Internalizing Representation Independence with Univalence

Carlo Angiuli1Evan Cavallo1,2Anders Mörtberg2Max Zeuner2February 25, 2021 — Homotopy Type Theory Electronic Seminar Talk

¹Carnegie Mellon University

²Stockholm University

Recently appeared at POPL 2021 (dl.acm.org/doi/10.1145/3434293).

- Two motivations, both related to formalization
- Background on cubical type theory + SIP
- Our relational spin on the SIP, formalized in Cubical Agda

(PL-minded folk: see youtu.be/ZiZGuOqaq9s)

"Type structure is a syntactic discipline for enforcing levels of abstraction." —John C. Reynolds [1983]

"One purpose of type checking in programming languages is to guarantee a degree of 'representation independence:' programs should not depend on the way stacks are represented, only on the behavior of stacks with respect to push and pop operations." —John C. Mitchell [1986]

```
record Queue : Type where
constructor queue
field
Q : Type
empty : Q
enqueue : \mathbb{N} \to \mathbb{Q} \to \mathbb{Q}
dequeue : \mathbb{Q} \to Maybe (\mathbb{Q} \times \mathbb{N})
```

record Queue : Type where constructor queue field Q : Type empty : Q enqueue : $\mathbb{N} \to \mathbb{Q} \to \mathbb{Q}$ dequeue : $\mathbb{Q} \to Maybe$ ($\mathbb{Q} \times \mathbb{N}$) data List (A : Type) : Type where [] : List A_::_: (x : A) (xs : List A) \rightarrow List A

ListQueue = queue (List ℕ) [] _::_ last

BatchedQueue .dequeue is amortized constant time! [Okasaki 1999]

These are not isomorphic!

Theorem: Two implementations of an abstract type are observationally equivalent whenever they are related by a structure-preserving correspondence. [Mitchell 1986]

```
record Queue : Type where
field
Q : Type
empty : Q
enqueue : \mathbb{N} \to \mathbb{Q} \to \mathbb{Q}
dequeue : \mathbb{Q} \to Maybe (\mathbb{Q} \times \mathbb{N})
```

A, B : Queue $R \subseteq (A . Q) \times (B . Q)$

(A .empty) R (B .empty) $q R q' \implies$ (A .enqueue x q) R (B .enqueue x q') $q R q' \implies$ A .dequeue q = nothing, ...

\Leftarrow parametricity metatheorem, e.g., for System F (STLC + \forall). [Reynolds 1983]

Lets us reason about ListQueues but actually use BatchedQueues.

In dependent type theory, can we obtain consequences of parametricity internally?

- Parametricity translations [Bernardy, Lasson 2011; Bernardy, Jansson, Paterson 2012; Keller, Lasson 2012; Anand, Morrisett 2017]
- Add consequences as axioms [Krishnaswami, Dreyer 2013]
- Internal parametricity [Bernardy, Moulin 2012; Bernardy, Coquand, Moulin 2015] (See also [Bezem, Coquand, Huber 2014].)
- ... in cubical type theory [Cavallo, Harper 2020]

Motivated by mechanization of mathematics!

Proof that $\zeta(3)$ is irrational requires bounding elements of a sequence using "computations with integers with about 4160 decimal digits." [Chyzak *et al* 2014]

Proof-oriented	Computation-oriented
\mathbb{N}	binary numbers machine integers
matrices	sparse matrices
lists of coefficients	sparse Horner normal form
matrix multiplication	Strassen's algorithm
polynomial multiplication	Karatsuba's algorithm
:	:

CoqEAL [Cohen, Dénès, Mörtberg 2013]

- Parametricity translation, doesn't handle dependently-typed goals. (Technical issues modeling large elimination w/Prop-valued relations.)
- · Handles the aforementioned examples and more!

Univalent Parametricity [Tabareau, Tanter, Sozeau 2018]

• Univalence, only handles equivalences.

We bridge the gap using univalence and HITs in Cubical Agda.

Cubical Agda

Cubical Agda (agda --cubical) since Agda 2.6.0. [Vezzosi, Mörtberg, Abel 2019] \approx De Morgan / CCHM cubical type theory. [Coquand, Huber, Mörtberg 2019]

Formalization and library at github.com/agda/cubical.

