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4 Spaces and homotopy groups

Some definitions
CGWH is the category of compactly generated
weak Hausdorff spaces.

A space X is compactly generated if a subset Z is
closed if and only if Z ∩K is closed for all maps
K→ X with K compact.

A compactly generated space X is weakly Haus-
dorff if and only if the image of the diagonal ∆ :
X → X ×X is closed in X ×X , where the product
is in the category of compactly generated spaces.

CGWH is the “convenient category” for homo-
topy theory, because it’s cartesian closed, as well
as complete and cocomplete.

The product X ×Y in CGWH has the underlying
point set that you expect, but it’s topologized as
a colimit of all products C×D where C→ X and
D→ Y are maps such that C and D are compact.
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If X and Y are compact, this definition doesn’t af-
fect the topology on X×Y .

All CW -complexes (spaces inductively built from
cells) are members of CGWH.

See the preprint
N.P. Strickland. The category of CGWH spaces. Preprint,
Sheffield http://www.neil-strickland.staff.shef.ac.
uk/courses/homotopy/cgwh.pdf, 2009

Examples that we care about
The topological standard n-simplex is the space
|∆n| defined by

|∆n|= {(t0, . . . , tn) ∈ Rn+1 | ∑ ti = 1, ti ≥ 0 }.

|∆0| is a point, |∆1| is a copy of the unit interval,
|∆2| is a triangle, etc.

n = {0,1, . . . ,n}, n ≥ 0, with the obvious poset
structure — this is the finite ordinal number n.

The finite ordinal numbers n, n ≥ 0, form a cate-
gory ∆, whose morphisms are the order-preserving
functions (aka. poset morphisms) θ : m→ n.

The monomorphisms di : n−1→ n have the form

di( j) =

{
j if j < i, and

j+1 if j ≥ i.
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with 0 ≤ i ≤ n. The map di misses the element
i ∈ n.

s j : n+1→ n, 0 ≤ j ≤ n, is the unique poset epi-
morphism such that s j( j) = s j( j+1) = j.

The s j, 0 ≤ j ≤ n form a complete list of epimor-
phisms n+1→ n in ∆.

The singular set
There is a functor

|∆| : ∆→ CGWH

with n 7→ |∆n|. The morphism θ : m→ n induces
the continuous map θ∗ : |∆m| → |∆n|, with

θ∗(t0, . . . , tm) = (s0, . . . ,sn),

and
si = ∑

j∈θ−1(i)

t j.

An n-simplex of a space X is a continuous map
σ : |∆n| → X .

The ith face di(σ) of the n-simplex σ is the com-
posite

|∆n−1| di
−→ |∆n| σ−→ X .
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The vertex v j of σ is the composite

|∆0| j−→ |∆n| σ−→ X ,

(an element of X), where j : 0→ n is defined by
j(0) = j ∈ n.

v j is the vertex opposite the face d j(σ).

Example: Suppose σ : |∆2| → X is a 2-simplex.
Here’s the picture:

v0
d2(σ)

//

d1(σ)   

v1
d0σ

��
v2

0 [0,1]
//

[0,2] ��

1
[1,2]
��

2
Some language:

S(X)n = hom(|∆n|,X)

is the set of n-simplices of X .

An ordinal number map θ : m→ n induces a func-
tion θ ∗ : Sn(X)→ Sm(X) by precomposition with
θ : |∆m| → |∆n|.
The composite

|∆m| θ−→ |∆n| σ−→ X

is θ ∗(σ) ∈ Sm(X).

The simplices and precompositions define a (con-
travariant) functor

S(X) : ∆
op→ Set
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taking values in sets. S(X) is a simplicial set, called
the singular set for the space X .

Path components
A path in X is a 1-simplex ω : |∆1| → X of X ,
while a vertex is an element x : |∆0| → X .

A path has a natural orientation:

x = d1(ω)
ω−→ d0(ω) = y

reflects
d1(0) = 0→ 1 = d0(0)

in 1.

