
Computational semantics of
Cartesian cubical type theory

Carlo Angiuli
joint work with Favonia

and Robert Harper

Carnegie Mellon University

HoTTEST, March 15, 2018

1

Problem

Suppose I want to define a type theory for reasoning about
{homotopy types, ∞-categories, smooth ∞-groupoids,
non-terminating programs, probabilistic programs . . . }.

What rules should I include?

Obvious answer: whatever holds in the intended models.

2

Problem

Suppose I want to define a type theory for reasoning about
{homotopy types, ∞-categories, smooth ∞-groupoids,
non-terminating programs, probabilistic programs . . . }.

What rules should I include?

Obvious answer: whatever holds in the intended models.

2

Problem

In the HoTT Book,

Γ ` a : 1

Γ ` a ≡ ? : 1
1-eta 7

Γ, x : I ` P type
Γ ` b0 : P [0I/x]
Γ ` b1 : P [1I/x]

Γ ` s : b0 =P
seg b1

Γ ` indI(x.P, b0, b1, s,0I) ≡ b0 : P [0I/x]
I-comp-z 3

...

Γ ` apdλy.indI(x.P,b0,b1,s,y)(seg) ≡ s : b0 =P
seg b1

I-comp-s 7

3

Problem

We might want. . .

I terms to have unique types.

I judgments (especially ≡) to be decidable.

I existence property:
if · ` p : (n:nat)×P (n), there is a numeral n such that P (n).

I canonicity property:
if · ` b : bool, b computes to true or false.

These are all inherently questions of rules and syntax!

All, in practice, require models in which proofs are computations.

4

Problem

These properties are important in practice.

Brunerie successfully showed π4(S3) is Z/kZ
where · ` k : nat (14 pages, 2013).

In his PhD thesis (129 pages, 2016), showed k = 2.

In a computational semantics, k just evaluates to 2!

5

Overview

When designing a TT, consider its computational semantics!

I Computational semantics of MLTT.

I Cartesian cubical TT and its computational semantics.

6

Computational semantics

7

Computational semantics

Canonicity only holds for closed terms.

b : bool ` b : bool

f : bool→ bool ` f(true) : bool

x : bool, f : (bool× bool)→ bool ` f 〈x, true〉 : bool

Can characterize neutral open terms using a generalization of the
tools I discuss; I will focus on properties of closed terms.

8

Computational semantics

Build a model in which closed terms are regarded as programs.

I Define programming language and operational semantics.

I Define a notion of equality at each type.

I Check this is compatible with desired rules.

9

Operational semantics

Define syntax of preterms (modulo α-equivalence only).
Includes both “terms” and “types.”

Term := (a:A)→ B | λa.M | app(M,N)

| (a:A)×B | 〈M,N〉 | fst(M) | snd(M)

| IdA(M,N) | reflM | Ja.b.p.C(M ; a.R)

| bool | true | false | if b.A(M ;T, F) | · · ·

Each closed term computes to a value.

10

Operational semantics

− val : Term→ Prop

− 7−→ − : Term→ Term→ Prop

− ⇓ − : Term→ Val→ Prop

(a:A)→ B val λa.M val

M 7−→M ′

app(M,N) 7−→ app(M ′, N)

app(λa.M,N) 7−→M [N/a] bool val true val false val

M 7−→M ′

if b.A(M ;T, F) 7−→ if b.A(M
′;T, F) if b.A(true;T, F) 7−→ T

if b.A(false;T, F) 7−→ F

11

Booleans

The meanings of non-values are determined by their values.

Definition

I M ∈ bool if M ⇓ true or M ⇓ false.

I M
.
=N ∈ bool if M,N ⇓ true or M,N ⇓ false.

Definition

I M ∈ bool iff M
.
=M ∈ bool.

I M
.
=N ∈ bool iff JboolK⇓(M,N), where

JboolK = {(true, true), (false, false)}.

12

Booleans

The meanings of non-values are determined by their values.

Definition

I M ∈ bool if M ⇓ true or M ⇓ false.

I M
.
=N ∈ bool if M,N ⇓ true or M,N ⇓ false.

Definition

I M ∈ bool iff M
.
=M ∈ bool.

I M
.
=N ∈ bool iff JboolK⇓(M,N), where

JboolK = {(true, true), (false, false)}.

12

Booleans

The meanings of non-values are determined by their values.

Definition

I M ∈ bool if M ⇓ true or M ⇓ false.