Define propositional equality in terms of a primitive interval I with i0, i1 : I. (And $\Lambda_, V_ : I \to I \to I$ and $\sim_ : I \to I$.)

Path types

Given A : Type, $a_0, a_1 : A$,

$$(a_0 \equiv a_1) = \{ \mathbf{I} \to A \mid f(i0) = a_0 \land f(i1) = a_1 \}$$

 $refl: (x: A) \to x \equiv x$ $refl \ x = \lambda _ \to x$

$$funExt : \{fg : A \to B\} \to ((x : A) \to fx \equiv gx) \to f \equiv g$$

funExt p i x = p x i

Dependent path types

Given $A : I \rightarrow Type$, $a_0 : A(i0), a_1 : A(i1),$

$$(PathP A a_0 a_1) = \{(i: I) \to A(i) \mid f(i0) = a_0 \land f(i1) = a_1\}$$

Expresses $(x : X) \equiv (y : Y)$ "over" $X \equiv_{Type} Y$.

Kan operations + Glue types give us a computational justification for:

- transport : $A \equiv B \rightarrow A \simeq B$
- **ua** : $A \simeq B \rightarrow A \equiv B$
- $ua\beta$: transport $(ua f) \equiv f$

Higher inductive types

Eliminators compute on path constructors!

data $\|_\|$ (A : Type) : Type where $\|_| : A \rightarrow \|A\|$ squash : (x y : $\|A\|$) \rightarrow x \equiv y \leftarrow squash : $(x \ y : || A ||) \rightarrow || A ||$ squash $x \ y \ i0 = x$ squash $x \ y \ i1 = y$

 $\begin{aligned} & \operatorname{map} : (A \to B) \to \parallel A \parallel \to \parallel B \parallel \\ & \operatorname{map} f \mid x \mid = \mid f x \mid \\ & \operatorname{map} f (\operatorname{squash} x y i) = \operatorname{squash} (\operatorname{map} f x) (\operatorname{map} f y) i \end{aligned}$

data _/_ (A : Type) (R :
$$A \rightarrow A \rightarrow Type$$
) : Type where
[_] : (a : A) $\rightarrow A / R$
eq/ : (a b : A) $\rightarrow R \ a \ b \rightarrow [a] \equiv [b]$
squash/ : isSet (A / R)

If *R* is an (h-prop-valued) equivalence relation, $[a] \equiv_{A/R} [b] \rightarrow R \ a \ b$.

The Structure Identity Principle

Theorem?: Equalities of structured types \simeq structure-preserving equivalences.

But what is a structure-preserving equivalence? What is a structure?

- Isomorphism is equality [Coquand and Danielsson 2013]
- HoTT Book [2013]
- Displayed categories [Ahrens and Lumsdaine 2017]
- Introduction to Univalent Foundations of Mathematics with Agda [Escardó 2019]
- The univalence principle [Ahrens et al 2020/2021]

We closely follow Escardó, with cubical modifications.

Structure Identity Principle

Definitions:

- A structure is a function S : Type \rightarrow Type.
- An *S*-structured type is $A : \Sigma[X \in \mathsf{Type}] (S X)$.
- Given $A, B : \Sigma[X \in \mathsf{Type}] (S X)$ and $f : \mathsf{fst} A \simeq \mathsf{fst} B$, define a notion of *S*-structured equivalence $\iota A B f$.
- ι is univalent if $(\iota \land B f) \simeq (PathP (\lambda i \rightarrow S (ua f i)) (snd A) (snd B)).$

The pointed structure $S = \lambda X \rightarrow X$, with pointed types $(A, a_0), (B, b_0) : \Sigma[X \in \mathsf{Type}] X$.

Definition: ι (*A* , *a*₀) (*B* , *b*₀) $f = (f(a_0) \equiv_B b_0)$.

Lemma: ι is univalent.

