Descent \& Univalence

Mathieu Anel
Carnegie Mellon University

HoTTEST seminar
May 2, 2019

Abstract

The purpose of the talk is to explain the connection between the notion of descent, characteristic of ∞-topoi, and the notion of univalence, characteristic of HoTT .

Both of them being properties of the universe of a category with finite limits.

PLAN

I. Univalence
II. Descent
III. Logos theory
IV. Problems with ω and elementary higher topoi

Sizes

$\omega=$ countable cardinal
I need three inaccessible cardinals $\gamma>\beta>\alpha \geq \omega$

Cardinal	ω	α	β	γ
Size	finite	small	normal	large
Cat. of sets	set	Set	SET	-
Cat. of groupoids	gpd	Gpd	GPD	-
Cat. of categories	cat	Cat	CAT	-

By default a category is assumed to be of normal size, i.e. β-small.

$$
-1-
$$

Univalence

The universe of a lex category

I am going to start by some considerations of 1-category theory.

The universe of a lex category

Let C be a (normal) 1-category.
If C is lex (=has finite limits), there exists a (pseudo-)functor

$$
\begin{aligned}
U: C^{o p} & \longrightarrow C A T \\
X & \longmapsto C_{/ X}=\{Y \stackrel{r}{\longrightarrow} X\} \\
f: X \rightarrow Y & \longmapsto f^{*}: C_{/ Y} \rightarrow C_{/ X}
\end{aligned}
$$

A map $Y \rightarrow X$ is thought as a family of objects of C parametrized by X.

Intuitively, \mathbb{U} classifies families of objects in C and all morphisms between them.

The universe of a lex category

The inclusion of the category of groupoids in the category of categories has two adjoints:
the internal and external groupoids of a category.

(Remark: the internal groupoid is not natural with respect to non-invertible 2-arrows of CAT.)

The universe of a lex category

A variation of \mathbb{U} is the internal groupoid U of \mathbb{U} (its core)

$$
\begin{aligned}
U: C^{o p} & \longrightarrow C A T \xrightarrow{\text { int }} G P D \\
X & \longmapsto C_{/ X}^{(\text {core })}=\{Y \stackrel{r}{\longrightarrow} X \text { with only iso. as morphisms }\}
\end{aligned}
$$

Intuitively, U classifies families of objects in C and isomorphism between them.

I will call U the universe of C.

The universe of a lex category

As fibered categories over C,
\mathbb{U} correspond to the codomain fibration and
U to the subfibration of spanned by cartesian maps only

The universe of a lex category

The universe has a derivative

$$
\begin{aligned}
U^{\prime}: C^{o p} & \longrightarrow C A T \\
X & \longmapsto C X=\{Y \underset{r}{\stackrel{s}{\leftrightarrows}} X\}
\end{aligned}
$$

Intuitively, \mathbb{U}^{\prime} classifies families of pointed objects in C and all morphisms between them.

The second derivative $U^{\prime \prime}$ would classify families of bi-pointed objects in C, etc.

The universe of a lex category

We can also consider the core of \mathbb{U}^{\prime}

$$
\begin{aligned}
U^{\prime}: C^{o p} & \longrightarrow C A T \xrightarrow{\text { int }} G P D \\
X & \longmapsto C_{X}^{(\text {core })}=\{Y \underset{r}{s} X \text { with only iso. as morphisms }\}
\end{aligned}
$$

Intuitively, U^{\prime} classifies families of pointed objects in C and isomorphism between them.

I will call U^{\prime} the derived universe of C.

The universe of a lex category

Forgetting the section induces a natural transformation

$$
v: U^{\prime} \rightarrow U
$$

called the universal family.