I M
.
=N ∈ bool if M,N ⇓ true or M,N ⇓ false.

Definition

I M ∈ bool iff M
.
=M ∈ bool.

I M
.
=N ∈ bool iff JboolK⇓(M,N), where

JboolK = {(true, true), (false, false)}.

12

Partial equivalence relations

JboolK : Val→ Val→ Prop is a partial equivalence relation:
a symmetric and transitive relation.

Equivalently, a subset of Val, and an equivalence relation.

Why not just quotient, and say types are sets of values?
Because rules of TT range over terms, not equivalence classes.

13

Partial equivalence relations

JboolK : Val→ Val→ Prop is a partial equivalence relation:
a symmetric and transitive relation.

Equivalently, a subset of Val, and an equivalence relation.

Why not just quotient, and say types are sets of values?
Because rules of TT range over terms, not equivalence classes.

13

Function types

The meanings of open terms are determined by their behavior as
maps from closed terms to closed terms.

Definition
Given JAK and JBK, define JA→ BK(λa.N1, λa.N2) when
P 7→ Ni[P/a] are equal as functions from JAK⇓ to JBK⇓:
they send equal elements of A to equal elements of B.

The meanings of compound types are determined by the meanings
of their constituent types.

14

Function types

The meanings of open terms are determined by their behavior as
maps from closed terms to closed terms.

Definition
Given JAK and JBK, define JA→ BK(λa.N1, λa.N2) when
P 7→ Ni[P/a] are equal as functions from JAK⇓ to JBK⇓:
they send equal elements of A to equal elements of B.

The meanings of compound types are determined by the meanings
of their constituent types.

14

Type systems

MLTT has five judgments:

Γ ctx

Γ ` A type

Γ ` A ≡ B type

Γ `M : A

Γ `M ≡ N : A

In the computational semantics, we reduce open judgments to
closed judgments, membership judgments to equality judgments. . .

15

Type systems

A
.
=B type

M
.
=N ∈ A

. . . and judgments on non-values to judgments on values.

Definition
τ : Val→ Val→ (Val→ Val→ Prop)→ Prop
is a (semantic) type system if it is

I functional: τ(A0, B0, ϕ) ∧ τ(A0, B0, ϕ
′) =⇒ (ϕ = ϕ′);

I symmetric: τ(A0, B0, ϕ) =⇒ τ(B0, A0, ϕ
′);

I transitive: τ(A0, B0, ϕ) ∧ τ(B0, C0, ϕ
′) =⇒ τ(A0, C0, ϕ

′′);

I PER-valued: τ(A0, B0, ϕ) =⇒ (ϕ is a PER).

16

Type systems

A
.
=B type

M
.
=N ∈ A

. . . and judgments on non-values to judgments on values.

Definition
τ : Val→ Val→ (Val→ Val→ Prop)→ Prop
is a (semantic) type system if it is

I functional: τ(A0, B0, ϕ) ∧ τ(A0, B0, ϕ
′) =⇒ (ϕ = ϕ′);

I symmetric: τ(A0, B0, ϕ) =⇒ τ(B0, A0, ϕ
′);

I transitive: τ(A0, B0, ϕ) ∧ τ(B0, C0, ϕ
′) =⇒ τ(A0, C0, ϕ

′′);

I PER-valued: τ(A0, B0, ϕ) =⇒ (ϕ is a PER).

16

Type systems

We can define all the semantic judgments relative to any τ .

Definition
τ |= (A

.
=B type) when τ⇓(A,B,ϕ).

In this case, let JAK = JBK = ϕ.

Definition
τ |= (M

.
=N ∈ A), presupposing τ |= (A type), when

JAK⇓(M,N).

17

Type systems

Define open judgments by induction on the length of the context.

Definition
τ |= (a :A� B

.
= C type), presupposing τ |= (A type), when

for all M,M ′ such that τ |= (M
.
=M ′ ∈ A),

τ |= (B[M/a]
.
= C[M ′/a] type).

Definition
τ |= (a :A� N

.
=N ′ ∈ B), presupposing τ |= (a :A� B type),

when for all M,M ′ such that τ |= (M
.
=M ′ ∈ A),

τ |= (N [M/a]
.
=N ′[M ′/a] ∈ B[M/a]).

18

Type systems

Define open judgments by induction on the length of the context.

Definition
τ |= (a :A� B

.
= C type), presupposing τ |= (A type), when

for all M,M ′ such that τ |= (M
.
=M ′ ∈ A),

τ |= (B[M/a]
.
= C[M ′/a] type).

