Lecture 011 (October 17, 2014)

26 \textit{K}-theory of finite fields

We will sketch a proof of the following well-known result of Quillen [5]:

\textbf{Theorem 26.1.} Suppose that \mathbb{F}_q is the field with $q = p^n$ elements. Then there are isomorphisms

$$K_i(\mathbb{F}_q) = \begin{cases} \mathbb{Z}/(q^j - 1) & \text{if } i = 2j - 1, j > 0, \text{ and} \\ 0 & \text{if } i = 2j, j > 0. \end{cases}$$

The proof that is given here appears in [4].

The first step is to completely compute the groups $K_n(\mathbb{F}_q)$ for the algebraic closure $\overline{\mathbb{F}}_q$. For this, we use the following form of the Gabber rigidity theorem [3]:

\textbf{Theorem 26.2.} Suppose that \mathcal{O} is a henselian local ring with residue field k, and that $1/n \in \mathcal{O}$. Then the residue map $\pi : \mathcal{O} \to k$ induces isomorphisms

$$\pi_* : K_*(\mathcal{O}, \mathbb{Z}/n) \xrightarrow{\cong} K_*(k, \mathbb{Z}/n).$$

Examples of henselian local rings \mathcal{O} include the Witt ring $W(\overline{\mathbb{F}}_q)$ of the field $\overline{\mathbb{F}}_q$. The residue map
for $W(\overline{F}_q)$ has the form $W(\overline{F}_q) \to \overline{F}_q$, and $W(\overline{F}_q)$ is a complete DVR with a quotient field K of characteristic 0, since \overline{F}_q is perfect.

It is a consequence of Gabber rigidity that the ring homomorphisms

$$\overline{F}_q \leftarrow W(\overline{F}_q) \to K \leftarrow \overline{Q} \to \mathbb{C}$$

induce isomorphisms

$$K_*(\overline{F}_q, \mathbb{Z}/n) \cong K_*(W(\overline{F}_q), \mathbb{Z}/n) \cong K_*(\overline{K}, \mathbb{Z}/n) \cong K_*(\overline{Q}, \mathbb{Z}/n) \cong K_*(\mathbb{C}, \mathbb{Z}/n)$$

for $(n, p) = 1$.

Some comments:

1) The map

$$H^*_\text{et}(B\text{Gl}_{W(\overline{F}_q)}, \mathbb{Z}/n) \to H^*_\text{et}(B\text{Gl}_{K}, \mathbb{Z}/n)$$

is an isomorphism by smooth proper base change for algebraic groups [2], and the map

$$H^*_\text{et}(B\text{Gl}_{W(\overline{F}_q)}, \mathbb{Z}/n) \to H^*(B\text{Gl}(W(\overline{F}_q)), \mathbb{Z}/n)$$

is an isomorphism by the Gabber theorem (the homology sheaves $\tilde{H}_n(B\text{Gl}_{W(\overline{F}_q)}, \mathbb{Z}/n)$ are constant) and the fact that strict local hensel rings \mathcal{O} have no étale cohomology (global sections on $\textbf{Shv}(\text{Sch} \mid \mathcal{O})_{\text{et}}$).
is exact). From the diagram

\[
\begin{array}{ccc}
H^*_\text{et}(BGl_K, \mathbb{Z}/n) & \xrightarrow{\cong} & H^*(BGl(K), \mathbb{Z}/n) \\
\cong & & \downarrow \\
& H^*(BGl(W(\overline{F}_q)), \mathbb{Z}/n)
\end{array}
\]

we see that the map

\[H^*(BGl(K), \mathbb{Z}/n) \rightarrow H^*(BGl(W(\overline{F}_q), \mathbb{Z}/n))\]

is an isomorphism.