The universe of a lex category

An Z object of C defines a functor

$$
\begin{aligned}
\hat{B}: C^{o p} & \longrightarrow S E T \\
X & \longmapsto[X, B] .
\end{aligned}
$$

C is not assumed locally small, so the values are normal sets.
Using the embedding SET $\rightarrow G P D$ one can view faithfully \hat{Z} as a functor

$$
\begin{aligned}
\hat{B}: C^{o p} & \longrightarrow G P D \\
X & \longmapsto[X, B] .
\end{aligned}
$$

The universe of a lex category

A map

$$
\chi_{f}: \hat{B} \rightarrow U
$$

in [$C^{o p}, G P D$], is the same thing as a map/family

$$
f: E \rightarrow B
$$

in C.
The correspondence between the two is given by the (pseudo-)pullback square in [$C^{O P}, G P D$]

The universe of a lex category

Proposition (Universal property of the universe)
For any map $f: E \rightarrow B$, there exists a unique (pseudo-)cartesian square in $\left[C^{\circ P}, G P D\right]$

(in particular, v is a representable natural transformation).

The universe of a lex category

$$
\begin{aligned}
& \left\{X \xrightarrow{s^{\prime}} E\right\} \longrightarrow\{Y \underset{r}{\stackrel{s}{\leftrightarrows}} X\} \\
& \downarrow{ }^{r} \quad \downarrow^{\text {forget section }} \\
& \{X \xrightarrow{u} B\} \longrightarrow{ }_{\chi_{f}}\{Y \xrightarrow{r} X\} \\
& \chi_{f}(X \xrightarrow{u} B)=E \times_{B} X \rightarrow X
\end{aligned}
$$

The universe of a lex category

Given two objects X and Y in C, there is a presheaf of isomorphisms

$$
\begin{aligned}
\text { Iso }(X, Y): C^{o p} & \longrightarrow S E T \\
Z \longmapsto & I_{\text {so }}(Z \times X, Z \times Y) \\
& =\left\{\text { iso. } Z \times X \simeq Z \times Y \text { in } C_{/ Z}\right\}
\end{aligned}
$$

This presheaf is representable if C is LCC (locally cartesian closed).

$$
\begin{aligned}
& \text { Iso }(X, Y) \longrightarrow \llbracket Y, X \rrbracket \times \llbracket X, Y \rrbracket \times \llbracket Y, X \rrbracket \\
& \quad \downarrow \\
& \quad \underset{\left(i_{Y}, i d_{X}\right)}{ } \quad \downarrow(h, f, g) \mapsto(h f, f g) \\
& 1
\end{aligned}
$$

The universe of a lex category

What is the fiber of the diagonal of U ?

$$
\Omega_{X, Y} U=?
$$

The universe of a lex category

Computation shows that we have

$$
\begin{aligned}
& \text { Iso }(X, Y) \longrightarrow U \\
& \downarrow \quad\ulcorner\downarrow \Delta \\
& 1 \xrightarrow[(X, Y)]{ } U \times U \text {. } \\
& \Omega_{X, Y} U=\underline{I s o}(X, Y)
\end{aligned}
$$

This says that, U is univalent. We shall come back to this.

The universe of a lex category

Recall that $\operatorname{Iso}(X, Y)$ is not assumed to be representable, but that it is if C is LCC.

In this case, we have a map

$$
\begin{aligned}
\text { Iso }: U \times U & \longrightarrow U \\
(X, Y) & \longmapsto I s o(X, Y)
\end{aligned}
$$

The universe of a lex category

The formula $\Omega_{X, Y} U=\underline{I s o}(X, Y)$ says that there exists a cartesian square

$$
\begin{gathered}
U \xrightarrow[r]{X \mapsto i d_{X} \in \operatorname{lso}(X, X)} U^{\prime} \\
\Delta \downarrow \\
U \times U \xrightarrow[(X, Y) \mapsto \operatorname{loso}(X, Y)]{ } \downarrow^{v}
\end{gathered}
$$

This is another formulation of the univalence of U when C is LCC.

The universe of a lex category

In category theory, the univalence of U is not a condition, it is an obvious property.

Before Voevodsky, this property was never even given a name.
This is why it is so difficult for algebraic topologists/geometers to understand the univalent axiom (it is too obvious to them, they use it implicitely all the time, they would find absurd a setting where it would not hold).

The universe of a lex category

The universe U and its derivative U^{\prime}

cannot be representable (in general) for two reasons:

1. their values are groupoids and not sets,
2. their values are too big (Russel paradox).