Definition
τ |= (a :A� N

.
=N ′ ∈ B), presupposing τ |= (a :A� B type),

when for all M,M ′ such that τ |= (M
.
=M ′ ∈ A),

τ |= (N [M/a]
.
=N ′[M ′/a] ∈ B[M/a]).

18

Type systems

Define τ as the least relation such that:

τ(bool,bool, ϕ) when ϕ = {(true, true), (false, false)}.

τ((a:A)→ B, (a:A′)→ B′, ϕ) when

I τ |= (A
.
=A′ type),

I τ |= (a :A� B
.
=B′ type), and

I ϕ(λa.M, λa.M ′) when τ |= (a :A�M
.
=M ′ ∈ B).

19

Type systems

Define τ as the least relation such that:

τ((a:A)×B, (a:A′)×B′, ϕ) when

I τ |= (A
.
=A′ type),

I τ |= (a :A� B
.
=B′ type), and

I ϕ(〈M,N〉, 〈M ′, N ′〉) when τ |= (M
.
=M ′ ∈ A) and

τ |= (N
.
=N ′ ∈ B[M/a]).

τ(IdA(M,N), IdA′(M ′, N ′), ϕ) when

I τ |= (A
.
=A′ type),

I τ |= (M
.
=M ′ ∈ A),

I τ |= (N
.
=N ′ ∈ A), and

I ϕ(reflM , reflN) when τ |= (M
.
=N ∈ A).

19

Canonicity

Theorem (Soundness)

If Γ ` A ≡ B type then Γ� A
.
=B type.

If Γ `M ≡ N : A then Γ�M
.
=N ∈ A.

Proof.
Check every rule! (Very long.)

20

Canonicity

Corollary (Canonicity property)

If · `M : bool then M ⇓ true or M ⇓ false.

Proof.
Then M ∈ bool. Unwinding definitions, JboolK⇓(M,M).
Therefore M ⇓M0 and JboolK(M0,M0).

Corollary (Consistency)

It is impossible that · `M : void.

Proof.
M ∈ void, so JvoidK⇓(M,M), but JvoidK(M0,M0) never.

21

Canonicity

Corollary (Canonicity property)

If · `M : bool then M ⇓ true or M ⇓ false.

Proof.
Then M ∈ bool. Unwinding definitions, JboolK⇓(M,M).
Therefore M ⇓M0 and JboolK(M0,M0).

Corollary (Consistency)

It is impossible that · `M : void.

Proof.
M ∈ void, so JvoidK⇓(M,M), but JvoidK(M0,M0) never.

21

Summary

This is a constructive (“logical relations”) model of types as
sets of evaluated programs, modulo semantic equality.

Depending on your aims, this may even be the intended model
(e.g., for program extraction).

For better or for worse, it’s not the initial model.

22

Summary

This is a constructive (“logical relations”) model of types as
sets of evaluated programs, modulo semantic equality.

Depending on your aims, this may even be the intended model
(e.g., for program extraction).

For better or for worse, it’s not the initial model.

22

Summary

Γ� a ∈ unit

Γ� a
.
= ? ∈ unit

eta 3
Γ, a : void� J

eta 3

Γ� P ∈ IdA(M,N)

Γ�M
.
=N ∈ A

refl 3
M ⇓ true

M ∈ bool
comp 3

23

Extending the model?

Suppose, for the sake of argument, we want:

Γ ` A type Γ ` B type

Γ ` ua(· · ·) : IdU (A×B,B ×A)

Computational justification of J was that every closed element of
Id will be refl. This rule is nonsense!

24

Extending the model?

Suppose, for the sake of argument, we want:

Γ ` A type Γ ` B type

Γ ` ua(· · ·) : IdU (A×B,B ×A)

Computational justification of J was that every closed element of
Id will be refl. This rule is nonsense!

24

The end

25

Cubical type theory

26

Judgmental paths

Need to equip JAK directly with path structure (and composition
structure), then define JIdA(M,N)K and J in terms of those.

27

Judgmental paths

Licata and Harper, Canonicity for 2-Dimensional Type Theory
(2012): Define a judgment for path elements of A.

· ` A type means JAK is a 1-groupoid.

· `M : A means M is an object of JAK.

· ` P : M 'A N means P is a morphism in JAK from M to N .