2) The map

\[BGl(\mathbb{C}) \rightarrow BGl(\mathbb{C})^{\text{top}} \cong BU\]

induces a monomorphism

\[H^*(BU, \mathbb{Z}/\ell) \rightarrow H^*(BGl(\mathbb{C}), \mathbb{Z}/\ell).\]

In effect, the comparison

\[BT(\mathbb{C}) \rightarrow BT(\mathbb{C})^{\text{top}}\]

induces an isomorphism

\[H^*(BT(\mathbb{C})^{\text{top}}, \mathbb{Z}/\ell) \cong H^*(BT(\mathbb{C}), \mathbb{Z}/\ell)\]

for any complex torus \(T\) (exercise), and the map

\[H^*(BGl_n(\mathbb{C})^{\text{top}}, \mathbb{Z}/\ell) \rightarrow H^*(BT(\mathbb{C})^{\text{top}}, \mathbb{Z}/\ell)\]

which is induced by the inclusion \(T \subset Gl_n\) of a maximal torus induces a monomorphism.
It follows that the map

$$H^p(BU, \mathbb{Z}/\ell) \to H^p(BGl(C), \mathbb{Z}/\ell)$$

is a monomorphism of finite dimensional \mathbb{Z}/ℓ-vector spaces of the same dimension (by Gabber rigidity), and is therefore an isomorphism, for all $p \geq 0$.

3) In complex K-theory, there is an isomorphism $\pi_2 BU \cong \pi_1(U) \cong \mathbb{Z}$, with generator β, and complex Bott periodicity says that cup product (induced by tensor product) with the generator β induces a map

$$\beta_* : ku[2] \cong S^2 \wedge ku \to ku$$

which is an isomorphism in stable homotopy groups π_i for $i \geq 2$. Here, ku is connective (topological) complex K-theory, which is formed by group-completing the monoid

$$\bigsqcup_{n \geq 0} BU_n \cong \bigsqcup_{n \geq 0} BGl_n(C)^{top},$$

or rather by taking a fibrant model of the spectrum associated to the Γ-space which arises from direct sum of matrices. In particular, there is a weak equivalence

$$ku^0 \cong \mathbb{Z} \times BU.$$
The map of monoids
\[
\bigsqcup_{n \geq 0} BGl_n(\mathbb{C}) \to \bigsqcup_{n \geq 0} BGl_n(\mathbb{C})^{\text{top}}
\]
induces a map of (symmetric) spectra
\[
\epsilon : K(\mathbb{C}) \to ku.
\]
Both spectra are ring spectra with ring structure induced by tensor product, so that \(\epsilon\) is a map of ring spectra.

The map
\[
BGl(\mathbb{C}) \to BU
\]
induces an isomorphism
\[
H_*(BGl(\mathbb{C}), \mathbb{Z}/\ell) \cong H_*(BU, \mathbb{Z}/\ell).
\]
In effect, the map is dual to an isomorphism in \(\text{mod } \ell\) cohomology.

It follows that the induced map
\[
\epsilon : K(\mathbb{C})/\ell \to ku/\ell
\]
is a stable equivalence. To see this, one shows that the homotopy fibre \(F\) of the map \(\epsilon\) has uniquely \(\ell\)-divisible homotopy groups, by an argument similar to that for Theorem 20.4 in Lecture 008.

It follows in particular that the map
\[
\pi_2 K(\mathbb{C})/\ell \to \pi_2 ku/\ell
\]
is an isomorphism, and therefore takes Bott element to Bott element.

The Bott element $\beta \in \pi_2 ku/\ell$ is the image of the Bott element in $\pi_2 ku$ under the map

$$\pi_2 ku \to \pi_2 ku/\ell.$$

There is a comparison of cofibre sequences

$$
\begin{array}{ccc}
S^2 \wedge ku & \longrightarrow & S^2 \wedge ku \\
\beta_* \downarrow & & \downarrow \beta_* \\
ku & \longrightarrow & ku/\ell
\end{array}
$$

in which all vertical maps are defined by (left) multiplication by the Bott element. It follows that the map

$$\beta_* : S^2 \wedge ku/\ell \to ku/\ell$$

is an isomorphism in π_i for $i \geq 2$.