The universe of a lex category

It is possible to solve issue 1 by considering ∞-categories.
All we used so far was that C was a lex 1-category.
But the same construction works if C is a lex ∞-category.

From now on, C is going to be an $(\infty, 1)$-category (in particular, it can still be a 1-category).

The universe of a lex ∞-category

In an ∞-category, the functor of points of an object Z take values in ∞-groupoids

$$
\begin{aligned}
\hat{Z}: C^{o p} & \longrightarrow \infty-G P D \\
X & \longmapsto[X, Z]
\end{aligned}
$$

This is now homogenous with the universe (and its derivative)

$$
\begin{aligned}
U: C^{o p} & \longrightarrow \infty-C A T \xrightarrow{\text { int }} \infty-G P D \\
X & \longmapsto C_{/ X}^{(\text {core })}=\{Y \xrightarrow{r} X \text { and iso. }\}
\end{aligned}
$$

The universe of a lex ∞-category

The embedding 1-CAT $\subset \infty-C A T$ preserves lex categories.
There is no canonical way to transform a lex 1-category C into a non-trivial lex ∞-category D where the universe of C could be representable.

We have to work by hand to find such a D.
Example: $C=$ Set, $D=\infty-G P D$

The universe of a lex ∞-category

But there is still the size issue 2 .
This was handled by Voevodsky by introducing univalent maps.

The universe of a lex ∞-category

A map $E \rightarrow B$ in C is univalent if its characteristic map is a monomorphism in the arrow category of [$C^{o p}, \infty-G P D$]

$$
\begin{gathered}
\hat{E} \longrightarrow U^{\prime} \\
\hat{f} \downarrow^{r} \\
\hat{B} \underset{\chi_{f}}{ } \\
\downarrow^{v}
\end{gathered}
$$

I will call a representable subobject of U such a monomorphism $\hat{B} \rightarrow U$.

The universe of a lex ∞-category

Given a univalent map $E \rightarrow B$, we have a cartesian square

(This is true for any mono.)

The universe of a lex ∞-category

In particular, given to points of B

we have

$$
\Omega_{x, y} B=\Omega_{X, Y} U
$$

The universe of a lex ∞-category

From previous computations, we deduce

$$
\Omega_{x, y} B=\underline{I s o}(X, Y)
$$

This is another way to state the condition defining univalent maps $E \rightarrow B(X$ and Y are the fibers at x and $y)$.

In particular, Iso (X, Y) is representable.

The universe of a lex ∞-category

For any two points x and y in B, if $x=y$, then the corresponding fibers X and Y are isomorphic:

$$
\Omega_{x, y} B \quad \rightarrow \quad \underline{\text { Iso }}(X, Y)
$$

The univalence condition says that the reciprocal is true: if two fibers X and Y are isomorphic, then they have to be the same fiber at a same point $x=y$.

The universe of a lex ∞-category

Intuitively, a map $E \rightarrow B$ is univalent iff it contains each of its fiber only once.

This is trickier than it sounds:
a map of sets with a single fiber $E \rightarrow\{\star\}$ is not univalent!
There are more isomorphisms $E \simeq E$ than paths in $B=\{*\}$.

$$
\Omega B \rightarrow \underline{\operatorname{Iso}}(E, E) \quad=\quad 1 \xrightarrow{\neq} \operatorname{Aut}(E)
$$

The universe of a lex ∞-category

The only univalent maps in Set are

$$
\begin{aligned}
\varnothing & \rightarrow\{0\} \\
\{1\} & \rightarrow\{1\}
\end{aligned}
$$

and

$$
\{1\} \rightarrow\{0,1\} .
$$

The only univalent maps in a 1-topos are the submaps of

$$
1 \rightarrow \Omega
$$

(where Ω is the subobject classifier).

The universe of a lex ∞-category

More examples of univalent maps can be found in ∞-Gpd
Given a small ∞-groupoid E (for example a set), the group of symmetries $\operatorname{Aut}(E)$ acts on E. I denote by $E / / \operatorname{Aut}(E)$ be the (homotopy) quotient.
$\operatorname{Aut}(E)$ also acts on the point 1 . The quotient $1 / / \operatorname{Aut}(E)$ is the classifying groupoid BAut (E) of $\operatorname{Aut}(E)$.