The set of path components π0|X | of X is defined
by a coequalizer

S(X)1
d0 //

d1
// S(X)0 // π0|X |

in the set category.

Fundamental groupoid
Suppose that the paths ω,ω ′ : |∆1| → X start at x
and end at y in the sense that d1(ω) = d1(ω

′) = x
and d0(ω) = d0(ω

′) = y.

Alternate notation:

∂ (ω) = ∂ (ω ′) = (y,x).
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Say that ω is homotopic to ω ′ rel. end points if
there is a commutative diagram

(|∆0|t |∆0|)× I pr
//

(d1,d0)×I
��

(|∆0|t |∆0|)
(x,y)
��

|∆1|× I h //X

|∆1|t |∆1|
(d1,d0)

OO

(ω,ω ′)

55

Here, I = [0,1], or some homeomorphic copy of
it, like |∆1|.
The map h is a homotopy from ω to ω ′ (note the
direction). One represents h by the following pic-
ture:

x ω //

x
��
⇓

y
y
��

x
ω ′
// y

Homotopy of paths rel end points in a space X is
an equivalence relation (exercise), and the set of
homotopy classes of paths rel end points from x to
y is denoted by π(X)(x,y). This is the set of mor-
phisms from x to y in the fundamental groupoid
π(X) of the space X .

There’s a law of composition for π(X), but we
need more notation to describe it.
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Nice little spaces
1) |∂∆n| is the topological boundary of |∆n|: it is
the union of the faces di : |∆n−1| → |∆n|. Any two
such faces intersect in a lower dimensional face
|∆n−2|, and there is a coequalizer picture⊔

i< j,0≤i, j≤n |∆n−2| //
//
⊔

0≤i≤n |∆n−1| // |∂∆n|

in spaces, which is defined by the identities d jdi =

did j−1 for i < j.

2) |Λn
k| ⊂ |∂∆n| is obtained by throwing away the

the kth face dk : |∆n−1| → |∆n|. There is a coequal-
izer⊔

i< j,i, j 6=k |∆n−2| //
//
⊔

0≤i≤n,i 6=k |∆n−1| // |Λn
k|

defined by the identities d jdi = did j−1 for i < j.
|Λn

k| is the kth horn of |∆n|.
The inclusion i : |Λn

k| ⊂ |∆n| is a strong deforma-
tion retraction.

There is a map r : |∆n|→ |Λn
k| (projection along the

normal to the missing simplex) such that r · i = 1
and i ·r is homotopic to the identity on |∆n| rel |Λn

k|.
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It follows that the dotted arrow exists, making the
diagram commute in all solid arrow pictures

|Λn
k|

α //

i
��

X

��|∆n| //

>>

∗

The lift is given by the composite α · r, and ∗ is
the one-point space (aka |∆0|), which is terminal
in CGWH.

Here’s some other inclusions which admit strong
deformation retractions (secretly made up of in-
stances of inclusions of horns in simplices):

• (|∆n|×{ε})∪(|∂∆n|× I)⊂ |∆n|× I where ε =

0,1,

• (|∆n|×{0,1})∪ (|Λn
k|× I)⊂ |∆n|× I.

I = [0,1] is the unit interval, and I ∼= |∆1|.
Any space X has the right lifting property for these
inclusions, as for the maps |Λn

k| ⊂ |∆n|.
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Composition law

A map |Λ2
1| → X is a string of paths x ω−→ y

γ−→ z in
X , and there is an extension

|Λ2
1|

(γ,?,ω)
//

��

X

|∆2|
σ

;;

The face d1σ represents a well defined element
[d1σ ] of π(X)(x,z) which is independent of the
classes of ω and γ , by an argument involving an
extension

(|∆2|×{0,1})∪ (|Λ2
1|× I) //

��

X

|∆2|× I

55

[This is a prototypical “prismatic” argument. Flling
in the labels on the diagram is an exercise.]