If E is a ring spectrum and the Moore spectrum S/n has a ring spectrum structure, then the composite

$$E \wedge S/n \wedge E \wedge S/n \xrightarrow{1 \wedge 1 \wedge 1} E \wedge E \wedge S/n \wedge S/n \xrightarrow{m \wedge m} E \wedge S/n$$

defines a ring spectrum structure on

$$E/n = E \wedge S/n.$$
The Moore spectrum S/n has such a ring spectrum structure if $n = \ell^\nu$ where $\ell > 3$, $\nu \geq 2$ if $\ell = 3$, and $\nu \geq 4$ if $\ell = 2$ [7, p.544]. Assume that n is such a prime power henceforth.

There is a commutative diagram

$$
\begin{array}{ccc}
S^2 \wedge ku/n & \xrightarrow{\beta \wedge 1} & ku \wedge ku/n \\
\downarrow_{1 \wedge \epsilon} \simeq & \downarrow & \downarrow_{\epsilon \wedge \epsilon} \simeq \\
S^2 \wedge K(\mathbb{C})/n & \xrightarrow{\beta \wedge 1} & K(\mathbb{C})/n \wedge K(\mathbb{C})/n \\
\end{array}
$$

The top composite $(m \wedge 1)(\beta \wedge 1)$ is the composite β_* above, and is an isomorphism in π_i for $i \geq 2$. It follows that the composite

$$
S^2 \wedge K(\mathbb{C})/n \xrightarrow{\beta \wedge 1} K(\mathbb{C})/n \wedge K(\mathbb{C})/n \xrightarrow{m} K(\mathbb{C})/n
$$

is an isomorphism in π_i for $i \geq 2$.

We have proved:

Lemma 26.3. Suppose that $n = \ell^\nu$, subject to the constraints on the prime ℓ and the power ν listed above. Then all powers of the Bott element $\beta^k \in K_{2k}(\mathbb{C}, \mathbb{Z}/n)$ are non-trivial, and there is an isomorphism

$$
K_*(\mathbb{C}, \mathbb{Z}/n) \cong \mathbb{Z}/n[\beta].
$$
Corollary 26.4. Suppose that $n = \ell^n$, subject to the constraints on the prime ℓ and the power ν listed above. Suppose that k is an algebraically closed field with $(n, \text{char}(k)) = 1$. Then there is an isomorphism

$$K_*(k, \mathbb{Z}/n) \cong \mathbb{Z}/n[\beta].$$

For the record, the following is proved with a transfer argument:

Lemma 26.5. Suppose that L is a separably closed field and that $(n, \text{char}(L)) = 1$. Then the inclusion $L \subset \overline{L}$ induces an isomorphism

$$K_*(L, \mathbb{Z}/n) \cong K_*(\overline{L}, \mathbb{Z}/n).$$

Now let’s talk about finite fields.

Lemma 26.6. $K_i(\mathbb{F}_q)$ is a finite abelian group of order prime to p if $i \geq 0$.

Proof. Homological stability [6] says that there is an isomorphism

$$H_i(BGl(\mathbb{F}_q), \mathbb{Z}) \cong H_i(BGl_n(\mathbb{F}_q), \mathbb{Z})$$

for n sufficiently large. It follows that the reduced homology $\tilde{H}_*(BGl(\mathbb{F}_q), \mathbb{Z})$ consists of finite groups.
It is known [5] that $\tilde{H}_*(BGl(\mathbb{F}_q), \mathbb{Z}/p) = 0$. Thus $\tilde{H}_*(BGl(\mathbb{F}_q), \mathbb{Z})$ consists of uniquely p-divisible finite abelian groups. \(\square\)

Lemma 26.7. There are isomorphisms

$$K_i(\mathbb{F}_q) \cong \begin{cases} \mathbb{Q}(p)/\mathbb{Z} & \text{if } i = 2j - 1, j \geq 1 \text{ and } \\ 0 & \text{if } i = 2j, j \geq 1. \end{cases}$$

Proof. $K_i(\mathbb{F}_q) = \varprojlim K_i(\mathbb{F}_{q'})$ is a torsion abelian group with no p-torsion by the last Lemma.

