Problem Set 5

October 10, 2021

All numbered exercises are from the textbook Lectures on Real Analysis, by F. Larusson.

1. Exercise 8.5.
2. Exercise 8.6.
3. Exercise 8.7.
4. Exercise 8.8.
5. Exercise 8.9.
6. Exercise 8.10.
7. (a) Prove that, if a series $\sum_{n} f_{n}$ of continuous functions $f_{n}:[a, b] \rightarrow \mathbb{R}$ converges uniformly to a function $f:[a, b] \rightarrow \mathbb{R}$, then f is integrable on $[a, b]$ and

$$
\int_{a}^{b} f=\sum_{n} \int_{a}^{b} f_{n}
$$

(b) Prove that the function $f(x)=\sum_{n=1}^{\infty} \frac{n^{2} x^{n}}{n!}$ is integrable on the interval $[0,1]$.
8. (a) For $n \in \mathbb{Z}_{+}$, let a function $f_{n}:[1,2021] \rightarrow \mathbb{R}$ be defined by the formula

$$
f_{n}(x)=\sin (\ln (n x)), \quad x \in[1,2021] .
$$

Prove that the sequence $\left(f_{n}\right)_{n \in \mathbb{Z}_{+}}$contains a uniformly convergent subsequence.
[Hint: Use the Mean Value Theorem to show that the sequence $\left(f_{n}\right)_{n}$ is equicontinuous.]
(b) Construct an example of an equicontinuous sequence $\left(f_{n}\right)_{n}$ of functions on a closed interval $[a, b]$, such that $\left(f_{n}\right)_{n}$ does not contain a uniformly convergent subsequence.