We therefore have the composition law

[γ]∗ [ω] = [d1(σ)]

defined for the fundamental groupoid π(X).

Associativity
Suppose given a string of paths

x0
ω1−→ x1

ω2−→ x2
ω3−→ x3

9



in X . There is a corresponding string of paths

0
[0,1]−−→ 1

[1,2]−−→ 2
[2,3]−−→ 3

which defines a subspace P⊂ |∆3|, while the string
of paths in X can be represented as a map ω : P→
X . The map ω : P→X extends to a map σ : |∆3|→
X , in the sense that the diagram

P ω //

��

X

|∆3|
σ

>>

commutes.

[Fill in [0,1,2], [1,2,3], [0,1,3], then [0,1,2,3].]

The image of the path [0,3] in |∆3| represents both
[ω3] ∗ ([ω2] ∗ [ω1]) and ([ω3] ∗ [ω2]) ∗ [ω1], so the
composition law in π(X) is associative.

Identities
Write x for the constant path

|∆1| s0
−→ |∆0| x−→ X

at an element x of X .

Suppose that ω : x→ y is a path of X . Then

∂ s0(ω) = (ω,ω,x) and ∂ s1(ω) = (y,ω,ω).

The constant paths are 2-sided identities for the
composition law.
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Inverses
Again, suppose that ω : x→ y is a path of X . Then
there are extensions

|Λ2
0|

(?,x,ω)
//

��

X

|∆2|

;; and |Λ2
2|

(ω,y,?)
//

��

X

|∆2|

;;

so that the composition law on π(X) is invertible.

We have therefore shown that the fundamental groupoid
π(X) of a space X is a groupoid.

Fundamental groups
The fundamental group π1(X ,x) of X based at the
element x is the set of homomorphisms (isomor-
phisms) π(X)(x,x) from x to itself in π(X).

Explicitly, π1(X ,x) is the group of homotopy classes
of loops x→ x rel end points in X , with composi-
tion law defined by extensions

|Λ2
1|
(ω2,?,ω1) //

��

X

|∆2|

99

with identity defined by the constant path at x.
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Higher homotopy groups
Suppose that x is a vertex (aka. element) of X . The
members of πn(X ,x) are homotopy classes

[(|∆n|, |∂∆
n|),(X ,x)]

of simplices with boundary mapping to x, rel bound-
ary. These classes are represented by diagrams

|∂∆n| x //

��

X

|∆n|
α

==

which one tends to refer to by the name of the sim-
plex, in this case α .

Here’s a cheat: one can show inductively (or by an
explicit homeomorphism of pairs) that the set

[(|∆n|, |∂∆
n|),(X ,x)]

is in bijective correspondence with the set

[(I×n,∂ I×n),(X ,∗)].

One starts the induction by using using extensions

(|∆n|×{0,1})∪ (|Λn
0|× I)

((α,x),x)
//

��

X

|∆n−1|× I
d0×I

// |∆n|× I

44
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to show that there is a bijection

[(|∆n|, |∂∆
n|),(X ,x)]∼= [(|∆n−1|×I,∂ (|∆n−1|×I)),(X ,x)].

Homotopy classes of maps (I×n,∂ I×n) → (X ,x)
can be composed in multiple directions, potentially
giving n different group structures according to the
description given above (recall that I = |∆1|).
These multiplications have a common identity, namely
the constant cell at x, and they satisfy interchange
laws

(a1 ∗i a2)∗ j (b1 ∗i b2) = (a1 ∗ j b1)∗i (a2 ∗ j b2).

The multiplications therefore coincide and are abelian
if n≥ 2 (exercise).

The interchange laws follow from the existence of
solutions to lifting problems

|Λ2
1|× |Λ2

1| //

��

X

|∆2|× |∆2|

::

(exercise again).
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Homotopy equivalences, weak equivalences
The construction of π0(X), π(X) and all πn(X ,x)
are functorial: every map f : X → Y induces

• f∗ : π0(X)→ π0(Y ) (function between sets),

• f∗ : π(X)→ π(Y ) (functor between groupoids),

• f∗ : πn(X ,x)→ πn(Y, f (x)), n≥ 1, x∈X (group
homomorphisms).