Groupoid structure is axiomatized directly:

Γ `M : A

Γ ` reflM : M 'A N
Γ ` P : M 'A N

Γ ` P−1 : N 'A M
· · ·

28

Judgmental paths

Bezem, Coquand, Huber, A model of type theory in cubical sets
(2014): Constructive cubical set model, uniform Kan condition.

Direct inspiration for both Cohen, Coquand, Huber, Mörtberg,
Cubical Type Theory: a constructive interpretation of the
univalence axiom (2016), and the present work.

Why cubes?

29

Cubical type theory

Rough idea: �n `M : A means M is an n-cube of A.

�n,

�1 ` P : A

· ` P : PathA(P0, P1)

Representables are closed under products: �n+1 = �n ×�1.

In contrast, ∆n+1 6= ∆n ×∆1.

30

Cubical type theory

Rough idea: �n `M : A means M is an n-cube of A.

�n,�1 ` P : A

�n ` P : PathA(P0, P1)

Representables are closed under products: �n+1 = �n ×�1.

In contrast, ∆n+1 6= ∆n ×∆1.

30

Cubical type theory

Rough idea: �n `M : A means M is an n-cube of A.

�n,�1 ` P : A

�n ` P : PathA(P0, P1)

Representables are closed under products: �n+1 = �n ×�1.

In contrast, ∆n+1 6= ∆n ×∆1.

30

Cubical type theory

Rough idea: �n `M : A means M is an n-cube of A.

�n+1 ` P : A

�n ` P : PathA(P0, P1)

Representables are closed under products: �n+1 = �n ×�1.

In contrast, ∆n+1 6= ∆n ×∆1.

30

Cubical type theory

x : I, y : I `M is a square parametrized by two dimension variables.

We can take degeneracies by weakening by z : I.

We can take faces by instantiating x, y at 0, 1.

We can take diagonals by substituting x for y.

x

y

•

•

•

•

M〈0/x〉

〈0/y〉 = M〈0/y〉〈0/x〉

31

Cubical type theory

x : I, y : I `M is a square parametrized by two dimension variables.

We can take degeneracies by weakening by z : I.

We can take faces by instantiating x, y at 0, 1.

We can take diagonals by substituting x for y.

x

y

•

•

•

•

M〈0/x〉

〈0/y〉 = M〈0/y〉〈0/x〉

31

Cubical type theory

x : I, y : I `M is a square parametrized by two dimension variables.

We can take degeneracies by weakening by z : I.

We can take faces by instantiating x, y at 0, 1.

We can take diagonals by substituting x for y.

x

y

•

•

•

•

M〈0/x〉

〈0/y〉 =

M〈0/y〉

〈0/x〉

31

Cubical type theory

x : I, y : I `M is a square parametrized by two dimension variables.

We can take degeneracies by weakening by z : I.

We can take faces by instantiating x, y at 0, 1.

We can take diagonals by substituting x for y.

x

y

•

•

•

•

M〈0/x〉〈0/y〉 = M〈0/y〉〈0/x〉

31

Cubical type theory

x : I, y : I `M is a square parametrized by two dimension variables.

We can take degeneracies by weakening by z : I.

We can take faces by instantiating x, y at 0, 1.

We can take diagonals by substituting x for y.

x

y

•

•

•

•

M〈0/x〉〈0/y〉 = M〈0/y〉〈0/x〉

31

Cubical type theory

CCHM consider a full De Morgan algebra with also

I connections M〈(x ∧ y)/x〉, M〈(x ∨ y)/x〉, and

I reversals M〈(1− x)/x〉.

We have only permutations, faces, degeneracies, and diagonals:
free finite-product category on 1⇒ I.

32

Cartesian cubical computational type theory

33

Cubical programs

Define a cubical programming language.

loop0
.
=

base base

.
= loop1

loopx

base val loopx val

loop0 7−→ base loop1 7−→ base

34

Cubical programs

Define a cubical programming language.

loop0
.
= base base

.
= loop1

loopx

base val loopx val loop0 7−→ base loop1 7−→ base

34

Cubical computational semantics

Build a model in which closed terms are regarded as programs.

I Define a cubical programming language.

I Types are interpreted as Cartesian cubical sets* of values.

Can’t consider only dimensionally-closed (0-dimensional) terms:
then you wouldn’t be able to tell loopx and base apart!

35

Cubical computational semantics

Build a model in which closed terms are regarded as programs.

I Define a cubical programming language.

I Types are interpreted as Cartesian cubical sets* of values.

Can’t consider only dimensionally-closed (0-dimensional) terms:
then you wouldn’t be able to tell loopx and base apart!