Proof. That is, $(\iota (A, a_0) (B, b_0) f) \simeq (\text{PathP} (\text{ua} f) a_0 b_0)$. But

PathP (ua f) $a_0 b_0$ \simeq transport (ua f) $a_0 \equiv_B b_0$ $\simeq f(a_0) \equiv_B b_0.$ **Theorem:** The natural notion of *S*-structured equivalence is univalent for:

 $S X, T X \coloneqq X \mid \alpha \mid S X \times T X \mid S X \to T X \mid Maybe (S X)$

We use reflection to automatically match this grammar:

- AutoEquivStr $(\lambda X \rightarrow X \times ...) \implies$ notion of structured equivalence
- autoUnivalentStr $(\lambda X \rightarrow X \times ...) \implies$ univalence

Corollary (SIP): For these (S, ι) , we have

 $(A \equiv_{\Sigma[X \in \mathsf{Type}] S X} B) \simeq (\Sigma[f \in \mathsf{fst} A \simeq \mathsf{fst} B] \iota A B f).$

Proof. By univalence of *ı*:

 $A \equiv_{\Sigma[X \in \mathsf{Type}] S X} B$ $\simeq \Sigma[p \in \mathsf{fst} A \equiv_{\mathsf{Type}} \mathsf{fst} B] (\mathsf{PathP} (\lambda i \to S (p i)) (\mathsf{snd} A) (\mathsf{snd} B))$ $\simeq \Sigma[f \in \mathsf{fst} A \simeq \mathsf{fst} B] (\mathsf{PathP} (\lambda i \to S (\mathsf{ua} f i)) (\mathsf{snd} A) (\mathsf{snd} B))$ $\simeq \Sigma[f \in \mathsf{fst} A \simeq \mathsf{fst} B] (\iota A B f).$ Given a univalent (S, ι) and $ax : (\Sigma[X \in Type] S X) \to Type$, define "*S*-structured types satisfying ax" in the evident way; this is univalent if ax is h-prop-valued.

We obtain the usual algebraic structures thusly:

RawMonoidStructure = $\lambda X \rightarrow X \times (X \rightarrow X \rightarrow X)$ MonoidAxioms $(X, \varepsilon, _.]$ = (isSet λ) $\times (\forall x y z \rightarrow x \cdot (y \cdot z) \equiv (x \cdot y) \cdot z)$ $\times (\forall x \rightarrow (x \cdot \varepsilon \equiv x) \times (\varepsilon \cdot x \equiv x))$ Consider the binary numbers Bin (lists of 0, 1 without trailing 0).

We have $f : \mathbb{N} \simeq \text{Bin}$ and in fact $p : (\mathbb{N}, z, _+_, ...) \equiv_{\text{Monoid}} (\text{Bin}, [], _+_{\text{Bin}_}, ...).$

Given *P* : Monoid \rightarrow Type, we have transport $(\lambda i \rightarrow P(p \ i)) : P(\mathbb{N}, ...) \simeq P(Bin, ...)$.

In fact, for $P : \mathbb{N} \to \text{Type}$, we have $P' = \text{transport} (\lambda i \to \text{ua } f \ i \to \text{Type}) P : \text{Bin} \to \text{Type}$ and $P(n) \simeq P'(f(n))$, but this implements Bin-addition as $\lambda x \ y \to f(f^{-1}(x) + f^{-1}(y))$. (So you actually want the SIP here, not just univalence!)

Proof transfer for queues?

- Not an equivalence of carriers; SIP doesn't apply.
- In fact, BatchedQueues don't even satisfy Queue axioms, e.g., enqueue,dequeue commute on non-empty Queues.

Quotienting BatchedQueues

A Relational SIP

Because R : ListQueue \rightarrow BatchedQueue \rightarrow Type is one-to-many, we can improve it to a (structured) equivalence by quotienting only BatchedQueue.

In general, *R* is many-to-many. In fact, there may be no (non-HIT) "normal form" representation at all, e.g., finite multisets over a type with no ordering.

Plan: Improve *R* to a structured equivalence by quotienting both sides. (When possible?)

Quasi-equivalence relations

A relation $R : A \rightarrow B \rightarrow$ Type is zigzag-complete if $R \times y \rightarrow R \times' y \rightarrow R \times' y' \rightarrow R \times y'$. [Tennent and Takeyama 1996; Hofmann 2008; Krishnaswami and Dreyer 2013]

- Graphs of functions are always zigzag-complete.
- Analogue of "symmetry" and "transitivity" for a heterogeneous relation.

