Problem Set 8

November 21, 2021

All numbered exercises are from the textbook Lectures on Real Analysis, by F. Larusson.

1. Exercise 9.16.

2. Exercise 9.20.
3. Given metric spaces $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$, one defines the product metric ρ on the set $X_{1} \times X_{2}$ by the formula

$$
\rho\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right):=d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right), \quad \text { for all }\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in X_{1} \times X_{2}
$$

(a) Prove that ρ is indeed a metric on $X_{1} \times X_{2}$.
(b) Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ be metric spaces, and let ρ be the product metric on $X_{1} \times X_{2}$. Let $p_{j}:\left(X_{1} \times X_{2}, \rho\right) \rightarrow\left(X_{j}, d_{j}\right), j=1,2$, be the coordinate projections; i.e., $p_{1}\left(x_{1}, x_{2}\right)=x_{1}$ and $p_{2}\left(x_{1}, x_{2}\right)=x_{2}$ for all $x_{1} \in X_{1}, x_{2} \in X_{2}$. Prove that p_{1} and p_{2} are continuous.
(c) Use the Weierstrass theorem (on compactness of continuous images of compact sets) proved in class to conclude that, if $A \subset X_{1}$ and $B \subset X_{2}$, then $A \times B$ is compact if and only if A and B are so.
4. Let (X, d) and (Y, ρ) be metric spaces. Prove that a function $f:(X, d) \rightarrow(Y, \rho)$ is continuous if and only if $f(\bar{A}) \subset f(A)$ for all $A \subset X$.
5. Let (X, d) be a compact metric space, and let $f: X \rightarrow X$ be a continuous function such that $f(x) \neq x$ for all $x \in X$. Prove that there exists $\epsilon>0$ such that $d(x, f(x))>\epsilon$ for all $x \in X$.
6. Let (X, d) and (Y, ρ) be metric spaces, let $A, B \subset X$ be such that $X=A \cup B$, and let $f:\left(A, d_{A}\right) \rightarrow(Y, \rho)$ and $g:\left(B, d_{B}\right) \rightarrow(Y, \rho)$ be continuous and such that $\left.f\right|_{A \cap B}=\left.g\right|_{A \cap B}$. Define a function $f \cup g$ as

$$
(f \cup g)(x)= \begin{cases}f(x), & \text { if } x \in A \\ g(x), & \text { if } x \in B\end{cases}
$$

Prove that, if A and B are simultaneously open or simultaneously closed in (X, d), then $f \cup g$ is continuous. Give an example showing the necessity of this assumption.
7. A function $f:(X, d) \rightarrow(Y, \rho)$ is called an open function when $f(U)$ is open in Y for every U open in X, and a closed function when $f(F)$ is closed in Y for every F closed in X. Prove that, if f is a bijection, then the following conditions are equivalent:
(i) f is a homeomorphism.
(ii) f is continuous and open.
(iii) f is continuous and closed.
8. Prove that, if (X, d) is a compact metric space and $f:(X, d) \rightarrow(Y, \rho)$ is a continuous bijection, then f is a homeomorphism.