35

Cubical computational semantics

Essentially, for every dimension context Ψ = {x, y, . . . }, a type
specifies a PER of its |Ψ|-dimensional values.

I JS1KΨ(base,base) for all Ψ,

I JS1K(Ψ,x)(loopx, loopx) for all Ψ,

I (and compositions, inverses, . . .)

Functorial action is dimension substitution then evaluation:

〈0/x〉 : Ψ→ (Ψ, x)

〈0/x〉 : JS1K(Ψ,x) → JS1KΨ

(loopx)〈0/x〉 = loop0 ⇓ base

For each type, must verify this is functorial (up to the PER)!

36

Cubical computational semantics

A×B B ×A
uax(· · ·)

Types are “dependent cubical sets” (C/Ψ)op → Set.

{x} ∅

〈1/x〉

〈0/x〉

Jua(· · ·)Kx

JA×BK∅〈0/x〉

JB ×AK∅〈1/x〉

37

Cubical computational semantics

A×B B ×A
uax(· · ·)

Types are “dependent cubical sets” (C/Ψ)op → Set.

{x} ∅

〈1/x〉

〈0/x〉

Jua(· · ·)Kx
JA×BK∅〈0/x〉

JB ×AK∅〈1/x〉

37

Cubical computational semantics

A×B B ×A
uax(· · ·)

Types are “dependent cubical sets” (C/Ψ)op → Set.

{x} ∅

〈1/x〉

〈0/x〉

Jua(· · ·)Kx
JA×BK∅〈0/x〉

JB ×AK∅〈1/x〉

37

Cubical computational semantics

A×B B ×A
uax(· · ·)

Types are “dependent cubical sets” (C/Ψ)op → Set.

{x} ∅

〈1/x〉

〈0/x〉

Jua(· · ·)Kx
JA×BK∅〈0/x〉

JB ×AK∅〈1/x〉

37

Cubical computational semantics

Definition
τ : DimCtx→ Val→ Val→ (Val→ Val→ Prop)→ Prop
is a (semantic) cubical type system if it is functional, symmetric,
transitive, PER-valued, and Ψ 7→ {(A0, B0) | τ(Ψ, A0, B0, ϕ)}
forms a cubical set.

A
.
=B typepre [Ψ]

M
.
=N ∈ A [Ψ]

Definition
τ |= (A

.
=B typepre [Ψ]) when τ⇓(Ψ, A,B, ϕ)???

38

Cubical computational semantics

Must be closed under both evaluation and dimension substitution.

M ∈ A [Ψ] M ⇓M0

M0 ∈ A [Ψ]

M ∈ A [Ψ] ψ : Ψ′ → Ψ

Mψ ∈ Aψ [Ψ′]

Must require that each instance of M evaluates to an element of
JAK, and coherently.

39

Cubical computational semantics

Definition
τ |= (A typepre [Ψ]) when for all Ψ2

ψ2−→ Ψ1
ψ1−→ Ψ,

Aψ1 ⇓ A1 and τ⇓(Ψ2, Aψ1ψ2, A1ψ2, ϕ).

Let JAKψ := ϕ for each Ψ′
ψ−→ Ψ, where τ⇓(Ψ′, Aψ,Aψ, ϕ).

Definition
τ |= (M ∈ A [Ψ]) when for all Ψ2

ψ2−→ Ψ1
ψ1−→ Ψ,

Mψ1 ⇓M1 and JAKψ1ψ2(Mψ1ψ2,M1ψ2).

40

Cubical computational semantics

Open judgments:

Definition
a :A� B

.
=B′ typepre [Ψ], presupposing A typepre [Ψ], when

for any ψ : Ψ′ → Ψ and N
.
=N ′ ∈ Aψ [Ψ′],

Bψ[N/a]
.
=B′ψ[N ′/a] typepre [Ψ′].

Definition
a :A�M

.
=M ′ ∈ B [Ψ], presupposing a :A� B typepre [Ψ],

when for any ψ : Ψ′ → Ψ and N
.
=N ′ ∈ Aψ [Ψ′],

Mψ[N/a]
.
=M ′ψ[N ′/a] ∈ Bψ[N/a] [Ψ′].

