
Internalizing Representation Independence with Univalence

Carlo Angiuli1 Evan Cavallo1,2 Anders Mörtberg2 Max Zeuner2

February 25, 2021 — Homotopy Type Theory Electronic Seminar Talk

1Carnegie Mellon University

2Stockholm University

Today

Recently appeared at POPL 2021 (dl.acm.org/doi/10.1145/3434293).

• Two motivations, both related to formalization

• Background on cubical type theory + SIP

• Our relational spin on the SIP, formalized in Cubical Agda

(PL-minded folk: see youtu.be/ZiZGuOqaq9s)

1

https://dl.acm.org/doi/10.1145/3434293
https://youtu.be/ZiZGuOqaq9s

Representation independence

“Type structure is a syntactic discipline for enforcing levels of abstraction.”

—John C. Reynolds [1983]

“One purpose of type checking in programming languages is to guarantee a degree
of ‘representation independence:’ programs should not depend on the way stacks are
represented, only on the behavior of stacks with respect to push and pop operations.”

—John C. Mitchell [1986]

2

A tale of two queues

recordeue : Type where
constructor queue
field
Q : Type
empty : Q
enqueue : N→ Q → Q
dequeue : Q → Maybe (Q × N)

data List (A : Type) : Type where
[] : List A
:: : (x : A) (xs : List A) → List A

Listeue = queue (List N) [] _::_ last

3

A tale of two queues

recordeue : Type where
constructor queue
field
Q : Type
empty : Q
enqueue : N→ Q → Q
dequeue : Q → Maybe (Q × N)

data List (A : Type) : Type where
[] : List A
:: : (x : A) (xs : List A) → List A

Listeue = queue (List N) [] _::_ last

3

A tale of two queues

Listeue =

Batchedeue =

Batchedeue .dequeue is amortized constant time! [Okasaki 1999]

4

These are not isomorphic!

Listeue

[]

[1,0]

Batchedeue

([],[])

([1,0],[])

([1],[0])

([],[0,1])

5

Representation independence

Theorem: Two implementations of an abstract type are observationally equivalent
whenever they are related by a structure-preserving correspondence. [Mitchell 1986]

recordeue : Type where
field
Q : Type
empty : Q
enqueue : N→ Q → Q
dequeue : Q → Maybe (Q × N)

A,B : eue
R ⊆ (A .Q) × (B .Q)

(A .empty) R (B .empty)
q R q′ =⇒ (A .enqueue x q) R (B .enqueue x q′)
q R q′ =⇒ A .dequeue q = nothing, . . .

6

. . . via parametricity

⇐= parametricity metatheorem, e.g., for System F (STLC + ∀). [Reynolds 1983]

Lets us reason about Listeues but actually use Batchedeues.

7

Internalizing parametricity

In dependent type theory, can we obtain consequences of parametricity internally?

• Parametricity translations [Bernardy, Lasson 2011; Bernardy, Jansson, Paterson 2012;

Keller, Lasson 2012; Anand, Morrise 2017]

• Add consequences as axioms [Krishnaswami, Dreyer 2013]

• Internal parametricity [Bernardy, Moulin 2012; Bernardy, Coquand, Moulin 2015]

(See also [Bezem, Coquand, Huber 2014].)

• . . . in cubical type theory [Cavallo, Harper 2020]

8

Proof reuse and transfer

Motivated by mechanization of mathematics!

Proof that Z (3) is irrational requires bounding elements of a sequence using
“computations with integers with about 4160 decimal digits.” [Chyzak et al 2014]

Proof-oriented Computation-oriented
N binary numbers machine integers
matrices sparse matrices
lists of coeicients sparse Horner normal form
matrix multiplication Strassen’s algorithm
polynomial multiplication Karatsuba’s algorithm

...
...

9

Proof reuse and transfer

CoqEAL [Cohen, Dénès, Mörtberg 2013]

• Parametricity translation, doesn’t handle dependently-typed goals.
(Technical issues modeling large elimination w/Prop-valued relations.)