Definition: A relation $R : A \rightarrow B \rightarrow \text{Type}$ is a QER if it's

- zigzag-complete,
- h-prop-valued,
- $(x:A) \rightarrow || \Sigma[y \in B] R x y ||,$
- $(y:B) \rightarrow || \Sigma[x \in A] R x y ||.$

Lemma: Define $R^{\leftarrow} : A \to A \to \text{Type}$ by $R^{\leftarrow} x x' = || \Sigma[y \in B] R x y \times R x' y ||$. Then $R^{\leftarrow}, R^{\rightarrow}$ are h-prop-valued equivalence relations $\iff R$ is a QER. **Lemma:** Given a QER $R : A \rightarrow B \rightarrow \text{Type}, f : A / R^{\leftarrow} \simeq B / R^{\rightarrow}$ where $(f [x] \equiv [y]) \simeq R x y$. (Proof uses effectivity of quotients.)

Question to audience: Have you seen this somewhere else?

When does a structured relation turn into a structured equivalence?

Definitions:

- Given $A, B : \Sigma[X \in \mathsf{Type}] (S X)$ and $R : \mathsf{fst} A \to \mathsf{fst} B \to \mathsf{Type}$, define a notion of *S*-structured relation $\rho A B R$.
- *ρ* is univalent if some technical conditions hold ("suitable") and it is univalent as a notion of structured *equivalence* on the graphs of equivalences.

Theorem: The natural notion of *S*-structured relation is univalent for:

 $S X, T X := P X | S X \times T X | P X \rightarrow S X | Maybe (S X)$ $P X, Q X := X | \alpha | P X \times Q X | Maybe (P X)$

(Caveats: excludes $\lambda X \rightarrow (X \rightarrow X) \rightarrow X$, and α must be an h-set!)

As before, we use reflection to match this grammar.

Definition: A notion of *S*-structuredness ρ is suitable if the following hold:

- S sends h-sets to h-sets and ρ on h-prop-valued relations is an h-prop.
- If $\rho A B R$ then $\rho B A R^{-1}$.
- If $\rho A B R$ and $\rho B C R'$ then $\rho A C (R \cdot R')$.
- If *R* is an *S*-structured h-prop-valued equivalence relation on (X, s), there is a unique *S*-structure \overline{s} on *X* / *R* for which the graph of $[_] : X \to X / R$ is an *S*-structured relation between (X, s) and $(X / R, \overline{s})$.

Given S-structures (X, s), (Y, t) and a suitably S-structured QER $R : X \to Y \to \mathsf{Type}$,

Given S-structures (X, s), (Y, t) and a suitably S-structured QER $R : X \to Y \to \mathsf{Type}$,

Corollary (Relational SIP): S-structured QERs between A, B induce S-structures $A / R^{\leftarrow} \equiv_{\Sigma[X \in \mathsf{Type}](S X)} B / R^{\rightarrow}$.

Proof transfer for multisets

Given A, B : $\Sigma[X \in \mathsf{Type}]$ (Multiset X) and a QER R : fst A \rightarrow fst B \rightarrow Type, if:

- R A.empty B.empty
- $\forall x xs ys \rightarrow R xs ys \rightarrow R$ (A.insert x xs) (B.insert x ys)
- $\forall xs ys xs' ys' \rightarrow R xs ys \rightarrow R xs' ys' \rightarrow R$ (A.union xs xs') (B.union ys ys')
- $\forall x \ xs \ ys \rightarrow R \ xs \ ys \rightarrow A.count \ x \ xs \equiv B.count \ x \ ys$

Then we immediately obtain equal multiset structures on (fst A) / R^{\leftarrow} and (fst B) / R^{\rightarrow} .

- It's nice to transfer results between structures!
- By the SIP, structured equivalences are equalities of structures. (Currently used in the library's development of Z-cohomology!)
- We establish conditions under which structured relations can be improved to structured equivalences.

All formalized in Cubical Agda: git.io/JL5x8.