A) A map f : X → Y is said to be a homotopy
equivalence if there is a map g : Y → X such that
g · f ' 1X (homotopic to the identity on X) and
f ·g' 1Y .

B) f : X → Y is a weak equivalence if

1) f∗ : π0(X)→ π0(Y ) is a bijection, and

2) f∗ : πn(X ,x)→ πn(Y, f (x)) is an isomorphism
for all n≥ 1 and all x ∈ X .

Exercises

1) Show that every homotopy equivalence is a weak
equivalence.

2) Show that every weak equivalence f : X → Y
induces an equivalence of groupoids f∗ : π(X)→
π(Y ).
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Group objects
Write X0 for the set of points underlying X (the
vertices of S(X)). Every base point x ∈ X0 has an
associated homotopy group πn(X ,x), and we can
collect all such homotopy groups together to de-
fine a function

πn(X) =
⊔

x∈X0

πn(X ,x)→
⊔

x∈X0

∗= X0.

The function πn(X)→ X0 defines a group object
over the set X0 for n≥ 1 which is abelian if n≥ 2.

Fact: A map f : X → Y is a weak equivalence if
and only if

1) the function f∗ : π0(X)→ π0(Y ) is a bijection,
and

2) the induced diagrams

πn(X)
f∗ //

��

πn(Y )

��

X0 f∗
//Y0

are pullbacks (in Set) for n≥ 1.
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5 Serre fibrations and the model structure for CGWH

A map p : X → Y is said to be a Serre fibration if
it has the RLP wrt all |Λn

k| ⊂ |∆n|, n≥ 1.

All spaces X are fibrant: the map X →∗ is a Serre
fibration.

Main formal properties of Serre fibrations:

Lemma 5.1. A map p : X → Y is a Serre fibration
and a weak equivalence if and only if it has the
right lifting property with respect to all inclusions
|∂∆n| ⊂ |∆n|, n≥ 0.

Here, |∂∆0|= /0.

Lemma 5.2. Suppose that p : X → Y is a Serre
fibration, and that F = p−1(y) is the fibre over an
element y ∈ Y . Then we have the following:

1) For each x ∈ F there is a sequence of pointed
sets

. . .πn(F,x)
i∗−→ πn(X ,x)

p∗−→ πn(Y,y)
∂−→ πn−1(F,x)→ . . .

. . .π1(Y,y)
∂−→ π0(F)

i∗−→ π0(X)
p∗−→ π0(Y )

which is exact in the sense that ker = im every-
where.
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2) There is a group action

∗ : π1(Y,y)×π0(F)→ π0(F)

such that ∂ ([α])= [α]∗[x], and such that i∗[z] =
i∗[w] if and only if there is an element [β ] ∈
π1(Y,y) such that [β ]∗ [z] = [w].

The boundary map

∂ : πn(Y, p(x))→ πn−1(F,x)

is defined by ∂ ([α]) = [d0θ ], where θ is a choice
of lifting in the following diagram

|Λn
0|

x //

��

X
p
��

|∆n|
α

//

θ

>>

Y

Lemma 5.1 is needed for the following result, while
Lemma 5.2 is needed for almost all calculations of
homotopy groups.

The proof of Lemma 5.1 is sketched below, and
the proof of Lemma 5.2 is an exercise.

A map i : A→ B is said to be a cofibration if it has
the LLP wrt all trivial Serre fibrations.

Lemma 5.1 implies that all inclusions |∂∆n| ⊂ |∆n|
are cofibrations. All CW -complexes (spaces built
inductively by attaching cells) are cofibrant.
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Theorem 5.3. The weak equivalences, Serre fibra-
tions and cofibrations as defined above give CGWH
the structure of a closed model category.