• Handles the aforementioned examples and more!

Univalent Parametricity [Tabareau, Tanter, Sozeau 2018]

• Univalence, only handles equivalences.

We bridge the gap using univalence and HITs in Cubical Agda.

10

Cubical Agda

Cubical Agda

Cubical Agda (agda --cubical) since Agda 2.6.0. [Vezzosi, Mörtberg, Abel 2019]

≈ De Morgan / CCHM cubical type theory. [Coquand, Huber, Mörtberg 2019]

Formalization and library at github.com/agda/cubical.

11

https://github.com/agda/cubical

Cubical type theory

Define propositional equality in terms of a primitive interval I with i0, i1 : I.

(And _∧_, _∨_ : I → I → I and ∼_ : I → I.)

12

Path types

Given A : Type, a0, a1 : A,

(a0 ≡ a1) = {I → A | f (i0) = a0 ∧ f (i1) = a1}

refl : (x : A) → x ≡ x
refl x = _ _ → x

funExt : {f g : A → B} → ((x : A) → f x ≡ g x) → f ≡ g
funExt p i x = p x i

13

Dependent path types

Given A : I → Type, a0 : A(i0), a1 : A(i1),

(PathP A a0 a1) = {(i : I)→ A(i) | f (i0) = a0 ∧ f (i1) = a1}

Expresses (x : X) ≡ (y : Y) “over” X ≡Type Y .

pairExt : (x y : Σ A B)
→ (Σ[p ∈ (fst x ≡ fst y)] (PathP (_ i → B (p i)) (snd x) (snd y))) ' (x ≡ y)

pairExt x y = isoToEquiv (iso (_ { (p , q) i → (p i , q i) })
(_ p → ((_ i → fst (p i)) , (_ i → snd (p i))))
(_ _ → refl) (_ _ → refl))

14

Univalence

Kan operations + Glue types give us a computational justification for:

• transport : A ≡ B → A ' B

• ua : A ' B → A ≡ B

• ua𝛽 : transport (ua f) ≡ f

15

Higher inductive types

Eliminators compute on path constructors!

data ‖_‖ (A : Type) : Type where
|_| : A → ‖ A ‖
squash : (x y : ‖ A ‖) → x ≡ y

map : (A → B) → ‖ A ‖ → ‖ B ‖
map f | x | = | f x |
map f (squash x y i) = squash (map f x) (map f y) i

squash : (x y : ‖ A ‖)→ I → ‖ A ‖
squash x y i0 = x
squash x y i1 = y

16

Set quotients

data _/_ (A : Type) (R : A → A → Type) : Type where
[_] : (a : A) → A / R
eq/ : (a b : A) → R a b → [a] ≡ [b]
squash/ : isSet (A / R)

If R is an (h-prop-valued) equivalence relation, [a] ≡A/R [b]→ R a b.

17

The Structure Identity Principle

Structure Identity Principle

Theorem?: Equalities of structured types ' structure-preserving equivalences.

But what is a structure-preserving equivalence? What is a structure?

• Isomorphism is equality [Coquand and Danielsson 2013]

• HoTT Book [2013]

• Displayed categories [Ahrens and Lumsdaine 2017]

• Introduction to Univalent Foundations of Mathematics with Agda [Escardó 2019]

• The univalence principle [Ahrens et al 2020/2021]

We closely follow Escardó, with cubical modifications.

18

Structure Identity Principle

Monoid = Σ[X ∈ Type︸ ︷︷ ︸
carrier

] (X × (X → X → X) × · · ·︸ ︷︷ ︸
structure

)

Definitions:

• A structure is a function S : Type → Type.

• An S-structured type is A : Σ[X ∈ Type] (S X).
• Given A,B : Σ[X ∈ Type] (S X) and f : fst A ' fst B, define a notion of
S-structured equivalence] A B f .

•] is univalent if (] A B f) ' (PathP (_i → S (ua f i)) (snd A) (snd B)).

