical) since Agda 2.6.0. [Vezzosi, Mortberg, Abel 2019]

~ De Morgan / CCHM cubical type theory. [Coquand, Huber, Mértberg 2019]

Formalization and library at github.com/agda/cubical.

https://github.com/agda/cubical

Cubical type theory

Define propositional equality in terms of a primitive interval | with i0,i1 : I.

(And _A_, V_:l—=l—=land~_:1—1)

Path types

Given A : Type, ap, a1 : A,

(a0 = ar) ={l = A[f(i0) = ap A f(i1) = a1}

refl : (x: A) > x=x
reflx=1_— x

funExt: {fg: A= B} = ((x: A) = fx=gx) = f=g
funExt pix=pxi

Dependent path types

Given A : | — Type, ay : A(i0), a; : A(i1),
(PathP A ay a7) = {(i: 1) = A(i) | f(i0) = ap A f(i1) = a1}

Expresses (x : X) = (y : Y) “over” X =type Y.

pairExt: (x y: 3 A B)
— [pe(fst x=fsty)] (PathP (A i— B(p i) (snd x) (snd y))) = (x=y)
pairExt x y = isoToEquiv (iso (A {(p,q) i — (pi,qi)})
Ap—=((Ai—=fst(pi),(Ai— snd(pi)))
(A _ — refl) (A _ — refl))

Univalence

Kan operations + Glue types give us a computational justification for:
o transport : A= B—+A~B
cua:AB—+A=8B
- uaf : transport (ua f) = f

Higher inductive types

Eliminators compute on path constructors!

data ||_|| (A : Type) : Type where squash: (x y : ||A]) = 1= || Al
I |:A—= A squash x y i0 = x
squash: (xy: || Al]) — X=y squash x yil=y

map: (A— B) = || Al = || Bl
map f | x| = fx|
map f(squash x y i) = squash (map fx) (map fy) i

Set quotients

data _/_(A:Type) (R: A— A — Type) : Type where
[]:(a:A)— A/R
eq/:(ab:A) > Rab—[al=[b]
squash/ : isSet (A / R)

If Ris an (h-prop-valued) equivalence relation, [a] =4r [b] — R a b.

The Structure Identity Principle

Structure Identity Principle

Theorem?: Equalities of structured types =~ structure-preserving equivalences.

But what is a structure-preserving equivalence? What is a structure?

o Isomorphism is equality [Coquand and Danielsson 2013]

o HoTT Book [2013]

« Displayed categories [Ahrens and Lumsdaine 2017]

« Introduction to Univalent Foundations of Mathematics with Agda [Escard6 2019]

o The univalence principle [Ahrens et al 2020/2021]

We closely follow Escardd, with cubical modifications.

Structure Identity Principle

Monoid =3[X eType | (X x (X = X = X) x--)

|

carrier structure

Definitions:

o Astructure is a function S : Type — Type.
» An S-structured type is A : X[X € Type] (S X).

« Given A,B: X[XeType] (S X) and f : fst A =~ fst B, define a notion of
S-structured equivalence 1t A B f.

o risunivalentif (1t A B f) = (PathP (Ai — S (ua f i)) (snd A) (snd B)).

Pointed types

The pointed structure S = AX — X, with pointed types (A, ay), (B, by) : Z[X € Type] X.

Definition: 1 (A, ay) (B, by) f = (f(ay) =5 bo).
Lemma: ¢ is univalent.

Proof. That is, (1 (A, ay) (B, by) f) = (PathP (ua f) ap by). But

PathP (ua f) ay by
=~ transport (ua f) ay =g by

= f(ao) =g bo.

20

Structure Identity Principle

Theorem: The natural notion of S-structured equivalence is univalent for:

SX,TX=X|a|SXxTX|SX—TX|Maybe (S X)

We use reflection to automatically match this grammar:

« AutoEquivStr (AX — X x...) = notion of structured equivalence

. autoUnivalentStr (AX — X x...) = univalence

21

Structure Identity Principle

Corollary (SIP): For these (S, 1), we have

(A=sixeType]sx B) = (E[fefst A~fst Bt ABf).

Proof. By univalence of &:

ASs[xeType]sx B

Z[pefst A =rype fst B] (PathP (Ai — S (p i)) (snd A) (snd B))
Y[fefst A=fst B] (PathP (Ai = S (ua f i)) (snd A) (snd B))
S[fefst A~fst Bl (1 ABf).

1R

12

1

22

Axioms

Given a univalent (S,1) and ax : (2[X € Type] S X) — Type, define “S-structured types

satisfying ax” in the evident way; this is univalent if ax is h-prop-valued.

We obtain the usual algebraic structures thusly:

RawMonoidStructure =4 X — X x (X — X — X)

MonoidAxioms (X, e, _-_) = (isSet X)
«(Vxyz=x-(y-D=(x-p)-2)
x(Vx—(x-e=x) x (¢ -x=x))

23

Proof transfer for equivalences

Consider the binary numbers Bin (lists of 0, 1 without trailing 0).
We have f : N =~ Bin and in fact p: (N,z, _+_,...) =monoid (Bin, [], _+gin_,---)-

Given P : Monoid — Type, we have transport (Ai — P(p i)) : P(N,...) ~ P(Bin,...).