$K_{2j+1}(\mathbb{F}_q, \mathbb{Z}/n) = 0$ for all $j \geq 1$ if $(n, p) = 1$. It follows that $K_{2j}(\mathbb{F}_q)$ is a torsion group with $\text{Tor}(\mathbb{Z}/n, K_{2j}(\mathbb{F}_q)) = 0$ for $(n, p) = 1$, so that $K_{2j}(\mathbb{F}_q) = 0$ for all $j \geq 1$.

It follows that there are isomorphisms

$$\mathbb{Z}/n \cong K_{2j}(\mathbb{F}_q, \mathbb{Z}/n) \cong \text{Tor}(\mathbb{Z}/n, K_{2j-1}(\mathbb{F}_q))$$

for $j \geq 1$. These isomorphisms are functorial in the poset of numbers n with $(n, p) = 1$ and with $n \leq m$ if $n|m$.

An element of $\mathbb{Q}(p)$ is a fraction $\frac{m}{n}$ such that p does not divide n, and this element is in \mathbb{Z} if $n = 1$. The maps

$$\mathbb{Z}/n \to \mathbb{Q}(p)/\mathbb{Z}$$
defined by \(1 \mapsto \frac{1}{n} \) define the isomorphism
\[
\lim_{n \to \infty} \mathbb{Z}/n \cong \mathbb{Q}_p/\mathbb{Z}.
\]

\[\square\]

Note that
\[K_1(\overline{\mathbb{F}}_q) \cong \mathbb{F}_q^* \cong \mathbb{Q}_p/\mathbb{Z}.
\]

Corollary 26.8. The group \(K_{2j-1}(\overline{\mathbb{F}}_q) \) is \(n \)-divisible for all \(n \) with \((n,p) = 1 \), if \(j \geq 1 \).

Now recall that the Frobenius automorphism \(\phi : \mathbb{F}_q \to \mathbb{F}_q \) is defined by \(\phi(\alpha) = \alpha^q \). Recall that \(\phi \) is the identity on \(\mathbb{F}_q \), since \(\mathbb{F}_q \) is the splitting field of the polynomial \(x^q - x \).

The Frobenius induces a morphism of spectra \(\phi : K(\mathbb{F}_q) \to K(\mathbb{F}_q), \) and there is a commutative diagram of spectra
\[
\begin{array}{ccc}
K(\mathbb{F}_q) & \xrightarrow{i} & K(\overline{\mathbb{F}}_q) \\
\downarrow{i} & & \downarrow{\Delta} \\
K(F_q) & \xrightarrow{(\phi, 1)} & K(\mathbb{F}_q) \times K(\overline{\mathbb{F}}_q)
\end{array}
\]

where \(i \) is induced by the inclusion \(\mathbb{F}_q \subset \overline{\mathbb{F}}_q \).

Here’s the main theorem:
Theorem 26.9. The square

\[
\begin{array}{ccc}
K(\mathbb{F}_q) & \rightarrow & K(\overline{\mathbb{F}}_q) \\
\downarrow i & & \downarrow \Delta \\
K(\overline{\mathbb{F}}_q) & \rightarrow & K(\overline{\mathbb{F}}_q) \times K(\overline{\mathbb{F}}_q)
\end{array}
\]

is homotopy cartesian.

This result is often paraphrased by saying that the spectrum \(K(\mathbb{F}_q) \) is the homotopy fixed points of the Frobenius.

Corollary 26.10. There are isomorphisms

\[
K_i(\mathbb{F}_q) = \begin{cases}
\mathbb{Z}/(q^j - 1) & \text{if } i = 2j - 1, j > 0, \text{ and} \\
0 & \text{if } i = 2j, j > 0.
\end{cases}
\]

Proof. The squares in the diagram

\[
\begin{array}{ccc}
K(\mathbb{F}_q) & \rightarrow & K(\overline{\mathbb{F}}_q) \\
\downarrow i & & \downarrow \Delta \\
K(\overline{\mathbb{F}}_q) & \rightarrow & K(\overline{\mathbb{F}}_q) \times K(\overline{\mathbb{F}}_q)
\end{array}
\]

are homotopy cartesian, so that there is a fibre sequence

\[
K(\mathbb{F}_q) \rightarrow K(\overline{\mathbb{F}}_q) \rightarrow K(\overline{\mathbb{F}}_q) \rightarrow K(\overline{\mathbb{F}}_q).
\]