41

Pi types

Many familiar principles hold at every dimension.

a :A� B typepre [Ψ]

(a:A)→ B typepre [Ψ]

a :A�M ∈ B [Ψ]

λa.M ∈ (a:A)→ B [Ψ]

M ∈ (a:A)→ B [Ψ] N ∈ A [Ψ]

app(M,N) ∈ B[N/a] [Ψ]

a :A�M ∈ B [Ψ] N ∈ A [Ψ]

app(λa.M,N)
.
=M [N/a] ∈ B[N/a] [Ψ]

42

Path types

A typepre [Ψ, x] P0 ∈ A〈0/x〉 [Ψ] P1 ∈ A〈1/x〉 [Ψ]

Pathx.A(P0, P1) typepre [Ψ]

M ∈ A [Ψ, x]

〈x〉M ∈ Pathx.A(M〈0/x〉,M〈1/x〉) [Ψ]

M ∈ Pathx.A(P0, P1) [Ψ]

M@r ∈ A〈r/x〉 [Ψ]

M ∈ Pathx.A(P0, P1) [Ψ]

M@ε
.
= Pε ∈ A〈ε/x〉 [Ψ]

M ∈ A [Ψ, x]

(〈x〉M)@r
.
=M〈r/x〉 ∈ A〈r/x〉 [Ψ]

43

Path types

A typepre [Ψ, x] P0 ∈ A〈0/x〉 [Ψ] P1 ∈ A〈1/x〉 [Ψ]

Pathx.A(P0, P1) typepre [Ψ]

M ∈ A [Ψ, x]

〈x〉M ∈ Pathx.A(M〈0/x〉,M〈1/x〉) [Ψ]

M ∈ Pathx.A(P0, P1) [Ψ]

M@r ∈ A〈r/x〉 [Ψ]

M ∈ Pathx.A(P0, P1) [Ψ]

M@ε
.
= Pε ∈ A〈ε/x〉 [Ψ]

M ∈ A [Ψ, x]

(〈x〉M)@r
.
=M〈r/x〉 ∈ A〈r/x〉 [Ψ]

43

Path types

A typepre [Ψ, x] P0 ∈ A〈0/x〉 [Ψ] P1 ∈ A〈1/x〉 [Ψ]

Pathx.A(P0, P1) typepre [Ψ]

M ∈ A [Ψ, x]

〈x〉M ∈ Pathx.A(M〈0/x〉,M〈1/x〉) [Ψ]

M ∈ Pathx.A(P0, P1) [Ψ]

M@r ∈ A〈r/x〉 [Ψ]

M ∈ Pathx.A(P0, P1) [Ψ]

M@ε
.
= Pε ∈ A〈ε/x〉 [Ψ]

M ∈ A [Ψ, x]

(〈x〉M)@r
.
=M〈r/x〉 ∈ A〈r/x〉 [Ψ]

43

Path types

A typepre [Ψ, x] P0 ∈ A〈0/x〉 [Ψ] P1 ∈ A〈1/x〉 [Ψ]

Pathx.A(P0, P1) typepre [Ψ]

M ∈ A [Ψ, x]

〈x〉M ∈ Pathx.A(M〈0/x〉,M〈1/x〉) [Ψ]

M ∈ Pathx.A(P0, P1) [Ψ]

M@r ∈ A〈r/x〉 [Ψ]

M ∈ Pathx.A(P0, P1) [Ψ]

M@ε
.
= Pε ∈ A〈ε/x〉 [Ψ]

M ∈ A [Ψ, x]

(〈x〉M)@r
.
=M〈r/x〉 ∈ A〈r/x〉 [Ψ]

43

Path types

A typepre [Ψ, x] P0 ∈ A〈0/x〉 [Ψ] P1 ∈ A〈1/x〉 [Ψ]

Pathx.A(P0, P1) typepre [Ψ]

M ∈ A [Ψ, x]

〈x〉M ∈ Pathx.A(M〈0/x〉,M〈1/x〉) [Ψ]

M ∈ Pathx.A(P0, P1) [Ψ]

M@r ∈ A〈r/x〉 [Ψ]

M ∈ Pathx.A(P0, P1) [Ψ]

M@ε
.
= Pε ∈ A〈ε/x〉 [Ψ]

M ∈ A [Ψ, x]

(〈x〉M)@r
.
=M〈r/x〉 ∈ A〈r/x〉 [Ψ]

43

Exact equality types

Can define exact equality types, with equality reflection.

A typepre [Ψ] M ∈ A [Ψ] N ∈ A [Ψ]

EqA(M,N) typepre [Ψ]

M
.
=N ∈ A [Ψ]

? ∈ EqA(M,N) [Ψ]

E ∈ EqA(M,N) [Ψ]

M
.
=N ∈ A [Ψ]

44

Univalence

Licata: univalence follows from Equiv(A,B)→ PathU (A,B),
provided transport applies the equivalence, up to a path.

