Practice Term Test 2

- **0.** Problems from Problem Sets 5 and 6.
- 1. State the Monotone Convergence Theorem, Dominated Convergence Theorem and Fatou's Lemma.
- 2. State the definitions of product σ -algebra and product measure.
- **3.** Prove or give a counterexample: If $f_n : \mathbb{R} \to \mathbb{R}$ are Lebesgue measurable and pointwise convergent to a function f, then $\int f = \lim_{n \to \infty} \int f_n$.
- 4. Prove or give a counterexample: If $f_n : \mathbb{R} \to [0,\infty)$ are Lebesgue integrable and $\lim_{n\to\infty} \int f_n = \int f$ for some function $f : \mathbb{R} \to \mathbb{R}$, then $f_n \longrightarrow f$ a.e..
- 5. Prove or give a counterexample: If (X, \mathcal{M}, μ) is a measure space with $\mu(X) < \infty$, and $(f_n)_{n=1}^{\infty}$ is a sequence of bounded real-valued measurable functions that converge uniformly to a function f, then $\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu$.
- 6. Let (X, \mathcal{M}, μ) be a σ -finite measure space, and let $f : X \to \mathbb{R}$ be integrable. Prove that for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\int_{A} |f(x)| \, d\mu(x) < \varepsilon$$

whenever $A \in \mathcal{M}$ satisfies $\mu(A) < \delta$.

7. Suppose $f : \mathbb{R} \to \mathbb{R}$ is integrable, *m* denotes the Lebesgue measure on \mathbb{R} , $a \in \mathbb{R}$, and we define $F : \mathbb{R} \to \mathbb{R}$ as

$$F(x) = \int_{I_{a,x}} f(x) \ dm(x),$$

where $I_{a,x}$ denotes the closed interval with endpoints a and x. Show that F is continuous.

8. Suppose (X, \mathcal{M}, μ) is a measure space, f and each f_n is integrable and non-negative, $f_n \longrightarrow f$ a.e., and $\int f_n \longrightarrow \int f$ as $n \to \infty$. Prove that, for each $A \in \mathcal{M}$,

$$\lim_{n \to \infty} \int_A f_n \, d\mu = \int_A f \, d\mu$$

9. Prove that the limit exists and find its value:

$$\lim_{n \to \infty} \int_0^1 \frac{1 + nx^2}{(1 + x^2)^n} \ln(2 + \cos(x/n)) \, dx \, .$$

10. Let $g : \mathbb{R} \to \mathbb{R}$ be Lebesgue integrable and let $f : \mathbb{R} \to \mathbb{R}$ be bounded, Lebesgue measurable, and continuous at 1. Prove that the limit exists and find its value:

$$\lim_{n \to \infty} \int_{-n}^{n} f\left(1 + \frac{x}{n^2}\right) g(x) \, dx \, .$$

- **11.** Suppose μ is a finite measure on a measurable space (X, \mathcal{M}) . Prove that a measurable function $f: X \to [0, \infty)$ is integrable if and only if $\sum_{n=1}^{\infty} \mu(\{x \in X : f(x) \ge n\}) < \infty$.
- **12.** Suppose $f : [0,1]^2 \to \mathbb{R}$ is integrable with respect to the 2-dimensional Lebesgue measure m on $[0,1]^2$, and $\int_{[0,a]\times[0,b]} f \, dm = 0$ for all $a, b \in [0,1]$. Prove that f = 0 a.e.
- **13.** Let (X, \mathcal{M}, μ) be a σ -finite measure space, and let $f : X \to \mathbb{R}$ be an \mathcal{M} -measurable function. Define the distribution function of f by

$$\mu_f(t) := \mu(\{x \in X : |f(x)| \ge t\}), \quad t > 0.$$

Show that $\mu_f: (0,\infty) \to [0,\mu(X)]$ is non-increasing and Borel measurable, and $\int_X |f(x)| d\mu(x) = \int_0^\infty \mu_f(t) dt$.