(1)

It follows from the Suslin calculations that the map

\[
\phi_* : K_{2j}(\overline{\mathbb{F}}_q) \rightarrow K_{2j}(\overline{\mathbb{F}}_q)
\]
is multiplication by q^j. In effect,

$$\phi_* : K_2(\overline{F}_q, \mathbb{Z}/n) \rightarrow K_2(\overline{F}_q, \mathbb{Z}/n)$$

is multiplication by q (ie. $\beta \mapsto q\beta$) since

$$K_2(\overline{F}_q, \mathbb{Z}/n) \cong \text{Tor}(\mathbb{Z}/n, \overline{F}_q^*)$$.

It follows that the map

$$\phi_* : K_{2j}(\overline{F}_q, \mathbb{Z}/n) \rightarrow K_{2j}(\overline{F}_q, \mathbb{Z}/n)$$

is multiplication by q^j ($\beta^j \mapsto (q\beta)^j$). Thus, the map

$$\phi_* : \text{Tor}(\mathbb{Z}/n, K_{2j-1}(\overline{F}_q)) \rightarrow \text{Tor}(\mathbb{Z}/n, K_{2j-1}(\overline{F}_q))$$

is also multiplication by q^j. But $K_{2j-1}(\overline{F}_q)$ consists of torsion prime to p, so that $\phi_* : K_{2j-1}(\overline{F}_q) \rightarrow K_{2j-1}(\overline{F}_q)$ is multiplication by q^j.

It follows that the map

$$\phi_* - 1 : K_{2j-1}(\overline{F}_q) \rightarrow K_{2j-1}(\overline{F}_q)$$

is multiplication by $q^j - 1$. This number is prime to p, so that the map $\phi_* - 1$ is surjective. It follows from the long exact sequence for the fibre sequence (1) that

$$K_{2j-1}(\overline{F}_q) = \text{Tor}(\mathbb{Z}/(q^j-1), K_{2j-1}(\overline{F}_q)) \cong \mathbb{Z}/(q^j-1).$$

and $K_{2j}(\overline{F}_q) = 0$. \square
To prove Theorem 26.9, form the homotopy pullback diagram

\[
\begin{array}{ccc}
F_\phi(\overline{F}_q) & \rightarrow & K(\overline{F}_q) \\
\downarrow & \downarrow & \downarrow \\
K(\overline{F}_q) & \rightarrow & K(\overline{F}_q) \times K(\overline{F}_q)
\end{array}
\]

\[\Delta \quad \Delta \quad \Delta
\]

The game is to show that the induced map

\[K(\overline{F}_q) \rightarrow F_\phi(\overline{F}_q)\]

is a stable equivalence.

It suffices to do this at the level of 1-connected covers. In effect, if \(\tilde{K}(R) \rightarrow K(R)\) denotes the 1-connected cover (ie. fibre of the map \(K(R) \rightarrow P_1K(R)\)), form the homotopy pullback

\[
\begin{array}{ccc}
\tilde{F}_\phi(\overline{F}_q) & \rightarrow & \tilde{K}(\overline{F}_q) \\
\downarrow & \downarrow & \downarrow \\
\tilde{K}(\overline{F}_q) & \rightarrow & \tilde{K}(\overline{F}_q) \times \tilde{K}(\overline{F}_q)
\end{array}
\]

Then \(\tilde{F}_\phi(\overline{F}_q) \rightarrow F_\phi(\overline{F}_q)\) is the 1-connected cover, while we already know that the map \(\pi_iK(\overline{F}_q) \rightarrow \pi_iF_\phi\) is an isomorphism for \(i = 0, 1\).