M

app(F,M) N〈1/x〉

F

N

Vinx(M,N)
∈

A

B〈0/x〉 B〈1/x〉

F

B

Vx(A,B, 〈F, 〉)

(Special instance of CCHM “Glue” types.)

45

Kan operations

Speaking of transport. . .

Equip types with two Kan operations:

I Coercion (generalized transport)

I Homogeneous Kan composition (generalized box filling)

This is a structure, not a property, and must be stable under
dimension substitution.

We have multiple universe hierarchies, Upre
i and UKan

i .

46

Coercion

A typeKan [Ψ, x] M ∈ A〈r/x〉 [Ψ]

coer r
′

x.A (M) ∈ A〈r′/x〉 [Ψ]

coer rx.A (M)
.
=M ∈ A〈r/x〉 [Ψ]

A〈0/x〉 A〈1/x〉
A

M

∈

coe0 1
x.A (M)

∈

47

Coercion

A typeKan [Ψ, x] M ∈ A〈r/x〉 [Ψ]

coer r
′

x.A (M) ∈ A〈r′/x〉 [Ψ]

coer rx.A (M)
.
=M ∈ A〈r/x〉 [Ψ]

A〈0/x〉 A〈1/x〉
A

M

∈

coe0 1
x.A (M)

∈

47

Coercion

A typeKan [Ψ, x] M ∈ A〈r/x〉 [Ψ]

coer r
′

x.A (M) ∈ A〈r′/x〉 [Ψ]

coer rx.A (M)
.
=M ∈ A〈r/x〉 [Ψ]

A〈0/x〉 A〈1/x〉
A

M

∈

coe0 1
x.A (M)

∈

coe0 x
x.A (M)

∈

47

Coercion

A typeKan [Ψ, x] M ∈ A〈r/x〉 [Ψ]

coer r
′

x.A (M) ∈ A〈r′/x〉 [Ψ]
coer rx.A (M)

.
=M ∈ A〈r/x〉 [Ψ]

A〈0/x〉 A〈1/x〉
A

M

∈

coe0 1
x.A (M)

∈

coe0 x
x.A (M)

∈

47

Coercion

Generalizes transport in a type family: if

B ∈ A→ U [Ψ]

P ∈ Path .A(P0, P1) [Ψ]

M ∈ app(B,P0) [Ψ]

then

coe0 1
x.app(B,P@x)(M) ∈ app(B,P1) [Ψ].

48

Homogeneous Kan composition

Homogeneous: the type remains constant, unlike in coercion.

y
x ·

N0〈1/y〉

·

N1〈1/y〉

N0 N1

M

hcom0 1
A (M ;x = 0 ↪→ y.N0, x = 1 ↪→ y.N1)

Given compatible faces of an (x, y)-square:

I at y = 0, M

I at x = 0, N0

I at x = 1, N1

we obtain the y = 1 face.

49

Homogeneous Kan composition

Homogeneous: the type remains constant, unlike in coercion.

y
x ·

N0〈1/y〉

·

N1〈1/y〉

N0 N1

M

hcom0 1
A (M ;x = 0 ↪→ y.N0, x = 1 ↪→ y.N1)

Given compatible faces of an (x, y)-square:

I at y = 0, M

I at x = 0, N0

I at x = 1, N1

we obtain the y = 1 face.

49

Homogeneous Kan composition

Homogeneous: the type remains constant, unlike in coercion.

y
x ·

N0〈1/y〉

·

N1〈1/y〉

N0 N1

M

hcom0 1
A (M ;x = 0 ↪→ y.N0, x = 1 ↪→ y.N1)

Given compatible faces of an (x, y)-square:

I at y = 0, M

I at x = 0, N0

I at x = 1, N1

we obtain the y = 1 face.

49

Homogeneous Kan composition

Homogeneous: the type remains constant, unlike in coercion.

y
x ·

N0〈1/y〉

·

N1〈1/y〉

N0 N1

M

hcom0 1
A (M ;x = 0 ↪→ y.N0, x = 1 ↪→ y.N1)

Given compatible faces of an (x, y)-square:

I at y = 0, M

I at x = 0, N0

I at x = 1, N1

we obtain the y = 1 face.