The map $E \rightarrow 1$ is equivariant for the action of $\operatorname{Aut}(E)$ and induces a quotient map

$$
E / \operatorname{Aut}(E) \rightarrow \operatorname{BAut}(E)
$$

The universe of a lex ∞-category

The map

$$
E / \operatorname{Aut}(E) \rightarrow \operatorname{BAut}(E)
$$

is an example of a univalent maps (because $\Omega(\operatorname{BAut}(E))=\operatorname{Aut}(E)$).

Example: If $E=\{1, \ldots, n\}$, we get

$$
\{1, \ldots, n\} / \Sigma_{n} \rightarrow B\left(\Sigma_{n}\right)=B\left(\Sigma_{n-1}\right) \rightarrow B\left(\Sigma_{n}\right)
$$

The universe of a lex ∞-category

The previous size issue 2 can be handled by asking that the universe U, even though it cannot be representable, can be approximated by representable objects.

Definition (EUM)

A lex category C is said to have enough univalent maps (EUM) if U is the union of all its representable subobjects.

Counter-Examples: posets, Set, 1-topoi, truncated ∞-categories
Examples: 1, ∞-Gpd, [C, ∞-Gpd] (C locally small)

The universe of a lex ∞-category

Condition EUM says that for any map $X \rightarrow Y$, there exists a univalent map $E \rightarrow B$ and a cartesian square in C

Condition EUM implies also that $\operatorname{Iso}\left(X, X^{\prime}\right)$ is representable for any two objects of $C_{/ Y}$. (This is close but weaker than being LCC.)

The universe of a lex ∞-category

All this depends only on a lex category C.
I have not used the existence of colimits so far.
The interaction of the universe with colimits is the matter of descent.

We will see that the condition EUM needs to be improved when colimits are involved.

- II -

Descent

Descent

Let C be a lex category with α-small colimits (cc lex category).
Recall that I have assumed $\alpha \geq \omega$, so "small" can mean "finite".
I will work directly in the setting of ∞-categories (and therefore drop the ∞ prefix).

Descent

Definition

C is said to have descent if the (categorical) universe

send colimits to limits: for any diagram $X: I \rightarrow C$

$$
C_{/ \operatorname{colim}_{i} x_{i}}=\lim _{i} C_{/ X_{i}}
$$

(where the limit in the right hand side is a pseudo-limit in CAT).

Descent

The category $\lim _{i} C_{/ X_{i}}$ can be described as the category of cartesian diagrams over $X: I \rightarrow C$:

$$
\lim C_{/ X_{i}}=\left(C_{c a r t}^{l}\right)_{/ X}
$$

where $C_{\text {cart }}^{l}$ is the category of I-diagrams and cartesian morphisms.

Descent

For any diagram $X: I \rightarrow C$, we get an adjunction

$$
C_{/ \text {colim } X_{i}}^{\stackrel{\text { colim }_{/}}{\text {cst }_{l}}}\left(C_{\text {cart }}^{l}\right)_{/ X_{\bullet}}=\lim C_{/ X_{i}}
$$

where

$$
\operatorname{cst}_{l}(Y \rightarrow \operatorname{colim} X)_{i}=Y_{i}
$$

is defined by

Descent

The descent condition $C_{/ \operatorname{colim} X_{i}}=\lim _{i} C_{/ X}$ is the statement that the adjunction

$$
C_{/ \text {colim } X_{i}}^{\stackrel{\text { colim }_{/}}{\text {cst }} /}\left(C_{\text {cart }}^{\prime}\right)_{/ X_{0}}=\lim C_{/ X_{i}}
$$

is an equivalence.
Recall that an adjunction is an equivalence if both functors are fully faithful.