In fact, for P : N — Type, we have P’ = transport (1i — ua f i — Type) P : Bin — Type
and P(n) = P’(f(n)), but this implements Bin-addition as Ax y — f(f~'(x) + f~'(y)).

(So you actually want the SIP here, not just univalence!)

24

Proof transfer for queues?

\ o

\ 7

« Not an equivalence of carriers; SIP doesn’t apply.

« In fact, BatchedQueues don’t even satisfy Queue axioms,

e.g., enqueue,dequeue commute on non-empty Queues.

25

Quotienting BatchedQueues

ListQueue BatchedQueue

[l (1L

[1,0]

xs —— xs = ys ++ (reverse ys’) —— (ys, ys’)

26

A Relational SIP

Generalizing queues

Because R : ListQueue — BatchedQueue — Type is one-to-many, we can improve it to a

(structured) equivalence by quotienting only BatchedQueue.

In general, R is many-to-many. In fact, there may be no (non-HIT) “normal form”

representation at all, e.g., finite multisets over a type with no ordering.

Plan: Improve R to a structured equivalence by quotienting both sides. (When possible?)

27

Quasi-equivalence relations

A relation R: A— B — Type is zigzag-complete if Rx y = Rx" y - Rx "y = Rx y’.
[Tennent and Takeyama 1996; Hofmann 2008; Krishnaswami and Dreyer 2013]

« Graphs of functions are always zigzag-complete.

« Analogue of “symmetry” and “transitivity” for a heterogeneous relation.

28

Quasi-equivalence relations

Definition: A relation R: A— B — Type is a QER if it’s

« zigzag-complete,

« h-prop-valued,
(x:A) = IZ[yeB]Rx yl|,
(y:B)—=||Z[x€eA]Rx y].

Lemma: Define R~ : A— A— Typeby R x x' =||Z[yeB]RxyxRx" y|.
Then R™, R~ are h-prop-valued equivalence relations <= Ris a QER.

29

Quasi-equivalence relations

Lemma: Givena QERR: A— B — Type, f : A/ R~ =~ B/ R~ where
Flxl=lyD=Rxy.

Question to audience: Have you seen this somewhere else?

30

Structured relations

When does a structured relation turn into a structured equivalence?

Definitions:

+ Given A,B: X[X €Type] (S X) and R : fst A — fst B— Type, define a notion of
S-structured relation p A B R.

« pis univalent if some technical conditions hold (“suitable”) and it is univalent as a

notion of structured equivalence on the graphs of equivalences.

31

A relational Structure Identity Principle

Theorem: The natural notion of S-structured relation is univalent for:

SX,TX=PX|SXxTX|PX —SX| Maybe (S X)
PX,QX:=X|a|PXxQX| Maybe (P X)

As before, we use reflection to match this grammar.

32

Some technical conditions

Definition: A notion of S-structuredness p is suitable if the following hold:

.

S sends h-sets to h-sets and p on h-prop-valued relations is an h-prop.

« Ifp ABRthenp BAR.

«lfp ABRandp BC R thenp AC (R-R).

« If Ris an S-structured h-prop-valued equivalence relation on (X, s), there is a unique

S-structure 5 on X/ R for which the graph of [_] : X — X/ Ris an S-structured
relation between (X, s) and (X /R,3).

38

Some technical conditions

Given S-structures (X, s), (Y, t) and a suitably S-structured QER R: X — Y — Type,

is S-structured between

R
X—Y

[] []

X/R™ - YR

34

Some technical conditions

Given S-structures (X, s), (Y, t) and a suitably S-structured QER R: X — Y — Type,

S t
| is S-structured between |
| . |
S oo
L]
O X/RT - YIRT
§--oe oo i

34

A relational Structure Identity Principle

Corollary (Relational SIP): S-structured QERs between A, B induce S-structures
A/ R SsixeTypel(sx) B/R”.

35

Proof transfer for multisets

Multiset X =X x (a > X =2 X)x (X = X—=>X) x (a > X = N)

insert union count

Given A,B : [X € Type] (Multiset X) and a QER R : fst A — fst B — Type, if:

« R A.empty B.empty
« ¥V x xs ys = R xs ys — R (A.insert x xs) (B.insert x ys)
o Vxsysxs’ys’ — R xs ys— R xs” ys’ — R (A.union xs xs”) (B.union ys ys’)

* V x xs ys = R xs ys — A.count x xs = B.count x ys

Then we immediately obtain equal multiset structures on (fst A) / R~ and (fst B) / R™.

36

« It’s nice to transfer results between structures!

« By the SIP, structured equivalences are equalities of structures.

(Currently used in the library’s development of Z-cohomology!)

« We establish conditions under which structured relations can be

improved to structured equivalences.

All formalized in Cubical Agda: git.io/JL5x8.

37

https://git.io/JL5x8

	Cubical Agda
	The Structure Identity Principle
	A Relational SIP