49

Homogeneous Kan composition

Homogeneous: the type remains constant, unlike in coercion.

y
x ·

N0〈1/y〉

·

N1〈1/y〉

N0 N1

M

hcom0 1
A (M ;x = 0 ↪→ y.N0, x = 1 ↪→ y.N1)

Given compatible faces of an (x, y)-square:

I at y = 0, M

I at x = 0, N0

I at x = 1, N1

we obtain the y = 1 face.

49

Homogeneous Kan composition

I Need not provide all (2n− 1) other sides of the n-cube.

I Can also attach along diagonal maps. (Crucial!)

zy

x ·

·

·

·

·

·

·

·

50

Homogeneous Kan composition

I Need not provide all (2n− 1) other sides of the n-cube.

I Can also attach along diagonal maps. (Crucial!)

zy

x ·

·

·

·

·

·

·

·

50

Homogeneous Kan composition

I Composing to a diagonal (y from 0 z) yields the filler.

I As with coercion, composition r r must be identity.

zy

x ·

·

·

·

·

·

·

·

N0 N1

M

51

Homogeneous Kan composition

I Composing to a diagonal (y from 0 z) yields the filler.

I As with coercion, composition r r must be identity.

zy

x ·

·

·

·

·

·

·

·

51

Homogeneous Kan composition

I Composing to a diagonal (y from 0 z) yields the filler.

I As with coercion, composition r r must be identity.

zy

x ·

·

·

·

·

·

·

·

51

Kan operations

Implement at every type, using operations of constituent types.

hcomr r′
(a:A)→B(M ;

−−−−−−⇀
ξi ↪→ y.Ni) 7−→

λa.hcomr r′
B (app(M,a);

−−−−−−−−−−−−−⇀
ξi ↪→ y.app(Ni, a))

coer r
′

x.(a:A)→B(M) 7−→

λa.coer r
′

x.B[coer
′ x

x.A (a)/a]
(app(M, coer

′ r
x.A (a)))

hcomr r′
Pathx.A(P0,P1)(M ;

−−−−−−⇀
ξi ↪→ y.Ni) 7−→

〈x〉hcomr r′
A (M@x;

−−−−−−−−−⇀
x = ε ↪→ .Pε,

−−−−−−−−−⇀
ξi ↪→ y.Ni@x)

coer r
′

y.Pathx.A(P0,P1)(M) 7−→

〈x〉comr r′
y.A (M@x;

−−−−−−−−−⇀
x = ε ↪→ y.Pε)

52

Kan operations

Equip HITs and universe with free Kan composition structure.

What are the elements and Kan operations of compositions of
types? (Very involved.)

coe1 0
y.B0

(N0) coe1 0
y.B1

(N1)

N0 N1

M

∈

· ·

B0〈1/y〉 B1〈1/y〉

A

B0 B1

53

Kan operations

This is where the “diagonal cofibrations” are needed.

hcomr r′

hcoms s′
U (A;···)(M ; · · ·) 7−→

· · ·hcoms s′
A (· · · ; r = r′ ↪→ · · ·) · · ·

Need hcomr r′
A (M ; · · ·) when s = s′, and M when r = r′.

54

Kan operations

Weak J can be defined for the Path type using hcom and coe.

Separately, an Id indexed higher inductive type, generated by refl,
satisfies strict J. (Cavallo, Harper, arXiv:1801.01568)

55

Summary

A cubical type theory, based on Cartesian (not De Morgan) cubes,
whose terms are programs, satisfying canonicity.

I Cartesian cubes suffice!

I A computational model of Book HoTT.

I A “two-level” type theory (à la HTS) with both paths and
exact equality. Some equality types are fibrant!

56

Implementations

By design, suitable for implementation! Two in progress:
I RedPRL proof assistant (redprl.org)

I Proofs of full univalence, J, groupoid laws. . .
I Definition of semi-simplicial types

I yacctt type-checker (Angiuli, Mörtberg)

57

redprl.org

References

Angiuli, Favonia, Harper. Cartesian Cubical Computational Type
Theory: A Constructive Formulation of Two-Level Type Theory.
Preprint.

Angiuli, Favonia, Harper. Computational Higher Type Theory III:
Univalent Universes and Exact Equality. arXiv:1712.01800.

Angiuli, Brunerie, Coquand, Favonia, Harper, Licata. Cartesian
Cubical Type Theory. Preprint.

http://www.cs.cmu.edu/~cangiuli/

58

http://www.cs.cmu.edu/~cangiuli/

	Computational semantics
	The end
	Cubical type theory
	Cartesian cubical computational type theory