Proof. p : X → Y is a Serre fibration if and only if
it has the RLP wrt all |Λn

k| ⊂ |∆n|.
p is a trivial Serre fibration if and only if it has the
RLP wrt all |∂∆n| ⊂ |∆n| by Lemma 5.1.

All inclusions |Λn
k| ⊂ |∆n| are strong deformation

retractions, as are all of their pushouts.

Pushouts of monomorphisms are monomorphisms.

A small object argument (which depends on an
observation of J.H.C. Whitehead that a compact
subset of a CW -complex meets only finitely many
cells) shows that every continuous map f : X → Y
has factorizations

Z
p

  
X f

//

i
>>

j   

Y

W
q

>>

such that i is a trivial cofibration which has the
LLP wrt all fibrations and p is a Serre fibration,
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and j is a cofibration and a monomorphism and q
is a trivial Serre fibration. This gives CM5.

Suppose that j : A→ B is a trivial cofibration. j
has a factorization

A i //

j ��

C
p
��

B
such that i is a trivial cofibration which has the
LLP wrt all Serre fibrations, and p is a Serre fibra-
tion. Then p is a trivial Serre fibration, so the lift
exists in the diagram

A i //

j
��

C
p
��

B 1
//

α
??

B

Then j is a retract of i, so j has the LLP wrt all
Serre fibrations.
For CM4, suppose given a diagram (lifting prob-
lem)

A //

i
��

X
p
��

B //

??

Y
where i is a cofibration and p is a Serre fibration.
The lift exists if p is trivial (definition of cofibra-
tion), and we just showed that every trivial cofi-
bration has the LLP wrt all Serre fibrations.
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The other model axioms are exercises.

We need the following for the proof of Lemma 5.1:

Lemma 5.4. A map α : (∆n,∂∆n)→ (X ,x) repre-
sents the identity element of πn(X ,x) if and only if
the lifting problem

|∂∆n+1| (α,x,...,x)
//

��

X

|∆n+1|

66

can be solved.

Proof. Exercise.

Proof of Lemma 5.1. 1) Suppose p : X → Y is a
trivial Serre fibration, and suppose given a lifting
problem

|∂∆n| α //

��

X
p
��

|∆n|
β

//

==

Y

Suppose x = α(0). There is a homotopy of dia-
grams

|∂∆n|× I //

��

X

��

|∆n|× I //Y
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from the original diagram to one of the form

|∂∆n| (α0,x,...,x) //

��

X
p
��

|∆n|
β ′

//

66

Y

so the two lifting problems are equivalent.

p∗([α0]) = 0 so [α0] = 0 ∈ πn−1(X ,x), and it fol-
lows from a second homotopy of diagrams that the
original lifting problem is equivalent to one of the
form

|∂∆n| x //

��

X
p
��

|∆n|
β ′′

//

==

Y

Since p∗ : πn(X ,x)→ πn(Y, p(x)) is surjective, β ′′

lifts up to homotopy rel |∂∆n| to a simplex of X ,
so that this last diagram is homotopic to a diagram
for which the lifting problem is solved.

2) Suppose p : X →Y has the RLP wrt all |∂∆n| ⊂
|∆n|.
Then p has the right lifting property with respect
to all |Λn

k| ⊂ |∆n| (exercise), so p is a Serre fibra-
tion.
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Suppose that [α] ∈ πn(X ,x) such that p∗([α]) = 0.
Then there is a commutative diagram

|∂∆n+1| (α,x,...,x)
//

��

X
p
��

|∆n+1|
β

//

66

Y

and the existence of the indicated lift implies that
[α] = 0 ∈ πn(X ,x). Thus, p∗ is a monomorphism.

The existence of liftings

|∂∆n| x //

��

X
p
��

|∆n|
β

//

θ

==

Y

means that p∗ is surjective: p∗([θ ]) = [β ].
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