Note that the map \(\overline{F}_q^* \rightarrow \overline{F}_q^*\) defined by \(\alpha \mapsto \alpha/\phi(\alpha)\) is an isomorphism (Lang isomorphism) so that \(\tilde{F}_\phi\) is simply-connected.
We therefore want to show that the map
\[\tilde{K}(\mathbb{F}_q) \to \tilde{F}_\phi(\overline{\mathbb{F}}_q) \]
is a stable equivalence. Both spectra are 1-connected, so it suffices to show that the map
\[\tilde{K}^0(\mathbb{F}_q) \to \tilde{F}^0_\phi(\overline{\mathbb{F}}_q) \]
of pointed simplicial sets is a weak equivalence. Both spaces are simply-connected and have homotopy groups which are finite and of order prime to \(p \), so it is enough to show that the maps
\[H_*(\tilde{K}^0(\mathbb{F}_q), \mathbb{Z}/\ell) \to H_*(\tilde{F}^0_\phi(\overline{\mathbb{F}}_q), \mathbb{Z}/\ell) \]
are isomorphisms for all primes \(\ell \) with \((\ell, p) = 1 \).

Suppose that \(E(R) \subset \text{Gl}(R) \) is the subgroup of elementary transformations, and recall that \(E(R) = [\text{Gl}(R), \text{Gl}(R)] \), naturally in rings \(R \). There is map
\[BE \to \tilde{K}^0 \]
of simplicial presheaves on the big étale site \((\text{Sch}|_{\mathbb{F}_q})_{et} \) which is an \(H_*(\ , \mathbb{Z}) \)-isomorphism on affine patches \((\tilde{K}^0(R) = BE(R)^+) \). It therefore suffices to show that the composition map
\[BE(\mathbb{F}_q) \to \tilde{K}^0(\mathbb{F}_q) \to \tilde{F}^0_\phi(\overline{\mathbb{F}}_q) \]
is an \(H_*(\ , \mathbb{Z}/\ell) \)-isomorphism for \((\ell, p) = 1 \).
The Frobenius homomorphism induces a natural map \(\phi : E \to E \) for presheaves of spectra on \((Sch|\mathbb{F}_q)_{et} \), and we can form the sectionwise homotopy cartesian diagram

\[
\begin{array}{ccc}
\tilde{F}_\phi & \longrightarrow & \tilde{K} \\
\downarrow & & \downarrow \Delta \\
\tilde{K} & \longrightarrow & \tilde{K} \times \tilde{K} \\
\end{array}
\]

The diagram (2) is global sections of this diagram of presheaves of spectra. There is a corresponding pointwise homotopy cartesian diagram

\[
\begin{array}{ccc}
\tilde{F}_\phi^0 & \longrightarrow & \tilde{K}^0 \\
\downarrow & & \downarrow \Delta \\
\tilde{K}^0 & \longrightarrow & \tilde{K}^0 \times \tilde{K}^0 \\
\end{array}
\]

of pointed simplicial presheaves.

Lemma 26.11. *The simplicial presheaf \(\tilde{F}_\phi^0 \) is rigid in the sense that the map*

\[
\Gamma^* \tilde{F}_\phi^0(\mathbb{F}_q) \to \tilde{F}_\phi^0
\]

induces an isomorphism in homology sheaves \(\tilde{H}_ \) for all \((\ell,p) = 1 \).*

Proof. The \(K \)-theory presheaf is rigid in mod \(\ell \) stable homotopy groups (Gabber rigidity), and \(P_1K \)
is rigid (calculation), so that \tilde{K} is rigid and then \tilde{F}_ϕ is rigid, as presheaves of spectra. Extract the homology statement in the usual way. \qed

In particular, there is an isomorphism

$$H^*_\text{et}(\tilde{F}_0^0, \mathbb{Z}/\ell) \cong H^*(\tilde{F}_0^0(\overline{F}_q), \mathbb{Z}/\ell),$$

and it suffices to show that the maps

$$H^*_\text{et}(\tilde{F}_0^0, \mathbb{Z}/\ell) \to H^*(\Gamma^*BE(\overline{F}_q), \mathbb{Z}/\ell) \cong H^*(BE(\overline{F}_q), \mathbb{Z}/\ell)$$

are isomorphisms.

