Problem Set 9

November 28, 2021

All numbered exercises are from the textbook Lectures on Real Analysis, by F. Larusson.

1. Let (E, ϱ) be a normed vector space, and let d_{ϱ} denote the metric induced by ϱ . Prove that the norm function

$$\varrho: (E, d_{\varrho}) \ni x \mapsto \varrho(x) \in (\mathbb{R}, |\cdot|)$$

is continuous.

2. Given normed vector spaces $(E_1, \varrho_1), \ldots, (E_n, \varrho_n)$, one defines the product norm as

 $\varrho: E_1 \times \cdots \times E_n \ni (x_1, \dots, x_n) \mapsto \varrho_1(x_1) + \cdots + \varrho_n(x_n) \in [0, \infty).$

- (a) Prove that the product norm is a norm on $E_1 \times \cdots \times E_n$.
- (b) Prove that a sequence $(x_{\nu})_{\nu} \subset E_1 \times \cdots \times E_n$, where $x_{\nu} = (x_{\nu}^1, \dots, x_{\nu}^n)$ for $\nu \in \mathbb{Z}_+$, is convergent to a point $a = (a^1, \dots, a^n)$ if and only if $(x_{\nu}^i)_{\nu}$ converges to a^i for all $i = 1, \dots, n$.
- **3.** Let (E, ϱ) be a normed vector space. Prove that the functions

$$E \times E \ni (x, y) \mapsto x + y \in E$$
 and $\mathbb{R} \times E \ni (\lambda, x) \mapsto \lambda \cdot x \in E$

are continuous (where $E \times E$ and $\mathbb{R} \times E$ are equipped with product norms).

- **4.** Let (X, d) be a metric space, let $E \subset X$ be connected, and let $Y \subset X$ be any set. Prove that, if $E \cap Y \neq \emptyset$ and $E \cap (X \setminus Y) \neq \emptyset$, then $E \cap \partial Y \neq \emptyset$.
- 5. A metric space (X, d) is called *totally disconnected* if all its connected components are singletons (i.e., all subsets of X with more than one element are disconnected).
 - (a) Prove that \mathbb{Q} and the Cantor set C (with the Euclidean metric induced from \mathbb{R}) are totally disconnected.
 - (b) Let (X, d) be a connected metric space, and let (Y, ϱ) be totally disconnected. Prove that the only continuous functions from (X, d) to (Y, ϱ) are the constant functions.
- 6. We say that two sets A, B are *separated* when $A \cap \overline{B} = \overline{A} \cap B = \emptyset$. Let (X, d) be a metric space. Prove that, if C_1 and C_2 are connected components of X, then either C_1 and C_2 are separated or else $C_1 = C_2$.
- (a) Let (X₁, d₁) and (X₂, d₂) be metric spaces, and let F and G denote the families of their connected components, respectively. Prove that, if f : (X₁, d₁) → (X₂, d₂) is a homeomorphism, then f(C) ∈ G for every C ∈ F, and every element of G is obtained in this way.
 - (b) Prove that there is no homeomorphism between \mathbb{R} and \mathbb{R}^n , for any $n \ge 2$. [Hint: For a proof by contradiction, suppose there is a homeomorphism $f : \mathbb{R} \to \mathbb{R}^n$ for some $n \ge 2$. Then f induces a homeomorphism \tilde{f} between $\mathbb{R} \setminus \{0\}$ and $\mathbb{R}^n \setminus \{f(0)\}$.]
- 8. Let $\{E_i\}_{i \in I}$ be a family of connected subsets of a metric space (X, d). Suppose that there exists $i_0 \in I$ such that, for every $i \in I$, E_i and E_{i_0} are not separated. Prove that the union $\bigcup E_i$ is connected.
- 9. Exercise 9.11.
- 10. Exercise 9.12.