19

Pointed types

The pointed structure S = _X → X , with pointed types (A, a0), (B, b0) : Σ[X ∈ Type]X .

Definition:] (A , a0) (B , b0) f = (f (a0) ≡B b0).

Lemma:] is univalent.

Proof. That is, (] (A , a0) (B , b0) f) ' (PathP (ua f) a0 b0). But

PathP (ua f) a0 b0
' transport (ua f) a0 ≡B b0

' f (a0) ≡B b0.

20

Structure Identity Principle

Theorem: The natural notion of S-structured equivalence is univalent for:

S X , T X B X | 𝛼 | S X × T X | S X → T X | Maybe (S X)

We use reflection to automatically match this grammar:

• AutoEquivStr (_X → X × . . .) =⇒ notion of structured equivalence

• autoUnivalentStr (_X → X × . . .) =⇒ univalence

21

Structure Identity Principle

Corollary (SIP): For these (S,]), we have

(A ≡Σ[X ∈ Type] S X B) ' (Σ[f ∈ fst A ' fst B]] A B f) .

Proof. By univalence of]:

A ≡Σ[X ∈ Type] S X B

' Σ[p ∈ fst A ≡Type fst B] (PathP (_i → S (p i)) (snd A) (snd B))
' Σ[f ∈ fst A ' fst B] (PathP (_i → S (ua f i)) (snd A) (snd B))
' Σ[f ∈ fst A ' fst B] (] A B f) .

22

Axioms

Given a univalent (S,]) and ax : (Σ[X ∈ Type] S X)→ Type, define “S-structured types
satisfying ax” in the evident way; this is univalent if ax is h-prop-valued.

We obtain the usual algebraic structures thusly:

RawMonoidStructure = _ X → X × (X → X → X)
MonoidAxioms (X , Y , _·_) = (isSet X)

× (∀ x y z → x · (y · z) ≡ (x · y) · z)
× (∀ x → (x · Y ≡ x) × (Y · x ≡ x))

23

Proof transfer for equivalences

Consider the binary numbers Bin (lists of 0, 1 without trailing 0).

We have f : N ' Bin and in fact p : (N, z, _+_, . . .) ≡Monoid (Bin, [], _+Bin_, . . .).

Given P : Monoid → Type, we have transport (_i → P (p i)) : P (N, . . .) ' P (Bin, . . .).

In fact, for P : N→ Type, we have P ′ = transport (_i → ua f i → Type) P : Bin → Type
and P (n) ' P ′(f (n)), but this implements Bin-addition as _x y → f (f −1(x) + f −1(y)).

(So you actually want the SIP here, not just univalence!)

24

Proof transfer for queues?

Listeue =

Batchedeue =

• Not an equivalence of carriers; SIP doesn’t apply.

• In fact, Batchedeues don’t even satisfyeue axioms,
e.g., enqueue,dequeue commute on non-emptyeues.

25

otienting Batchedeues

Listeue

[]

[1,0]

xs

Batchedeue

([],[])

([1,0],[])

([1],[0])

([],[0,1])

(ys, ys′)xs ≡ ys ++ (reverse ys′)

26

A Relational SIP

Generalizing queues

Because R : Listeue → Batchedeue → Type is one-to-many, we can improve it to a
(structured) equivalence by quotienting only Batchedeue.

In general, R is many-to-many. In fact, there may be no (non-HIT) “normal form”
representation at all, e.g., finite multisets over a type with no ordering.

Plan: Improve R to a structured equivalence by quotienting both sides. (When possible?)

27

asi–equivalence relations

x

x ′

y

y ′

A relation R : A → B → Type is zigzag-complete if R x y → R x ′ y → R x ′ y ′→ R x y ′.
[Tennent and Takeyama 1996; Hofmann 2008; Krishnaswami and Dreyer 2013]

• Graphs of functions are always zigzag-complete.

• Analogue of “symmetry” and “transitivity” for a heterogeneous relation.