Descent

The descent condition decomposes into two conditions

1. Colimits are universal if, for all $X: I \rightarrow C, c s t_{l}$ is fully faithful ($=$ colim, is a localization): for all $Y \rightarrow \operatorname{colim} X_{i}$

$$
Y=\underset{i}{\operatorname{colim}}\left(Y \times_{\text {colim }} X_{i} X_{i}\right)
$$

(decomposition then recomposition condition)
2. Colimits are effective of, for all $X: I \rightarrow C$, colim/ is fully faithful: for all $E_{i} \rightarrow X_{i}$

$$
E_{i}=\left(\underset{i}{\operatorname{colim}} E_{i}\right) \times \times_{\operatorname{colim}_{i}} X_{i} X_{i}
$$

(composition then decomposition condition)

Descent

The condition of universality of colimits is an easy one, it is satisfied as soon as C is LCC.

The condition of effectivity of colimits is more difficult. We'll see below that the category Set does not have effective colimits.

The only 1-category satisfying it is $C=1$.

Descent

In the case of a sum, the effectivity condition says that in the diagram

the two squares are cartesian.
Again, this means intuitively that pushing out does not touch the fibers.

Together with universality, this gives the extensivity of sums

$$
C_{/ X_{1} \amalg X_{2}}=C_{/ X_{1}} \times C_{/ X_{2}} .
$$

Descent

In the case of a pushout, the effectivity condition says that, in the cube

if the back and left faces are cartesian, then so are the front and right faces.

Intuitively, this means that summing does not change the fibers.

Descent

Set does not satisfy descent: colimits are universal (Set is LCC) but not effective.

The fiber is everywhere two points.
But the fiber of the colimit map is a single point set.

Descent

$\infty-G p d$ does satisfy descent.
Recall the recipe to compute the colimit of a diagram $X: I \rightarrow \infty$-Gpd:

1. compute the category of elements $\int_{1} X$
2. take its external groupoid $\left(\int_{I} X\right)^{e x t}$

This is the colimit!
(In Set, the recipe would be to take connected components of $\int_{1} X$, which is also the π_{0} of the colimit $\left(\int_{I} X\right)^{e x t}$ in $\left.\infty-\mathrm{Gpd}\right)$.

Descent

In the case of the pushout

$$
\{x\} \longleftarrow\{a, b\} \longrightarrow\{y\}
$$

The category of elements is

and the colimit is the circle S^{1} in $\infty-G p d$.

Descent

In the case of the pushout

$$
\begin{aligned}
& \left\{\begin{array}{ll}
a & b^{\prime} \\
b & a^{\prime}
\end{array}\right\} \xrightarrow{p_{2}}\left\{\begin{array}{l}
y \\
y^{\prime}
\end{array}\right\} \\
& p_{1} \downarrow \\
& \left\{x, x^{\prime}\right\}
\end{aligned}
$$

The category of elements is

and the colimit is again a circle.

Descent

Let us come back to the previous example

Descent

The map between the colimits is the two-fold cover of the circle

The fiber is now the same as in the diagram: two points.

Descent

The descent condition for $S=\infty-G p d$ is

$$
S_{/ \text {colim } X_{i}}=\lim S_{/ X_{i}}
$$

If K is a groupoid and $X: K \rightarrow C$ is the constant diagram 1 , the descent condition is the homotopy Galois theorem (Toën, Shulman)

$$
S_{/ K}=S^{K}
$$

(where $\left.S^{K}=[K, S]\right)$.
If $K=B G$ is connected,

$$
S_{/ B G}=S^{B G}
$$

says that an action of G is the same thing as a space over $B G$.

Descent

In $S=\infty$-Gpd, descent is equivalent to the homotopy Galois theorem:

$$
S_{/ \text {colim } X_{i}}=S^{\text {colim } X_{i}}=\lim S^{X_{i}}=\lim S_{/ X_{i}} .
$$

In more general settings, descent is motivated by working equivariantly: if a group G acts on an object X, with quotient $X / / G$

$$
C_{/(X / / G)}=\{\text { actions of the groupoid } G \times X \rightrightarrows X \text { in } C\} .
$$

Other examples: $[C, S]$ (C locally small), lex localization of such...