The natural inclusion $E_n(R) \subset Sl_n(R)$ induces local weak equivalences

$$BE_n \to BS_l n, \quad BE \to BS_l$$

of simplicial presheaves on $(\text{Sch}|_{\overline{F}_q})_{\text{et}}$ since the groups in question coincide on local rings.

Lemma 26.12. There is a homotopy cartesian diagrams of simplicial presheaves

$$\begin{array}{ccc}
\Gamma^*BSl_n(\overline{F}_q) & \longrightarrow & BSl_n \\
\downarrow & & \downarrow \Delta \\
BSl_n & \longrightarrow & BSl_n \times BSl_n \\
(\phi,1) & & \\
\end{array}$$

Proof. Any inclusion $G \subset H$ of groups determines a homotopy fibre sequence

$$EG \times_G H \to BG \to BH$$
and all homotopy groups $\pi_i(EG \times_G H)$ are trivial for $i \geq 1$. Checking that the diagram above is homotopy cartesian amounts to showing that the induced map on homotopy fibres is a local equivalence, but this amounts to showing that the induced map

$$Sl_n/\Gamma^*Sl_n(F_q) \to Sl_n$$

defined by $A \mapsto \phi(A)A^{-1}$ is an isomorphism. The fact that the displayed map is an isomorphism is well known — this map is called the Lang isomorphism [1, Prop. 2].

Form the comparisons of homotopy cartesian diagrams

$$\begin{array}{ccc}
\Gamma^*BE(F_q) & \xrightarrow{\zeta} & BE \\
\downarrow & & \downarrow \\
F^0 & \xrightarrow{\Delta} & K^0 \\
\downarrow & & \downarrow \\
BE & \xrightarrow{(\phi,1)} & BE \times BE \\
\downarrow & & \downarrow \\
K^0 & \xrightarrow{(\phi,1)} & K^0 \times K^0
\end{array}$$
We want to show that the map ζ induces an isomorphism in étale cohomology, and we do this by showing that the maps ϵ_* and ζ_* are isomorphisms in étale cohomology.

1) The map ϵ_* is a mod ℓ homology sheaf isomorphism, because the object \tilde{K}^0 is rigid. Use a comparison of Serre spectral sequences in stalks to see this.

2) There is a weak equivalence

$$Y_1 \simeq ES\ell(\overline{F}_q) \times_{Sl(\overline{F}_q)} Sl \times (Sl(\overline{F}_q) \times ES\ell(\overline{F}_q)).$$

The idea is to show that

$$\tilde{H}_{et}^*(ES\ell(\overline{F}_q) \times_{Sl(\overline{F}_q)} Sl, \mathbb{Z}/\ell) = 0$$

But there is an isomorphism

$$H_{et}^*(ES\ell(\overline{F}_q) \times_{Sl(\overline{F}_q)} Sl, \mathbb{Z}/\ell) \cong H^*(ES\ell(\mathbb{C}) \times_{Sl(\mathbb{C}) Sl_{top}}, \mathbb{Z}/\ell)$$
by rigidity (and GAGA), and $ESl(C) \times_{Sl(C)} Sl^{top}$ is the homotopy fibre of $BSl(C) \to BSl^{top}$, which fibration is a mod ℓ cohomology isomorphism (by rigidity) with simply connected base. The fibre is therefore mod ℓ cohomologically acyclic.

3) To show that γ is an étale cohomology isomorphism, it suffices to show that the map $E \to \Omega \hat{K}^0$ is a mod ℓ étale cohomology isomorphism. One uses a comparison of Serre-type spectral sequences, eg.

$$H^p(\hat{K}^0(\mathbb{F}_q), H^q_{et}(\Omega \hat{K}^0, \mathbb{Z}/\ell)) \Rightarrow H^{p+q}_{et}(X_2, \mathbb{Z}/\ell)$$

to see this. But again the question about $E \to \Omega \hat{K}^0$ base changes to topology, where there is an actual weak equivalence.

References