28

asi–equivalence relations

Definition: A relation R : A → B → Type is a QER if it’s

• zigzag-complete,

• h-prop-valued,

• (x : A)→ ‖ Σ[y ∈ B]R x y ‖,
• (y : B)→ ‖ Σ[x ∈A]R x y ‖.

Lemma: Define R← : A → A → Type by R← x x ′ = ‖ Σ[y ∈ B]R x y × R x ′ y ‖.
Then R←, R→ are h-prop-valued equivalence relations ⇐⇒ R is a QER.

29

asi–equivalence relations

Lemma: Given a QER R : A → B → Type, f : A / R← ' B / R→ where
(f [x] ≡ [y]) ' R x y . (Proof uses eectivity of quotients.)

x

x ′

y

y ′

estion to audience: Have you seen this somewhere else?

30

Structured relations

When does a structured relation turn into a structured equivalence?

Definitions:

• Given A,B : Σ[X ∈ Type] (S X) and R : fst A → fst B → Type, define a notion of
S-structured relation 𝜌 A B R.

• 𝜌 is univalent if some technical conditions hold (“suitable”) and it is univalent as a
notion of structured equivalence on the graphs of equivalences.

31

A relational Structure Identity Principle

Theorem: The natural notion of S-structured relation is univalent for:

S X , T X B P X | S X × T X | P X → S X | Maybe (S X)
P X ,Q X B X | 𝛼 | P X × Q X | Maybe (P X)

(Caveats: excludes _X → (X → X) → X , and 𝛼 must be an h-set!)

As before, we use reflection to match this grammar.

32

Some technical conditions

Definition: A notion of S-structuredness 𝜌 is suitable if the following hold:

• S sends h-sets to h-sets and 𝜌 on h-prop-valued relations is an h-prop.

• If 𝜌 A B R then 𝜌 B A R−1.

• If 𝜌 A B R and 𝜌 B C R′ then 𝜌 A C (R · R′).
• If R is an S-structured h-prop-valued equivalence relation on (X , s), there is a unique
S-structure s̄ on X / R for which the graph of [_] : X → X / R is an S-structured
relation between (X , s) and (X / R, s̄).

33

Some technical conditions

Given S-structures (X , s), (Y , t) and a suitably S-structured QER R : X → Y → Type,

X

X / R←

Y

Y / R→

R

[_] [_]

'

s t
is S-structured between

s t

34

Some technical conditions

Given S-structures (X , s), (Y , t) and a suitably S-structured QER R : X → Y → Type,

X

X / R←

Y

Y / R→

R

[_] [_]

'

s t
is S-structured between

s t

34

A relational Structure Identity Principle

Corollary (Relational SIP): S-structured QERs between A,B induce S-structures
A / R← ≡Σ[X ∈ Type] (S X) B / R→.

35

Proof transfer for multisets

Multiset X = X × (𝛼 → X → X)︸ ︷︷ ︸
insert

× (X → X → X)︸ ︷︷ ︸
union

× (𝛼 → X → N)︸ ︷︷ ︸
count

Given A,B : Σ[X ∈ Type] (Multiset X) and a QER R : fst A → fst B → Type, if:

• R A.empty B.empty

• ∀ x xs ys→ R xs ys → R (A.insert x xs) (B.insert x ys)
• ∀ xs ys xs′ ys′→ R xs ys → R xs′ ys′→ R (A.union xs xs′) (B.union ys ys′)
• ∀ x xs ys→ R xs ys → A.count x xs ≡ B.count x ys

Then we immediately obtain equal multiset structures on (fst A) / R← and (fst B) / R→.
36

Summary

• It’s nice to transfer results between structures!

• By the SIP, structured equivalences are equalities of structures.
(Currently used in the library’s development of Z-cohomology!)

• We establish conditions under which structured relations can be
improved to structured equivalences.

All formalized in Cubical Agda: git.io/JL5x8.

37

https://git.io/JL5x8

	Cubical Agda
	The Structure Identity Principle
	A Relational SIP