Descent

The universe and univalent maps were defined using only finite limits in C.

The descent is a condition involving colimits in C.
More precisely descent is a property of compatibility between colimits and finite limits, akin to distributivity (we will see).

Descent

Definition
C is said to have core descent if the (core) universe

$$
\begin{aligned}
U: C^{o p} & \longrightarrow G P D \\
X & \longmapsto C_{/ X}^{(\text {core })}
\end{aligned}
$$

send colimits to limits: for any diagram $X: I \rightarrow C$

$$
C_{/ \text {colim }_{i} X_{i}}^{(\text {core })}=\lim _{i} C_{/ X_{i}}^{(\text {core })}
$$

Descent

Proposition

If C has universal colimits (e.g. C is LCC) and core descent, then it has descent.

Proof.
If

$$
\lim _{i} C_{/ X_{i}} \xrightarrow{\text { colim }} C_{/ \text {colim }_{i} x_{i}}
$$

is a localization, it is an equivalence iff it is conservative, but this is condition

$$
C_{/ \text {colim }_{i} X_{i}}^{(\text {core })}=\lim _{i} C_{/ X_{i}}^{(\text {core })}
$$

Descent

To connect univalence with descent, we need the following definition.

Recall that we fixed $\omega \leq \alpha<\beta$ and that a normal category is β-small.

Definition (EUM revisited)

A lex category C has α-enough univalent maps (α-EUM) if

1. U is the union of representable sub-universes, and
2. this union is α-filtered.

I don't know how to deduce this from condition EUM. (I think this is a mistake in the n-lab page on "elementary ∞-topoi", and in
N. Rasekh paper.)

Examples: $\infty-G p d, \infty$-topoi, $[C, \infty-G p d]$ (C locally small).

Descent

Proposition
A cc lex ∞-category has core descent iff it has α-EUM.

Proposition
A cc LCC ∞-category has descent iff it has α-EUM.

Descent

Summary

for a cc lex category

- III -

Logos theory

Logos theory

Definition

A cc lex ∞-category is called a (α-)logos if it has descent.
A morphism of logoi $f^{*}: \mathcal{E} \rightarrow \mathcal{F}$ is simply a cc lex functor.

Examples:

1. $S=\infty-G p d$
2. $[C, \infty-G p d]$ (C small but also locally small)
3. β-small colimits of $[C, \infty-G p d]$
4. free cocompletion $P(C)$ of a lex ∞-category

Logos theory

Definition

A Grothendieck logos is a logos which is (α-)presentable.

Let

$$
\text { PresLogos } \subset \text { Logos }
$$

be the subcategory of presentable logoi.
The opposite category of PresLogos is the category of ∞-topoi in the sense of Lurie's book

$$
\text { Topos }=\text { PresLogos }{ }^{o p} .
$$

Every logos is a β-small α-filtered colimit of Grothendieck logoi.

Logos theory

The notion of logos was introduced (with the presentability assumption) in Topo-logie (2019, Anel-Joyal) as the algebraic notion dual to the geometric notion of topos.

The motivation to introduce a more general notion are:

1. examples: gros topoi (don't need to be truncated anymore), Schulze pro-etale site...
2. the category Logos is better behaved than PresLogos,
3. a good structural analogy with commutative rings (presentable logoi are like finitely presented rings),
4. the general context of logoi is useful to encompass both Grothendieck and elementary topoi,
5. logos are higher analogs of pre-topoi.

Logos theory

But this comes at a price:

1. morphisms of logoi need not have a right adjoint
2. logoi need not be locally cartesian closed
3. logoi need not be locally small categories

Logos theory

A logos is a category with finite limits and small colimits.
We can forget these structures:

Logos theory

Here is a nice feature of the general notion of logos.

Theorem (A.)
For any $\alpha>\omega$, the previous functors have left adjoints

Moreover Logos is monadic over CAT.

Remark: The category of ω-logoi is not monadic over ∞-CAT (there is no free ω-logoi).

Logos theory

Analogy with commutative rings

Logos theory

And with frame theory

Logos theory

The free logos $S[C]$ on a category C is constructed by

1. completing C for finite limits $C^{l e x}$
2. completing $C^{l e x}$ for small limits $S[C]=P\left(C^{l e x}\right)$

If C is small, so is $C^{l e x}$ and

$$
S[C]=P\left(C^{l e x}\right)=\left[\left(C^{l e x}\right)^{o p}, S\right] .
$$

Every logos is a left exact localization of a free logos.

Logos theory

Descent $=$ Distributivity

Descent		Commutative ring
Universality colimits	$Y=\underset{i}{\operatorname{colim}}\left(Y \times{ }_{\text {colim }}^{j} \chi_{j} X_{i}\right)$	distributivity relation $y \sum_{j} x_{j}=\sum_{i} y x_{i}$
Effectivity colimits	$\begin{gathered} \left.\begin{array}{c} Y_{i} \rightarrow Y_{j} \\ \text { given }{ }^{r} \\ X_{i} \\ X_{i} \\ Y_{i}= \\ \left(\operatorname{colim}_{j}\right. \\ Y_{j} \end{array}\right) \times{ }_{\text {colim }}^{j} X_{j} X_{i} \\ \text { (not a consequence of } \\ \text { universality) } \end{gathered}$	given elements x_{i} and y_{i} such that $\begin{gathered} y_{i} x_{j}=x_{i} y_{j} \\ y_{i} \sum_{j} x_{j}=x_{i} \sum_{j} y_{j} \\ \text { (consequence of } \\ \text { distributivity) } \end{gathered}$

Logos theory

Logos theory	Commutative algebra
α	ω
general logos	arbitrary ring
Grothendieck logos	finitely presented ring
"bounded" \mathcal{E}-logos $\mathcal{E} \rightarrow \mathcal{F}$	finitely presented morphism $A \rightarrow B$
polynomial functor	exponential function exp $(x)=\sum \frac{x^{n}}{n!}$ (not a polynomial)
universe $U=P(1)$	Euler number (not representable)
exp $(1)=\sum \frac{1}{n!}$ $($ not algebraic)	

- IV -

Problems with ω and elementary higher topoi

Problems with ω

One question about ∞-topoi is to find a generalization of elementary topoi.

The way I understand this problem is to find some kind of finite version of a higher topos.

I'm going to finish on a few thought about this, and share my pessimism about the problem.

Please prove me wrong!

Problems with ω

The way I understand the problem to define higher elementary topoi is to the fill the gap in the following analogy table

1-categorical setting	∞-categorical setting
Grothendieck topos	presentable logos
elementary topos	$?$
pre-topos	general logos

Problems with ω

I know two examples of elementary 1-logoi that are not Grothendieck topoi.

1. the category FinSet of finite sets
2. the effective topos (that I don't understand enough to say anything about it)

Problems with ω

The trouble with higher "elementary topoi" start with this remark:
the category Fin of finite homotopy types does not have fiber products, nor dependent products.

(This is the obstruction for the monadicity of ω-logoi mentioned earlier.)

Problems with ω

An inaccessible cardinal α is a cardinal such that sets of size $<\alpha$ are stable by

- dependent sums (regular cardinal)
- and dependent products.

An ∞-inaccessible cardinal α is a cardinal such that ∞-groupoids of size $<\alpha$ are stable by

- dependent sums (∞-regularity)
- and dependent products.

$$
\omega \text { is not } \infty \text {-inaccessible. }
$$

But it is still ∞-regular.

Problems with ω

The ordinal ω suffers other important drawbacks in the higher setting (some of them I mentioned already):

1. the notion of ω-logos is not monadic,
2. finite CW complexes do not have finite limits (= ∞-accessibility),
3. finite CW complexes have infinite homotopy invariants,
4. coherent homotopy types (type with finite homotopy) are infinite cell-complexes,
5. the computation of the image and Postnikov truncations of a morphism use countable colimits, and
6. the splitting of idempotents is also countable colimit.

Problems with ω

For all these reasons, I do not think a reasonable notion of logos could be found by asking only for finite colimits.

Some ∞-inaccessible cardinal has to be involved.

Thanks!

